

# Logical Foundations for Modern Computational Models

Veeti Ahvonens



Mathematics Research Centre

28.1.2026

## Motivation

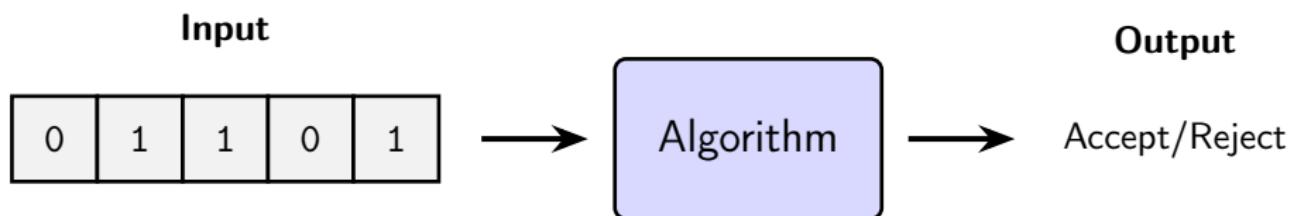
Modern computational models (e.g. neural networks) have been proven to be highly successful in solving a wide variety of problems.

However, many of these models are only understood at a heuristic level.

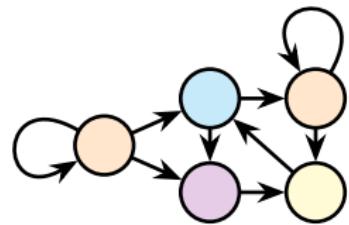
To address this weakness we use logic to study the expressive power of

- ① distributed computing models, and
- ② machine learning frameworks.

## Typical sequential computing framework

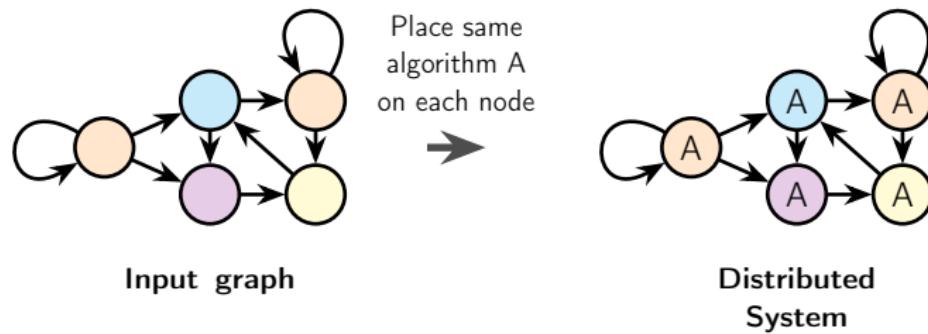


# Distributed computing

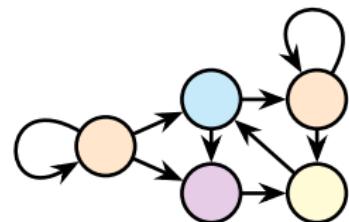


Input graph

# Distributed computing

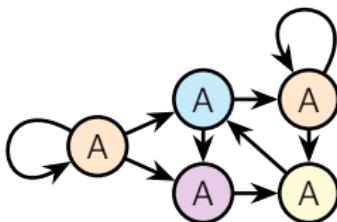


# Distributed computing



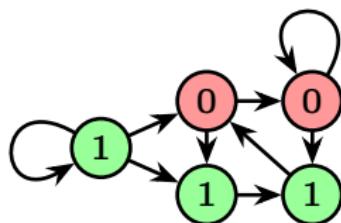
Input graph

Place same  
algorithm A  
on each node



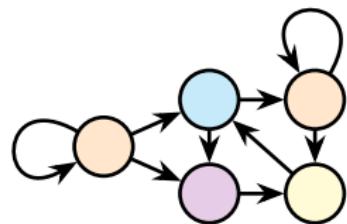
Distributed  
System

Local  
message  
passing



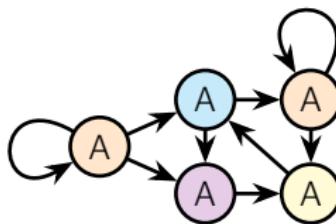
Local Outputs

# Distributed computing



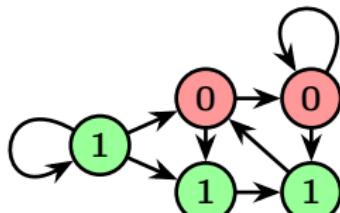
Input graph

Place same  
algorithm A  
on each node

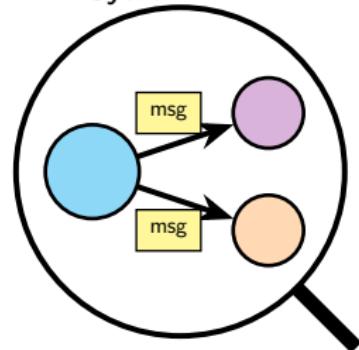


Distributed  
System

Local  
message  
passing



Local Outputs

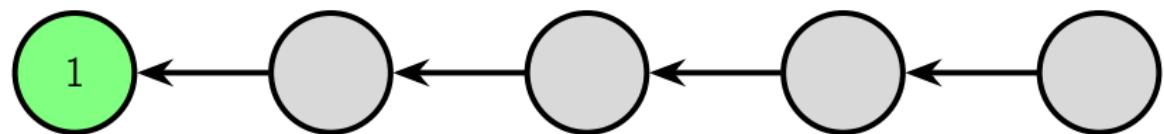


Local View

Each node updates  
its state according to  
the received messages  
and node's own state.

## Example: Reachability

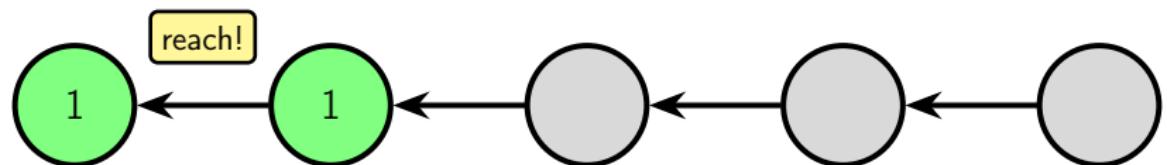
Initial State



**Source** (green) is reachable. Others are **unknown** (gray).

## Example: Reachability

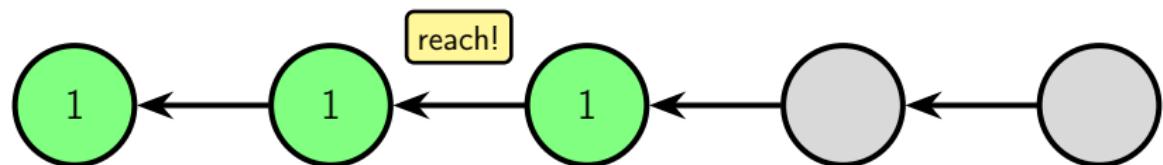
Round 1



Source sends “reach” — Node 2 receives from its out-neighbour.

## Example: Reachability

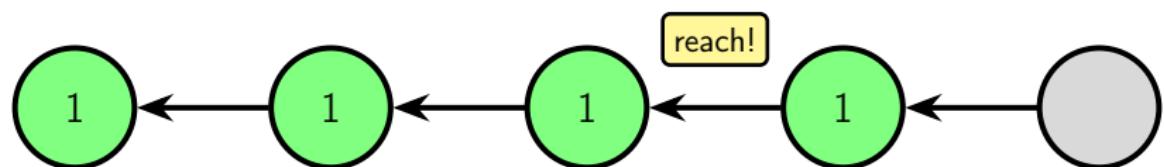
Round 2



Message propagates: each node receives from its out-neighbour.

## Example: Reachability

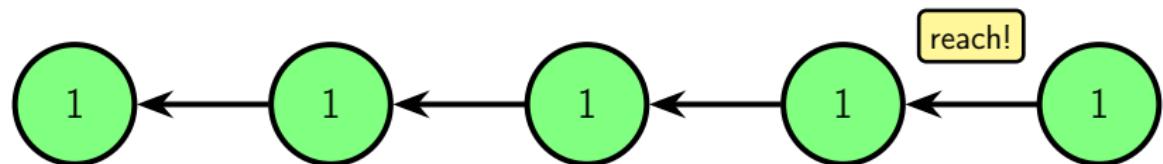
Round 3



Information continues toward the root.

## Example: Reachability

Round 4



**Root** receives the message.

## Related work on distributed computing

Hella et al. (PODC 2012) built links between variants of modal logic and **constant-iteration** distributed automata.

Kuusisto (CSL 2013) used **Modal substitution calculus** (or MSC)—a rule-based extension of modal logic—to characterize a class of distributed automata that may run for an **unbounded** number of rounds.

Reiter (ICALP 2017) used the  $\mu$ -fragment of the modal  $\mu$ -calculus to characterize distributed automata in the **asynchronous setting**.

## Distributed automata

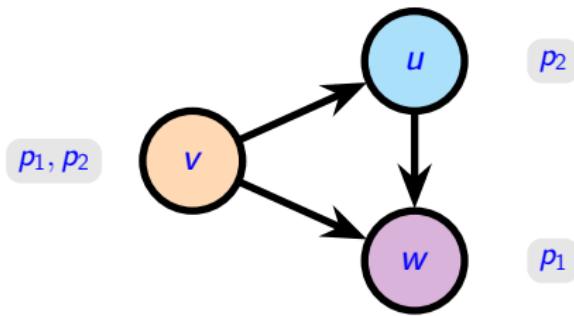
A **finite distributed automaton** (or FDA) is a tuple  $(Q, \delta, \pi, F)$

- $Q$  is a finite non-empty set of states,
- $\delta: Q \times \mathcal{P}(Q) \rightarrow Q$  is a **transition function** that gives a new state to each node according to
  - the node's own current state
  - and the set of node's neighbours' states
- $\pi: \mathcal{P}(\Pi) \rightarrow Q$  is an initialization function from node-labels to an initial state,
- $F \subseteq Q$  is a set of accepting states.

If  $Q$  is countably infinite, we simply call such an automaton a DA.

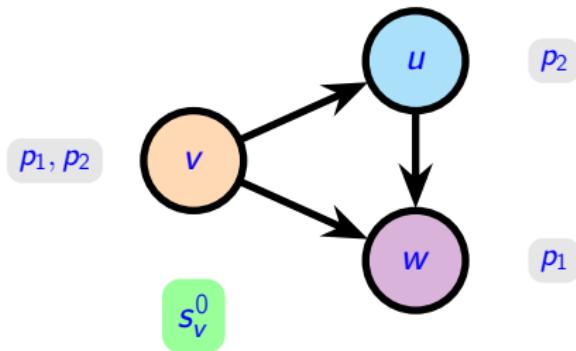
A DA accepts a node of a graph if it enters an accepting state during the run.

Formally a graph is a tuple  $(V, E, p_1, \dots, p_n)$ , where  $V$  is a set of nodes,  $E$  is a set of edges and node-labels  $p_i \subseteq V$  encode a local input at each node.



Formally a graph is a tuple  $(V, E, p_1, \dots, p_n)$ , where  $V$  is a set of nodes,  $E$  is a set of edges and node-labels  $p_i \subseteq V$  encode a local input at each node.

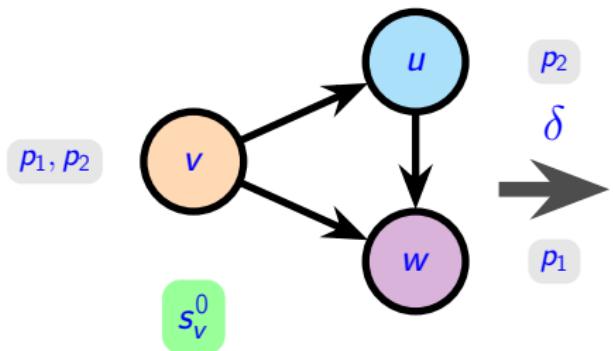
## Round 0



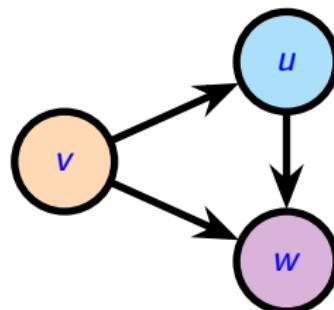
$$s_v^0 = \pi(p_1, p_2)$$

Formally a graph is a tuple  $(V, E, p_1, \dots, p_n)$ , where  $V$  is a set of nodes,  $E$  is a set of edges and node-labels  $p_i \subseteq V$  encode a local input at each node.

Round 0



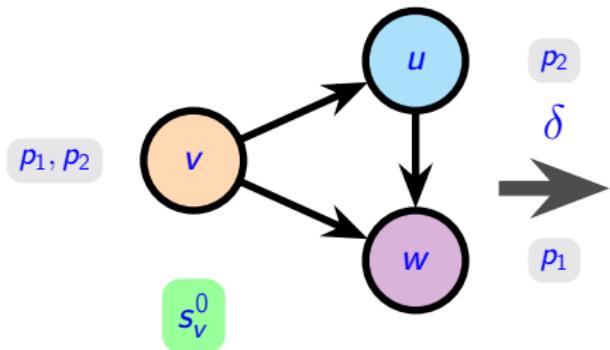
Round  $t+1$



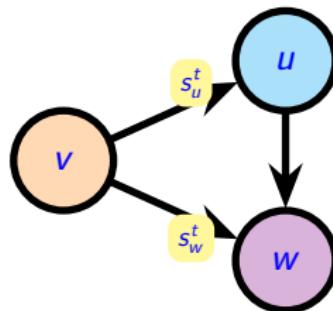
$$s_v^0 = \pi(p_1, p_2)$$

Formally a graph is a tuple  $(V, E, p_1, \dots, p_n)$ , where  $V$  is a set of nodes,  $E$  is a set of edges and node-labels  $p_i \subseteq V$  encode a local input at each node.

Round 0



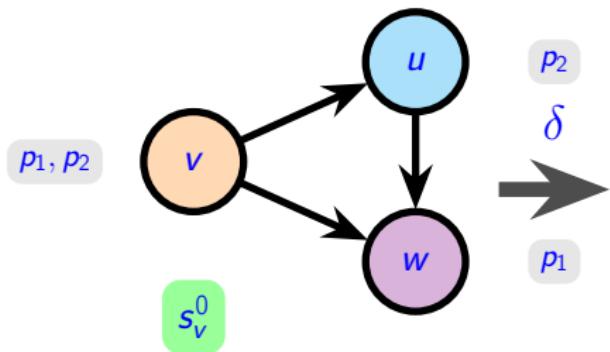
Round  $t+1$



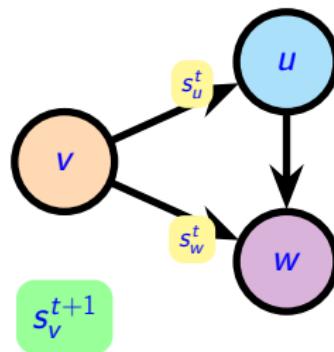
$$s_v^0 = \pi(p_1, p_2)$$

Formally a graph is a tuple  $(V, E, p_1, \dots, p_n)$ , where  $V$  is a set of nodes,  $E$  is a set of edges and node-labels  $p_i \subseteq V$  encode a local input at each node.

Round 0



Round  $t + 1$

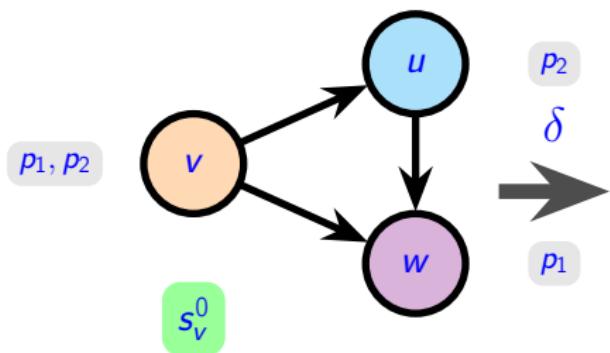


$$s_v^0 = \pi(p_1, p_2)$$

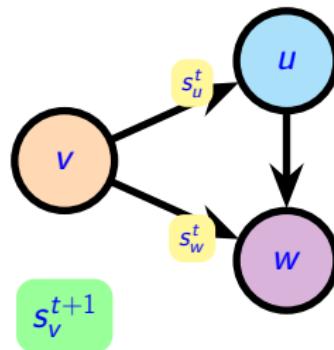
$$s_v^{t+1} = \delta(s_v^t, \{s_u^t, s_w^t\})$$

Formally a graph is a tuple  $(V, E, p_1, \dots, p_n)$ , where  $V$  is a set of nodes,  $E$  is a set of edges and node-labels  $p_i \subseteq V$  encode a local input at each node.

Round 0



Round  $t + 1$



$$s_v^0 = \pi(p_1, p_2)$$

$$s_v^{t+1} = \delta(s_v^t, \{s_u^t, s_w^t\})$$

A node is accepted if it enters an accepting state during the run.

# Modal substitution calculus

$$\begin{array}{ll} \text{base rule} & \text{induction rule} \\ \overbrace{X_1(0) := p \wedge q} & \overbrace{X_1 := X_3 \vee \Box p} \\ \vdots & \vdots \\ X_n(0) := \Diamond q \vee \neg q & X_n := \Diamond X_1 \end{array}$$

- $\varphi ::= \perp \mid p \mid \neg\varphi \mid \varphi \wedge \varphi \mid \Diamond\varphi$  (ordinary modal logic)
- $\varphi ::= \perp \mid p \mid X \mid \neg\varphi \mid \varphi \wedge \varphi \mid \Diamond\varphi$

## Semantics:

- $X_i^0$  denotes the base formula of  $X_i$ ;
- $X_i^{t+1}$  is obtained from the induction formula of  $X_j$  by substituting each  $X_i$  by  $X_j^t$ .

A program **accepts** a node  $v$  of a graph if for some  $t \in \mathbb{N}$ , the formula  $X_1^t$  is true at  $v$ .

## MSC example

The reachability problem for  $p$ :

$$X(0) := p, \quad X := \Diamond X.$$

$p, \Diamond p, \Diamond \Diamond p, \dots$

If  $p$  is reachable from the studied node, it will eventually be accepted.

## Some results on DAs

### Theorem 1 (Kuusisto CSL13)

*MSC and finite distributed automata have the same expressive power.*

We can further extend this for **bounded counting finite distributed automata**. A  $k$ -bounded counting FDA is defined analogously to an FDA, but its transition functions are of the form

$$\delta: Q \times \text{mult}_k(Q) \rightarrow Q$$

$\text{mult}_k(Q)$  denotes the multisets of  $Q$  whose multiplicities are at most  $k$ .

For example, the 2-multiset of  $\{\{1, 1, 1, 2, 2\}\}$  is  $\{\{1, 1, 2, 2\}\}$ .

### Theorem 2 (A., Heiman, Kuusisto 24)

*GMSC and bounded counting FDAs have the same expressive power.*

Here GMSC is the extension of MSC with counting modalities  $\Diamond_{\geq k}$ .

## Some results on DAs

Define  $\omega$ -GML to be the logic obtained from graded modal logic (or GML) by extending its syntax with countably infinite disjunctions.

Theorem 3 (A., Heiman, Kuusisto 24)

$\omega$ -GML and counting distributed automata have the same expressive power.

Notice that here an automaton can have countably infinitely many states.

## Graph neural network

A **graph neural network** (or GNN) is a counting distributed automaton  $(\delta, \pi, F)$  that is obtained by a learning process.

The initialization function  $\pi: \mathcal{P}(\Pi) \rightarrow \mathbb{R}^d$  gives an initial feature vector  $s_v^0$  for each node  $v$ .

The transition function  $\delta$  is induced by

- a combination function  $\text{COM}: \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d$  (typically an NN)
- an aggregation function  $\text{AGG}: \text{mult}(\mathbb{R}^d) \rightarrow \mathbb{R}^d$  (typically sum)

In round  $t = 1, 2, \dots$ , every node  $v$  computes a new state

$$s_v^{t+1} := \text{COM}(s_v^t, \text{AGG}(\{\{s_u^t \mid (v, u) \in E\}\}))$$

Similarly to DAs, a GNN accepts a node  $v$  of a graph if in some round  $t \in \mathbb{N}$ ,  $v$  visits an accepting feature vector.

## Simple GNNs

In round  $t = 1, 2, \dots$ , every node  $v$  computes a new feature vector

$$\mathbf{x}_v^t = \text{ReLU}^* \left( \mathbf{x}_v^{t-1} \cdot \mathbf{C} + \left( \sum_{(v,u) \in E} \mathbf{x}_u^{t-1} \right) \cdot \mathbf{A} + \mathbf{b} \right).$$

$\mathbf{C}, \mathbf{A} \in \mathbb{R}^{d \times d}$  are matrices and  $\mathbf{b} \in \mathbb{R}^d$  is a bias vector.

$\text{ReLU}^* = \min(\max(0, x), 1)$  is applied pointwise.



## Related work on GNNs

### Theorem 4 (Barceló et al. ICLR20)

*In restriction to first-order logic, the following have the same expressive power:*

- *constant-iteration GNNs with reals*
- *Simple constant-iteration GNNs with reals*
- *Graded modal logic*

Also many other relevant results on constant-iteration GNNs: Grohe (LICS21, LICS23), Benedikt et al. (ICALP24), Grau et al. (AAAI26), etc.

Also Pflüger et al. (AAAI24) gave a logical characterization in *restriction to a background logic*.

## Floating-point GNNs

A GNN with **floating-point numbers** acts similarly to a GNN with real numbers.

A GNN with floats is fixed with a finite set of floating-point numbers and real arithmetic operations are approximated.

However, float sum as an aggregation function is **bounded**, because

- Floating-point sum is not associative
- We cannot sum over a random node order since otherwise isomorphism invariance is violated
- We use (increasing) order of floats instead

## Results on GNNs

Theorem 5 (A., Heiman, Kuusisto, Lutz, 24)

*Same expressive power:*

- *GMSC*
- *floating-point GNNs*
- *Simple floating-point GNNs*
- *bounded counting FDAs*

Theorem 6 (A., Heiman, Kuusisto, Lutz, 24)

*Same expressive power:*

- $\omega$ -*GML*
- *GNNs with reals*
- *counting DAs*

## Results on GNNs

Theorem 7 (A., Heiman, Kuusisto, Lutz, 24)

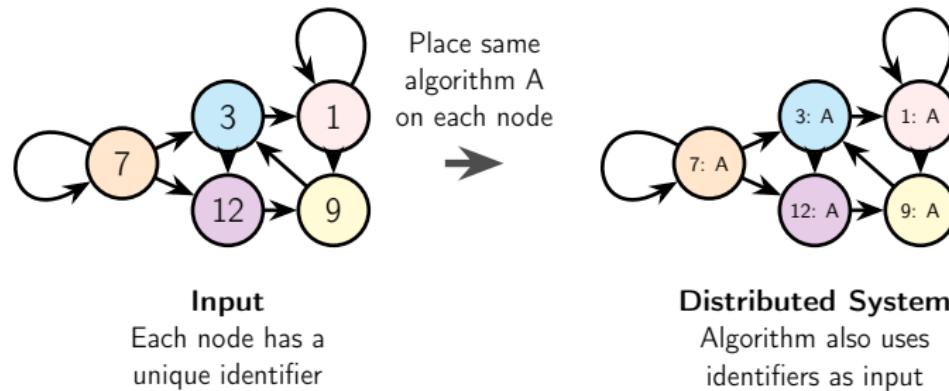
*In restriction to monadic second-order logic, the following have the same expressive power:*

- floating-point GNNs
- GNNs with reals
- GMSC
- $\omega$ -GML
- bounded counting FDAs
- counting DAs

Proof.

The proof is based on properties of monadic second-order logic on tree-shaped graphs, and so-called “tree automata”. □

# Distributed computing with identifiers



Identifiers (or IDs) enable:

- Symmetry and similarity breaking (e.g. self-loops can be detected),
- Leader election, and
- addressing a message to specific nodes.

Bollig, Bouyer and Reiter (FoSSaCS 2019) studied distributed register machines with identifiers via a fragment of partial fixed-point logic.

## Our contributions on distributed computing with identifiers

We characterize the expressive power of **circuit-based distributed algorithms with identifiers** via **modal substitution calculus**.

The obtained translations are highly efficient in relation to size (and computation time).

## Graphs with identifiers

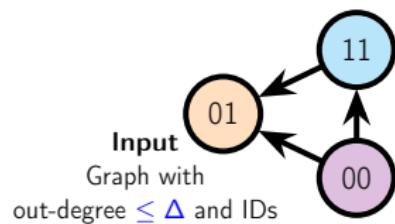
Formally, a graph with identifiers is a tuple

$$(V, E, p_1, \dots, p_n, q_1, \dots, q_m)$$

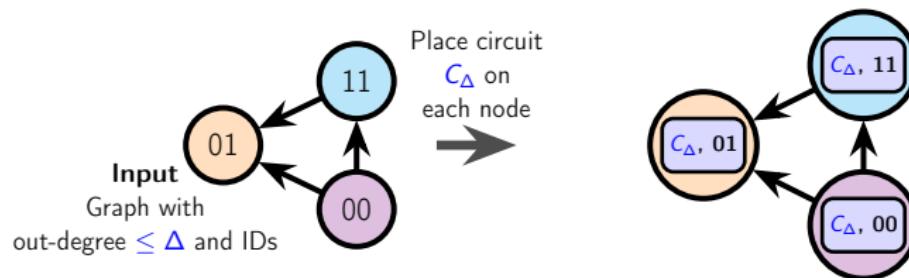
where

- $V$  is a set of nodes,
- $E$  is a set of edges,
- node labels (or proposition symbols)  $p_1, \dots, p_n$  encode unique identifiers (thus labels are ordered),
- node labels  $q_1, \dots, q_m$  are additional labels (act as ordinary proposition symbols in Kripke models).

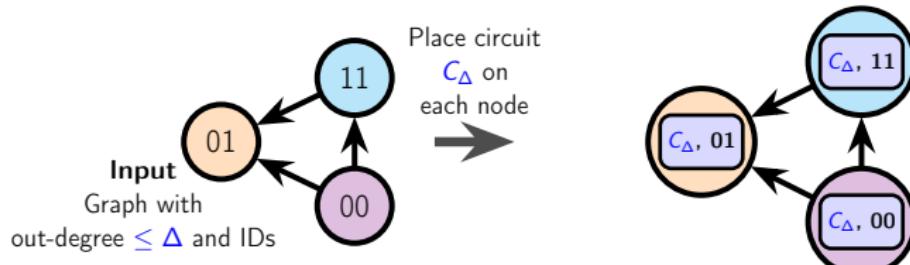
# Distributed computing with circuits and IDs



# Distributed computing with circuits and IDs



# Distributed computing with circuits and IDs

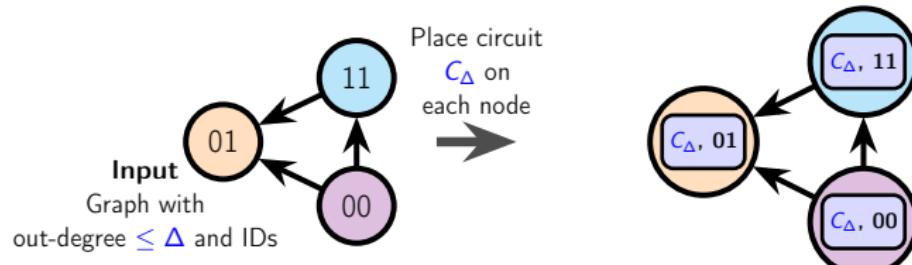


How each node updates its state (one round)

Circuit  $C_\Delta$  computes:  $f : \{0, 1\}^{k+k \cdot \Delta} \rightarrow \{0, 1\}^k$

$k$  = state length (bits per node),  $\Delta$  = max out-degree

# Distributed computing with circuits and IDs



How each node updates its state (one round)

Circuit  $C_\Delta$  computes:  $f : \{0, 1\}^{k+k \cdot \Delta} \rightarrow \{0, 1\}^k$

$k$  = state length (bits per node),  $\Delta$  = max out-degree

## Step 1: Gather

Own state:

|   |   |   |
|---|---|---|
| 0 | 1 | 1 |
|---|---|---|

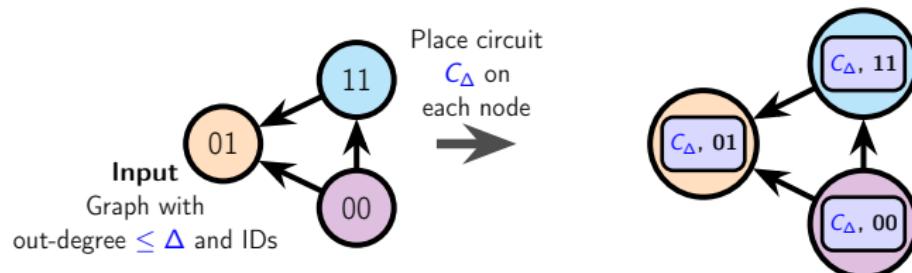
From out-nbr 1:

|   |   |   |
|---|---|---|
| 0 | 0 | 0 |
|---|---|---|

From out-nbr 2:

|   |   |   |
|---|---|---|
| 0 | 1 | 0 |
|---|---|---|

# Distributed computing with circuits and IDs



## How each node updates its state (one round)

Circuit  $C_\Delta$  computes:  $f : \{0, 1\}^{k+k \cdot \Delta} \rightarrow \{0, 1\}^k$

$k$  = state length (bits per node),  $\Delta$  = max out-degree

### Step 1: Gather

Own state: 

|   |   |   |
|---|---|---|
| 0 | 1 | 1 |
|---|---|---|

From out-nbr 1: 

|   |   |   |
|---|---|---|
| 0 | 0 | 0 |
|---|---|---|

From out-nbr 2: 

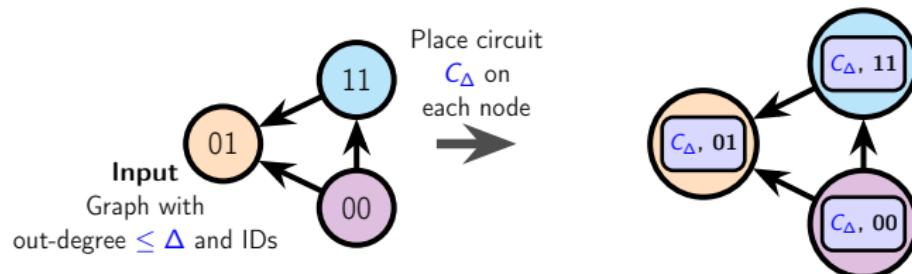
|   |   |   |
|---|---|---|
| 0 | 1 | 0 |
|---|---|---|

### Step 2: Concatenate

Input to circuit: 

|   |   |   |   |   |   |         |
|---|---|---|---|---|---|---------|
| 0 | 1 | 1 | 0 | 0 | 0 | $\dots$ |
|---|---|---|---|---|---|---------|

# Distributed computing with circuits and IDs



## How each node updates its state (one round)

Circuit  $C_\Delta$  computes:  $f : \{0, 1\}^{k+k \cdot \Delta} \rightarrow \{0, 1\}^k$

$k$  = state length (bits per node),  $\Delta$  = max out-degree

### Step 1: Gather

Own state: 

|   |   |   |
|---|---|---|
| 0 | 1 | 1 |
|---|---|---|

From out-nbr 1: 

|   |   |   |
|---|---|---|
| 0 | 0 | 0 |
|---|---|---|

From out-nbr 2: 

|   |   |   |
|---|---|---|
| 0 | 1 | 0 |
|---|---|---|

### Step 2: Concatenate

Input to circuit: 

|   |   |   |   |   |   |         |
|---|---|---|---|---|---|---------|
| 0 | 1 | 1 | 0 | 0 | 0 | $\dots$ |
|---|---|---|---|---|---|---------|

### Step 3: Compute

New state: 

|   |   |   |
|---|---|---|
| 1 | 0 | 1 |
|---|---|---|

## Results on distributed computing with identifiers

### Theorem 8 (A., Heiman, Hella, Kuusisto 23)

*For a given out-degree  $\Delta$  and for a given program of MSC, we can construct an equivalent distributed circuit whose size is linear in the size of the program.*

### Theorem 9 (A., Heiman, Hella, Kuusisto 23)

*Given a bounded fan-in distributed circuit, we can construct an equivalent program of MSC whose size is linear in the size of the circuit.*

## Final remarks

Some of our other results (informally).

### Theorem 10 (A., Heiman, Kuusisto 23)

*Given a floating-point neural network with a piecewise polynomial activation function, we can construct an equivalent diamond-free GMSC program, and vice versa. Size blow-ups in both directions are small.*

### Theorem 11 (A., Funk, Heiman, Kuusisto, Lutz 25)

*Floating-point graph transformers with message-passing and GML with global counting modality have the same expressive power.*

### Theorem 12 (A., Funk, Heiman, Kuusisto, Lutz 25)

*In restriction to first-order logic, real-based graph transformers with message-passing and GML with global non-counting modality have the same expressive power.*

Thank you!