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This talk is based on joint work "Expressive Power of Graph Transformers via Logic” with
Maurice Funk, Damian Heiman, Antti Kuusisto and Carsten Lutz, to appear in AAAI
2026.




Background

Transformers form the basis of modern large language models (LLMs) such
as ChatGPT, Copilot, etc. (Vaswani et al., NeurlPS 2017).

Little is known about their precise expressive power on graphs.

Standard transformers have been studied via temporal logics by Yang et

al. (NeurlPS 2024), Chiang et al. (ICML 2023), Li and Cotterel (NeurlPS
2025), Jerad et al. (ACL 2025).



Background

We study Graph Transformers (GTs) with reals and floating-point numbers.

Restricted to first-order logic, we characterize real-based GTs.

We give an unrestricted logical characterization of float-based GTs.

Why is this interesting?
— Helps to understand theoretical limits of graph transformers.

— Helps practitioners select appropriate GT architectures.
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Message passing

Figure: A graph where feature vectors
are identified with colors.

Each vertex updates its feature vector
using its previous features and the ag-
gregated features of its out-neighbors

A demonstration of how the blue ver-
tex's feature vector is updated:

o = COM(e, AGG({{e,*,0}}))

Often, AGG is sum, mean or max, and
COM is realized by an FNN.



Self-attention

Figure: The blue vertex observes all
vertices in the graph.

Vertices update their feature vec-
tor by aggregating the feature vec-
tors of all vertices in the graph.

A common method of aggregation
applied to graphs is self-attention:
(XWe)(XWi) "
Vd
where Wgq, Wk and Wy are real-

valued d x d-matrices and X is the
feature matrix of the graph.

softmax ( ) XWy,



Logics

Graded modal logic with counting global modality (or GML + GC):
Propositional logic + diamonds (>, and (G)>.

o A vertex satisfies O, iff at least k
out-neighbours satisfy .

o A vertex satisfies (G)> ¢ iff at least k
vertices in the graph satisfy .

GML + G: Propositional logic + diamonds (> and (G)>1.
PL + GC: Propositional logic + (G)>.
PL + G: Propositional logic + (G)>1.



Real-based characterizations

Relative to FO, the following pairs have the same expressive power:
GML + G = GPS-networks
PL + G = Graph Transformers

“=" By induction on the structure of a formula.

“«<" We introduce global-ratio graded bisimilarity, ~;o,, which considers
the ratios of graded bisimilarity types within a graph.

We show that GPS-networks are invariant under ~go,.

Then we prove a corresponding van Benthem /Rosen theorem: Every FO-
formula invariant under ~ o, is equivalent to a formula of GML + G.

Analogous results are obtained for GTs and PL + G. O |




Global-ratio graded bisimilarity

An illustration of two global-ratio graded bisimilar graphs, where bisimilar
vertices are connected with dotted lines.



Float-based characterizations

Float-based sums are bounded, i.e., there exists some k such that it makes
no difference whether a float appears k or ¢ times in the sum for all £ > k.

This is because:

@ Float sum is not associative due to rounding errors, so the order of the
sum has to be fixed.

@ Summing in a random vertex order violates isomorphism invariance.

@ Instead, summing in increasing order of floats is reasonable for
numerical accuracy, but leads to boundedness due to rounding.

Thus, floating-point aggregation functions are also bounded.



Float-based characterizations

The following pairs have the same expressive power:

GML + GC = GPS-networks with floats
PL + GC = Graph Transformers with floats

v

“=" By structural induction, self-attention can simulate diamonds (G)=
due to the underflow effect in float arithmetic (values near 0 round to 0).

“«<" PL can handle all local steps (e.g., FNNs), since it is Boolean complete.

Message passing modules can be simulated by using diamonds (> since
aggregation functions are bounded.

For self-attention, we carefully simulate each matrix operation step-by-step;
diamonds (G)> suffice due to the sum operations being bounded. O




Future work

@ Study other attention mechanisms (our results already generalize to
average-hard attention).

e Characterize common positional encodings (e.g. graph Laplacian).

o Generalize all of our results for graph classifications (our float results
already generalize for graph classification tasks).



Thank youl!



