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Overview
We give the first logical characterization of recurrent graph neural networks
(GNNs) without restriction to a background logic. We cover scenarios with both
real numbers and floating-point numbers, and analyze where they coincide.

Related work: Pioneering characterizations of constant-iteration graph neural
networks were given in [1] and [2], and a characterization of recurrent graph
neural networks was given in [3] w.r.t. a background logic.

Recurrent GNNs with reals and floats
A recurrent graph neural network (GNN[R]) receives a (directed, labeled)
graph as input and gives a Boolean classification for each node in the graph.

Problem instance Computer network
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Local outputs Solution

A GNN[R] is a tuple (π,AGG,COM,F ), where
• an initialization function π maps each set of node label symbols to Rd,
•AGG : multisets(Rd) → Rd is an aggregation function,
•COM : Rd × Rd → Rd is a combination function,
•F ⊆ Rd is a set of accepting vectors.

The feature vector xt
v ∈ Rd of node v in round t ∈ N is computed as follows:

x0
v = π(L), where L is the set of node labels of v.

xt+1
v = COM(xt

v,AGG({{xt
u | u is a neighbour of v }})).

The classification for a node is “yes” if during the computation a feature vector
of the node is in F and otherwise “no”.

A floating-point GNN (GNN[F]) is the same as a GNN[R], but it uses
floating-point numbers instead of real numbers.

⋆ A floating-point GNN cannot distinguish arbitrarily large multisets because
its calculations are finite!

R-simple GNNs
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ReLU∗
• Matrices A,C ∈ Rd×d

•A bias vector b ∈ Rd

•Truncated ReLU: ReLU∗(x) = min(max(0, x), 1)

A new feature vector is computed as follows:

xt+1
v = ReLU∗(xt

v ·C +
(∑

xt
u

)
·A + b).

Example: reachability

A node label symbol p is reachable from a node v if there is a path from v to a
node where p appears.

⋆ Reachability can be expressed even with an R-simple recurrent GNN but
not with any constant-iteration GNN!

¬p ¬p . . . ¬p p

Logics GMSC and ω-GML
Graded modal substitution calculus (GMSC) is a logic consisting of pro-
grams. Each program consists of two lists of the below form:

X1(0) :− p ∧ q X1 :− p ∧X3 ∧ ♢≥8X1

X2(0) :− q X2 :− ¬q ∧ ¬♢≥2X1

X3(0) :− p X3 :− X2 ∧ ♢≥3¬X3

Base rules: φ ::= p | ¬φ | φ ∧ φ | ♢≥kφ

Induction rules: φ ::= p | X | ¬φ | φ ∧ φ | ♢≥kφ

A formula ♢≥kφ states that φ is true in at least k neighbours.

We define iteration formulae X t of variables X as follows.
•X0 is the base rule of X,
•X t+1 is the induction rule of X where each Y is replaced with Y t.

Each program also includes a set A of accepting variables. A graph node v is
accepted if for any X ∈ A the iteration formula X t is true in v for some t ∈ N.

The logic ω-GML consists of countable disjunctions
∨

φ∈S φ where each
φ ∈ S is a finite formula using the same grammar as the base rules above.

Example: centre-point property

A node v has the centre-point property, if every outgoing path starting from v
leads to a dead-end in the same number of steps.

⋆ Expressible in GMSC but not in monadic second-order logic!

Program:
X(0) :− □⊥ X :− □X ∧ ♢X

Run of the program:
•X0 := □⊥
•X1 := □X0 ∧ ♢X0

•X2 := □X1 ∧ ♢X1 (accepting)
...

Logical characterizations

Theorem 1
Same expressive power:

GNN[F]s ≡ R-simple GNN[F]s ≡ GMSC

Theorem 2
Same expressive power:

GNN[R]s ≡ ω-GML

Theorem 3
In restriction to monadic second-order logic:

GMSC ≡ GNN[F]s ≡ R-simple GNN[F]s ≡ GNN[R]s ≡ ω-GML

⋆We also obtain characterizations for models of distributed computing.
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Wissenschaft, Kultur und Tourismus in the program Center of Excellence for AI-research “Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig”, project identification number: ScaDS.AI. Lutz is also supported by BMBF in DAAD project 57616814 (SECAI, School of Embedded Composite AI) as part of the program Konrad Zuse Schools of
Excellence in Artificial Intelligence.


