
Logical Foundations for Modern Computational Models

Veeti Ahvonen

Mathematics Research Centre

28.1.2026

Motivation

Modern computational models (e.g. neural networks) have been proven to
be highly successful in solving a wide variety of problems.

However, many of these models are only understood at a heuristic level.

To address this weakness we use logic to study the expressive power of

1 distributed computing models, and
2 machine learning frameworks.

Typical sequential computing framework

0 1 1 0 1

Input

Algorithm Accept/Reject

Output

Distributed computing

Input graph

Distributed computing

Input graph

Place same
algorithm A
on each node

A
A

A

A

A

Distributed
System

Distributed computing

Input graph

Place same
algorithm A
on each node

A
A

A

A

A

Distributed
System

Local
message
passing

1
0

1

0

1

Local Outputs

Distributed computing

Input graph

Place same
algorithm A
on each node

A
A

A

A

A

Distributed
System

Local
message
passing

1
0

1

0

1

Local Outputs

msg

msg

Local View
Each node updates

its state according to
the received messages
and node’s own state.

Example: Reachability

Initial State

1

Source (green) is reachable. Others are unknown (gray).

Example: Reachability

Round 1

1 1

reach!

Source sends “reach” — Node 2 receives from its out-neighbour.

Example: Reachability

Round 2

1 1 1

reach!

Message propagates: each node receives from its out-neighbour.

Example: Reachability

Round 3

1 1 1 1

reach!

Information continues toward the root.

Example: Reachability

Round 4

1 1 1 1 1

reach!

Root receives the message.

Related work on distributed computing

Hella et al. (PODC 2012) built links between variants of modal logic and
constant-iteration distributed automata.

Kuusisto (CSL 2013) used Modal substitution calculus (or MSC)—a rule-
based extension of modal logic—to characterize a class of distributed au-
tomata that may run for an unbounded number of rounds.

Reiter (ICALP 2017) used the µ-fragment of the modal µ-calculus to char-
acterize distributed automata in the asynchronous setting.

Distributed automata

A finite distributed automaton (or FDA) is a tuple (Q, δ, π,F)

Q is a finite non-empty set of states,
δ : Q × P(Q) → Q is a transition function that gives a new state to
each node according to

the node’s own current state
and the set of node’s neighbours’ states

π : P(Π) → Q is an initialization function from node-labels to an
initial state,
F ⊆ Q is a set of accepting states.

If Q is countably infinite, we simply call such an automaton a DA.

A DA accepts a node of a graph if it enters an accepting state during the
run.

Formally a graph is a tuple (V ,E , p1, . . . , pn), where V is a set of nodes, E
is a set of edges and node-labels pi ⊆ V encode a local input at each node.

v

u

w

p1, p2

p2

p1

A node is accepted if it enters an accepting state during the run.

Formally a graph is a tuple (V ,E , p1, . . . , pn), where V is a set of nodes, E
is a set of edges and node-labels pi ⊆ V encode a local input at each node.

Round 0

v

u

w

p1, p2

p2

p1

s0
v

s0
v = π(p1, p2)

A node is accepted if it enters an accepting state during the run.

Formally a graph is a tuple (V ,E , p1, . . . , pn), where V is a set of nodes, E
is a set of edges and node-labels pi ⊆ V encode a local input at each node.

Round 0

v

u

w

p1, p2

p2

p1

s0
v

s0
v = π(p1, p2)

δ

Round t + 1

v

u

w

A node is accepted if it enters an accepting state during the run.

Formally a graph is a tuple (V ,E , p1, . . . , pn), where V is a set of nodes, E
is a set of edges and node-labels pi ⊆ V encode a local input at each node.

Round 0

v

u

w

p1, p2

p2

p1

s0
v

s0
v = π(p1, p2)

δ

Round t + 1

v

u

w

s tu

s tw

A node is accepted if it enters an accepting state during the run.

Formally a graph is a tuple (V ,E , p1, . . . , pn), where V is a set of nodes, E
is a set of edges and node-labels pi ⊆ V encode a local input at each node.

Round 0

v

u

w

p1, p2

p2

p1

s0
v

s0
v = π(p1, p2)

δ

Round t + 1

v

u

w

s tu

s tw

s t+1
v

s t+1
v = δ

(
s tv , {s tu, s tw}

)

A node is accepted if it enters an accepting state during the run.

Formally a graph is a tuple (V ,E , p1, . . . , pn), where V is a set of nodes, E
is a set of edges and node-labels pi ⊆ V encode a local input at each node.

Round 0

v

u

w

p1, p2

p2

p1

s0
v

s0
v = π(p1, p2)

δ

Round t + 1

v

u

w

s tu

s tw

s t+1
v

s t+1
v = δ

(
s tv , {s tu, s tw}

)
A node is accepted if it enters an accepting state during the run.

Modal substitution calculus

base rule︷ ︸︸ ︷
X1(0) :− p ∧ q

induction rule︷ ︸︸ ︷
X1 :− X3 ∨□p

...
...

Xn(0) :− ♢q ∨ ¬q Xn :− ♢X1

φ ::= ⊥ | p | ¬φ | φ ∧ φ | ♢φ (ordinary modal logic)
φ ::= ⊥ | p | X | ¬φ | φ ∧ φ | ♢φ

Semantics:

X 0
i denotes the base formula of Xi

X t+1
i is obtained from the induction formula of Xj by substituting

each Xi by X t
j .

A program accepts a node v of a graph if for some t ∈ N, the formula X t
1

is true at v .

MSC example

The reachability problem for p:

X (0) :− p, X :− ♢X .

p, ♢p, ♢♢p, . . .

If p is reachable from the studied node, it will eventually be accepted.

Some results on DAs
Theorem 1 (Kuusisto CSL13)
MSC and finite distributed automata have the same expressive power.

We can further extend this for bounded counting finite distributed automata.
A k-bounded counting FDA is defined analogously to an FDA, but its tran-
sition functions are of the form

δ : Q ×multk(Q) → Q

multk(Q) denotes the multisets of Q whose multiplicities are at most k .

For example, the 2-multiset of {{1, 1, 1, 2, 2}} is {{1, 1, 2, 2}}.

Theorem 2 (A., Heiman, Kuusisto 24)
GMSC and bounded counting FDAs have the same expressive power.

Here GMSC is the extension of MSC with counting modalities ♢≥k .

Some results on DAs

Define ω-GML to be the logic obtained from graded modal logic (or GML)
by extending its syntax with countably infinite disjunctions.

Theorem 3 (A., Heiman, Kuusisto 24)
ω-GML and counting distributed automata have the same expressive power.

Notice that here an automaton can have countably infinitely many states.

Graph neural network
A graph neural network (or GNN) is a counting distributed automaton
(δ, π,F) that is obtained by a learning process.

The initialization function π : P(Π) → Rd gives an initial feature vector s0
v

for each node v .

The transition function δ is induced by

a combination function COM : Rd × Rd → Rd (typically an NN)
an aggregation function AGG : mult(Rd) → Rd (typically sum)

In round t = 1, 2, . . . ,, every node v computes a new state

st+1
v := COM(stv ,AGG({{stu | (v , u) ∈ E)}})

Similarly to DAs, a GNN accepts a node v of a graph if in some round t ∈ N,
v visits an accepting feature vector.

Simple GNNs
In round t = 1, 2, . . . , every node v computes a new feature vector

x t
v = ReLU∗

(
x t−1
v · C +

(∑
(v ,u)∈E

x t−1
u

)
· A + b

)
.

C ,A ∈ Rd×d are matrices and b ∈ Rd is a bias vector.

ReLU∗ = min(max(0, x), 1) is applied pointwise.

Related work on GNNs

Theorem 4 (Barceló et al. ICLR20)
In restriction to first-order logic, the following have the same expressive
power:

constant-iteration GNNs with reals
Simple constant-iteration GNNs with reals
Graded modal logic

Also many other relevant results on constant-iteration GNNs: Grohe (LICS21,
LICS23), Benedikt et al. (ICALP24), Grau et al. (AAAI26), etc.

Also Pflüger et al. (AAAI24) gave a logical characterization in restriction to
a background logic.

Floating-point GNNs

A GNN with floating-point numbers acts similarly to a GNN with real
numbers.

A GNN with floats is fixed with a finite set of floating-point numbers and
real arithmetic operations are approximated.

However, float sum as an aggregation function is bounded, because

Floating-point sum is not associative
We cannot sum over a random node order since otherwise
isomorphism invariance is violated
We use (increasing) order of floats instead

Results on GNNs

Theorem 5 (A., Heiman, Kuusisto, Lutz, 24)
Same expressive power:

GMSC
floating-point GNNs
Simple floating-point GNNs
bounded counting FDAs

Theorem 6 (A., Heiman, Kuusisto, Lutz, 24)
Same expressive power:

ω-GML
GNNs with reals
counting DAs

Results on GNNs

Theorem 7 (A., Heiman, Kuusisto, Lutz, 24)
In restriction to monadic second-order logic, the following have the same
expressive power:

floating-point GNNs
GNNs with reals
GMSC
ω-GML
bounded counting FDAs
counting DAs

Proof.
The proof is based on properties of monadic second-order logic on
tree-shaped graphs, and so-called “tree automata”.

Distributed computing with identifiers

7
3

12

1

9

Input
Each node has a
unique identifier

Place same
algorithm A
on each node

7: A

3: A

12: A

1: A

9: A

Distributed System
Algorithm also uses
identifiers as input

Identifiers (or IDs) enable:

Symmetry and similarity breaking (e.g. self-loops can be detected),
Leader election, and
addressing a message to specific nodes.

Bollig, Bouyer and Reiter (FoSSaCS 2019) studied distributed register ma-
chines with identifiers via a fragment of partial fixed-point logic.

Our contributions on distributed computing with identifiers

We characterize the expressive power of circuit-based distributed algorithms
with identifiers via modal substitution calculus.

The obtained translations are highly efficient in relation to size (and compu-
tation time).

Graphs with identifiers

Formally, a graph with identifiers is a tuple

(V ,E , p1, . . . , pn, q1, . . . , qm)

where

V is a set of nodes,
E is a set of edges,
node labels (or proposition symbols) p1, . . . , pn encode unique
identifiers (thus labels are ordered),
node labels q1, . . . , qm are additional labels (act as ordinary
proposition symbols in Kripke models).

Distributed computing with circuits and IDs

01

11

00
Input

Graph with
out-degree ≤ ∆ and IDs

Distributed computing with circuits and IDs

01

11

00
Input

Graph with
out-degree ≤ ∆ and IDs

Place circuit
C∆ on

each node
01

11

00

C∆, 01

C∆, 11

C∆, 00

Distributed computing with circuits and IDs

01

11

00
Input

Graph with
out-degree ≤ ∆ and IDs

Place circuit
C∆ on

each node
01

11

00

C∆, 01

C∆, 11

C∆, 00

How each node updates its state (one round)
Circuit C∆ computes: f : {0, 1}k+k ·∆ → {0, 1}k

k = state length (bits per node), ∆ = max out-degree

Distributed computing with circuits and IDs

01

11

00
Input

Graph with
out-degree ≤ ∆ and IDs

Place circuit
C∆ on

each node
01

11

00

C∆, 01

C∆, 11

C∆, 00

How each node updates its state (one round)
Circuit C∆ computes: f : {0, 1}k+k ·∆ → {0, 1}k

k = state length (bits per node), ∆ = max out-degree

Step 1: Gather

Own state: 0 1 1

From out-nbr 1: 0 0 0

From out-nbr 2: 0 1 0

Distributed computing with circuits and IDs

01

11

00
Input

Graph with
out-degree ≤ ∆ and IDs

Place circuit
C∆ on

each node
01

11

00

C∆, 01

C∆, 11

C∆, 00

How each node updates its state (one round)
Circuit C∆ computes: f : {0, 1}k+k ·∆ → {0, 1}k

k = state length (bits per node), ∆ = max out-degree

Step 1: Gather

Own state: 0 1 1

From out-nbr 1: 0 0 0

From out-nbr 2: 0 1 0

Step 2: Concatenate

Input to circuit:

0 1 1 0 0 0 · · ·

Distributed computing with circuits and IDs

01

11

00
Input

Graph with
out-degree ≤ ∆ and IDs

Place circuit
C∆ on

each node
01

11

00

C∆, 01

C∆, 11

C∆, 00

How each node updates its state (one round)
Circuit C∆ computes: f : {0, 1}k+k ·∆ → {0, 1}k

k = state length (bits per node), ∆ = max out-degree

Step 1: Gather

Own state: 0 1 1

From out-nbr 1: 0 0 0

From out-nbr 2: 0 1 0

Step 2: Concatenate

Input to circuit:

0 1 1 0 0 0 · · ·

Step 3: Compute

C∆

New state:

1 0 1

Results on distributed computing with identifiers

Theorem 8 (A., Heiman, Hella, Kuusisto 23)
For a given out-degree ∆ and for a given program of MSC, we can
construct an equivalent distributed circuit whose size is linear in the size of
the program.

Theorem 9 (A., Heiman, Hella, Kuusisto 23)
Given a bounded fan-in distributed circuit, we can construct an equivalent
program of MSC whose size is linear in the size of the circuit.

Final remarks

Some of our other results (informally).

Theorem 10 (A., Heiman, Kuusisto 23)
Given a floating-point neural network with a piecewise polynomial
activation function, we can construct an equivalent diamond-free GMSC
program, and vice versa. Size blow-ups in both directions are small.

Theorem 11 (A., Funk, Heiman, Kuusisto, Lutz 25)
Floating-point graph transformers with message-passing and GML with
global counting modality have the same expressive power.

Theorem 12 (A., Funk, Heiman, Kuusisto, Lutz 25)
In restriction to first-order logic, real-based graph transformers with
message-passing and GML with global non-counting modality have the
same expressive power.

Thank you!

