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This talk is based on the joint work “Expressive power of Graph Transformers via Logic”
with Maurice Funk, Damian Heiman, Antti Kuusisto and Carsten Lutz.



Background & contributions related to graph learning

Transformers are the basis of modern large language models (Vaswani et
al. NIPS, ChatGPT, Copilot, etc.), but relatively little is known about their
precise expressive power on graphs.

For example, Yang et al. (NeurIPS), Chiang et al. (ICML), Li and Cotterel,
Jerad et al., studied ordinary transformers via temporal logics and built links
between the classes of formal languages.

We give a unrestricted logical characterization of float-based GTs.

Restricted to first-order logic, we characterize real-based GTs.

We also consider transformers over words.



Preliminaries: Feedforward neural networks

A perceptron layer of dimension (i , o) is a tuple P = (α,W , b), where

α : R → R is an activation function (e.g. ReLU(x) = max(0, x)),

W ∈ Ro×i is a weight matrix
and b ∈ Ro is a bias term.

Given an x ∈ Ri , we let α(W x + b) =: P(x) ∈ Ro , where α is applied pointwise.

A feedforward neural network (or FNN) is a finite sequence of perceptron
layers, where each layer propagates its output to the next layer.

Given an x ∈ Ri , we let F (x) := P(n)(· · · (P(1)(x)) · · · ).

Fact: “FNNs can approximate any continuous function to an arbitrary degree of accuracy.”



Graph Transformers

An attention head H of dim. (i , h) is defined w.r.t. three matrices in Ri×h:
the query-matrix WQ , the key-matrix WK and the value-matrix WV .

For a given X ∈ Rn×i it computes the following n × h-matrix:

H(X ) := softmax
(
(XWQ)(XWK )

⊤
√
h

)
(XWV ).

The function softmax : R+ → R+ is length preserving and defined by

softmax(x)i :=
exi−b∑
j e

xj−b
,where b = argmax(x).

An attention module of dimension d is a tuple A = (H(1), . . . ,H(k),WO),
where each H(j) is an attention head of dimension (d , h), and WO ∈ Rkh×d .
Then we define A(X ) := concat(H(1)(X ), . . . ,H(k)(X ))WO .



Graph Transformers

Let Π = {p1, . . . , pℓ} be a set of labels. Fix an arbitrary labeled graph
G = (V ,E , p1, . . . , pℓ) with n vertices and an ordering <V over V . Its la-
beling induces a Boolean feature matrix MG ∈ {0, 1}n×ℓ, where each row
is the one-hot representation of the labels at a vertex.

A graph transformer (GT) consists of an FNN I of dim. (ℓ, d), a classi-
fication function C : Rd → {0, 1}, and a finite sequence of transformer
layers L(1), . . . , L(k), each consisting of an attention module A(j) and an
FNN F (j), both of dimension d .

Now, GT computes over G a sequence of feature matrices: M(0) := I (MG),

M
(j)
A := M(j−1) + A(j)(M(j−1)),

M(j) := M
(j)
A + F (j)(M

(j)
A ).

Finally GT (G) := C (M(k)). Note that each GT defines a vertex property!



Graph neural networks and GPS-networks

Graph neural networks are defined analogously to GTs but each layer is a
message passing layer MP(j) = (COM(j),AGG(j)). For each node v in
the studied graph G it computes M(j) := MP(j)(M(j−1)) as follows:

M
(j)
v := COM(j)

(
M

(j−1)
v ,AGG(j)({{M(j−1)

u | (v , u) ∈ E}})
)
.

COM is an FNN of dim. (2d , d)

AGG : multiset(Rd) → Rd is an aggregation function (typically sum!)

A GPS-network uses GPS-layers (MP(j),A(j),F (j)) which combines the
message passing layer MP(j) of GNNs and transformer layer (A(j),F (j)) as
follows. A GPS-layer computes similarly to GTs, but we merge MP(j)(M(j−1))

to M
(j)
A by using sum before applying F .



Logics

Graded modal logic with counting global modality (or GML + GC):

φ ::= ⊤ | p | ¬φ | φ ∧ φ | ♢≥kφ | ⟨G ⟩≥kφ

Let (G, v) be a pointed labeled graph with vertices V and edges E .

G, v |= ♢≥kφ ⇐⇒ |{ u | (v , u) ∈ E ,G, u |= φ }| ≥ k

G, v |= ⟨G ⟩≥kφ ⇐⇒ |{ u | G, u |= φ }| ≥ k

The logic GML + G is the fragment of GML + GC, where diamonds ⟨G ⟩≥k

are allowed only if k = 1. The logics PL + GC and PL + G are defined
analogously, but do not include diamonds ♢≥k for any k .



Real-based Characterizations
Theorem 1
Relative to FO, the following pairs have the same expressive power:

GML + G ≡ GPS-networks
PL + G ≡ Graph Transformers

Proof.
“⇒” By induction on the structure of a formula. FNNs can be used to
simulate Boolean connctives. Attention heads can be used to handle
subformulae of the form ⟨G ⟩φ, and message passing modules can be used
to simulate ordinary counting diamonds ♢≥k .
“⇐” For GPS-networks, we introduce a new type of bisimilarity called
global-ratio graded bisimilarity that takes into account the multiplicities
with which graded bisimulation types are realized. Then we prove a
corresponding van Bethem/Rosen theorem: Every FO-formula invariant
under global-ratio graded bisimilation is equivalent to a formula of
GML + G. An analogous result can be obtained for GTs.



Float-based characterizations

Consider graph transformers that use floating-point numbers instead of reals.

We notice that the floating-point sum + is not associative due the rounding.
Rounding errors also include

overflow (a resulting float exceeds the largest representable value)
underflow (a resulting float is too close to 0 and rounds to 0).

In which order, we should perform the sum? We cannot sum over a linear
order of the nodes since that would break the isomorphism invariance of GTs!

We use the order of the floats instead, and a common choice is summing in
the increasing order of floats due to its numerical accuracy.



Float-based characterizations
Theorem 2
The following pairs have the same expressive power:

GML + GC ≡ GPS-networks with floats
PL + GC ≡ Graph Transformers with floats

Proof.
“⇒” As with reals, by induction on the structure of a formula. However, we
need to pay attention on the properties of the floats. The most hardest
part is to simulate global diamonds ⟨G ⟩≥k by using attention heads, but
this can be done by using the underflow phenomenon.
“⇐” All local steps (e.g. FNNs) can be simulated by using PL, since it is
Boolean complete. Message passing modules are easy to handle by using
diamonds ♢≥k . The hardest part is to simulate attention heads. This can
be done by carefully simulating each matrix operation one-by-one, then the
softmax function can simulated by using diamonds ⟨G ⟩≥k due the overflow
that occurs in the sum operations with large graphs.



Follow-up results

We could use average hard function instead of the softmax function
and the results would still hold.
In the case of floats, our results also hold when restricted to
word-shaped graphs.
In the case floats, we do not have to restrict ourselves to Boolean
classification. We could consider transformers whose classification
functions maps each vertex to a floating-point vector.



Thank you!


