

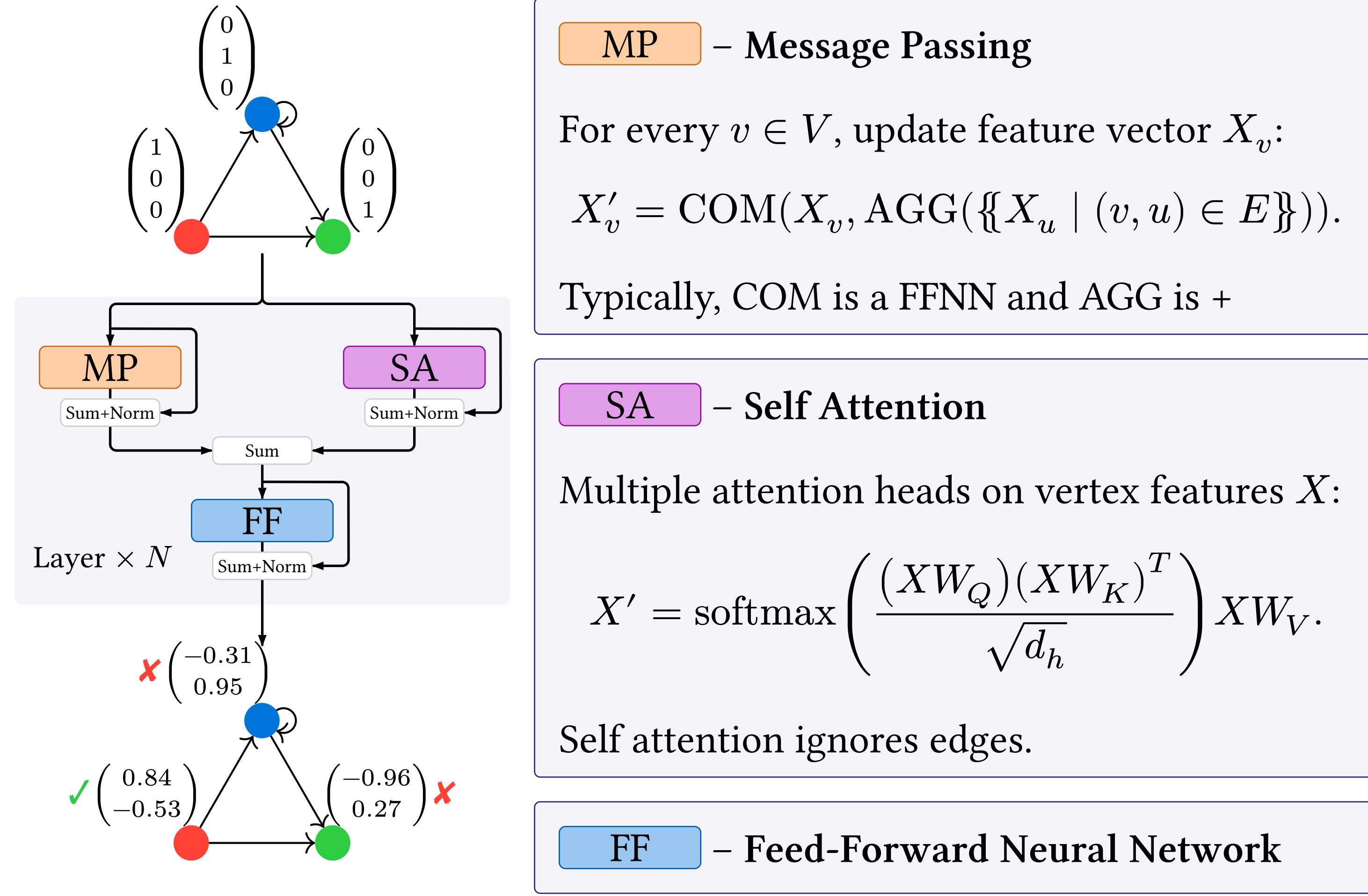
Expressive Power of Graph Transformers via Logic

Veeti Ahvonan¹, Maurice Funk^{2,3}, Damian Heiman¹, Antti Kuusisto¹, and Carsten Lutz^{2,3}

¹Tampere University, ²Leipzig University, ³ScaDS.AI Center Dresden/Leipzig

Graph Transformers and GPS Networks

GPS networks [1] combine message passing of graph neural networks (GNNs) with the attention mechanisms of graph transformers (GTs) [2]. GPS networks compute isomorphism invariant vertex embeddings.



Expressive Power via Logic

We view GPS networks N as a **binary vertex classifiers**: $G, v \models N$ if $X_{v,1} > 0$.

Which vertex properties can be expressed by GPS networks?

Logical characterizations of expressiveness help **understanding of theoretical limits** and **selection of suitable architectures**.

GPS networks have the **same expressive power** as a logic \mathcal{L} if for every GPS network N there is a formula $\varphi \in \mathcal{L}$ such that for **all labeled graphs G** and vertices v ,

$$G, v \models N \text{ if and only if } G, v \models \varphi$$

and vice versa.

Theorem (Barceló et al. 2020) [3]

GNNs and graded modal logic (GML) have the same expressive power relative to first order logic (FO).

Message passing is purely local.

In contrast, self attention can express **global properties**, like

there is a **blue** vertex somewhere in the graph.

Graded Modal Logic

GML formulas φ are defined by

$$\varphi := p \mid \neg\varphi \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \diamondsuit_{\geq k} \varphi.$$

$\diamondsuit_{\geq 2} \text{Blue}$ is satisfied at vertices that have at least two red neighbors.

GML with global counting (GML + GC) can additionally use

$$\langle G \rangle_{\geq k} \varphi.$$

$\langle G \rangle_{\geq 2} \text{Blue}$ is satisfied if there are at least two red vertices in the graph

GML with global modality (GML + G) can only use $\langle G \rangle_{\geq 1} \varphi$.

GML + G cannot count globally

Propositional logic with global counting (PL + GC) or with global modality (PL + G) cannot use $\diamondsuit_{\geq k}$.

PL+GC cannot speak about neighbors

Results on Real Numbers

A theoretical model of computations with infinite precision.

Theorem

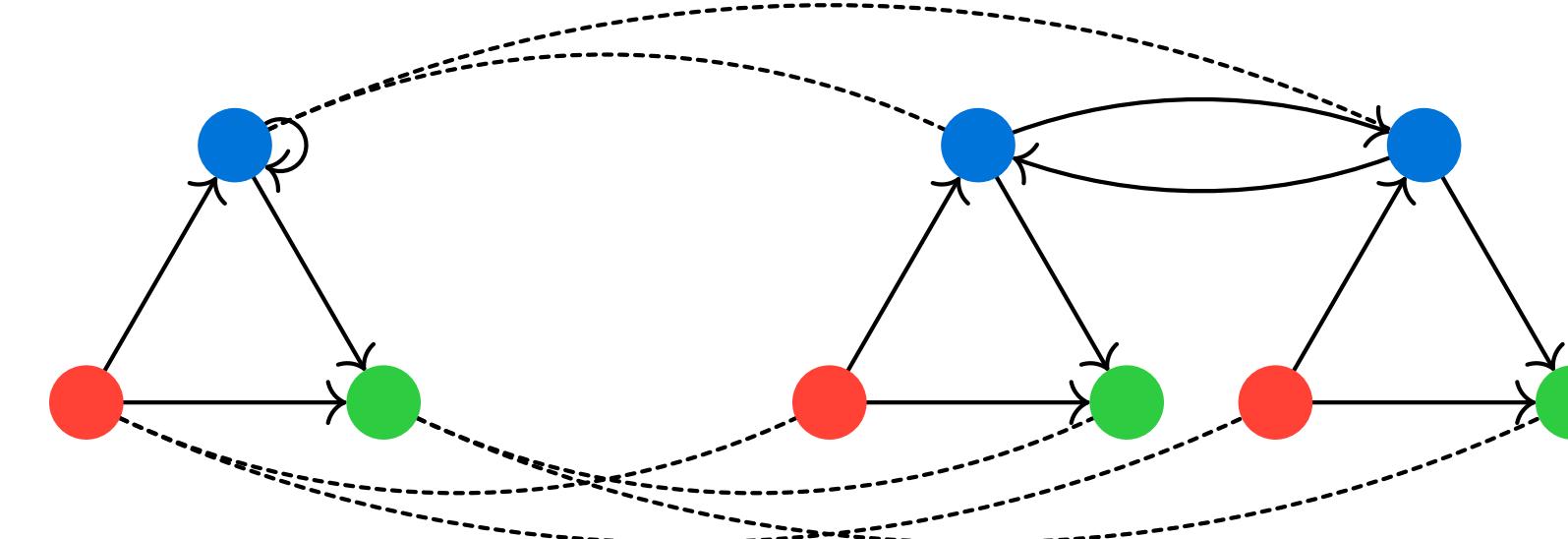
Relative to FO, the following pairs have the same expressive power:

$$\begin{aligned} \text{GPS networks and GML + G} \\ \text{GTs and PL + G} \end{aligned}$$

1. GML+G formulas can be inductively translated into GPS networks:

- use message passing for $\diamondsuit_{\geq k} \varphi$,
- use self attention for $\langle G \rangle_{\geq 1} \varphi$.

2. GPS networks are **invariant under a certain kind of bisimulation**.



We show that every FO formula that is invariant under this relation is equivalent to a GML+G formula.

Hence, GPS networks on real numbers **cannot express** $\langle G \rangle_{\geq 2} \text{Blue}$. However, GPS networks on real numbers **can express** properties not expressible in FO, e.g.:

$$\frac{1}{3} \text{ of the vertices are blue.}$$

Results on Floating Point Numbers

Floating point numbers are restricted to a finite number of bits and operations are **not associative**. This breaks bisimulation invariance.

Theorem

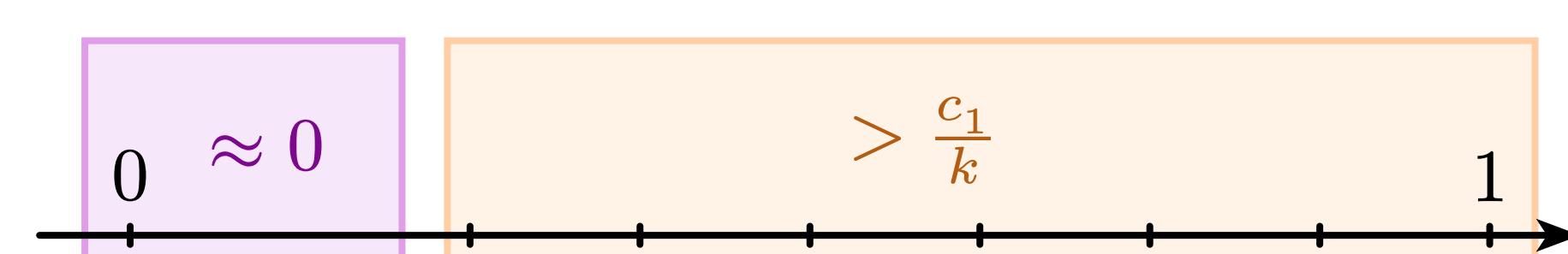
The following pairs have the same expressive power:

$$\begin{aligned} \text{floating point GPS networks and GML + GC} \\ \text{floating point GTs and PL + GC} \end{aligned}$$

This is **not relative to FO** but holds absolutely!

Hence, GPS networks on floating point numbers **can express** $\langle G \rangle_{\geq 2} \text{Blue}$ and they **cannot express** that $\frac{1}{3}$ of the vertices are blue.

$\langle G \rangle_{\geq k} \varphi$ can be expressed in floating point numbers, as there always exist c_1, c_2 such that $(\frac{1}{x} c_1 c_2) = 0$ if $x \geq k$ and $(\frac{1}{x} c_1 c_2) \geq 1$ if $x < k$:



Future Work

We want to:

- transfer our results to **graph classification**,
- consider models that include common positional encodings like **homomorphism counts** and **graph Laplacians**,
- better understand the expressive power of GPS Networks and ACR-GNNs beyond FO.

References

- Rampásek L, Galkin M, Dwivedi VP, et al (2022) Recipe for a General, Powerful, Scalable Graph Transformer. In: Proceedings of NeurIPS
- Dwivedi VP, Bresson X (2020) A Generalization of Transformer Networks to Graphs
- Barceló P, Kostylev EV, Monet M, et al (2020) The Logical Expressiveness of Graph Neural Networks. In: Proceedings of ICLR