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Descriptive complexity for neural networks via Boolean
networks

This seminar is based on the research article “Descriptive complexity for
neural networks via Boolean networks” by authors Veeti Ahvonen, Damian
Heiman and Antti Kuusisto, which has been accepted into the 32nd EACSL
Annual Conference on Computer Science Logic 2024.
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Motivation

Neural networks relate to artificial intelligence and machine learning. A
neural network does not perform some known algorithm with a com-
puter; rather, the computer learns to produce classifications by itself.
This is achieved by observing the classifications made in a previous iter-
ation and fine-tuning the parameters of the network until the classifica-
tion is sufficiently precise. A neural network can be taught, for example,
to recognize hand-written numbers or people’s faces from photographs.
Because a neural network learns the algorithm itself, sometimes even its
designer is unaware of how the network performs classifications. Ergo,
the explainability of neural networks is a timely research problem. De-
scriptive complexity theory offers tools for solving it.
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Information about the research

The purpose of the article is to open the door to the explainability of
neural networks by identifying a logical language that matches a class
of general neural networks. A key aspect is turning neural networks into
Boolean networks that operate with Boolean values 0 and 1. All the
internal computation of the neural network is reduced into binary form
and interpreted in the language of a logic we call Boolean network logic
(BNL).
As results, we find that a neural network can be interpreted as a program
of BNL and vice versa. In particular, it follows that the non-linear
(sometimes complicated) “activation functions” of neural networks can
be translated into a very simple form, though this does increase the size
of the network.
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Content of the seminar

The seminar will be in two parts; the first hour is presented by Veeti
Ahvonen and the second by Damian Heiman.
We start by introducing the logic BNL0 and its expansion BNL.
Next, we introduce how calculations with numbers can be carried out
by BNL-programs using floating-point representations of real numbers.
Lastly, we introduce neural networks and the translations we obtain in
both directions.
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BNL0-programs (informally)

First an informal description. Let T = {X ,Y ,Z} be an ordered set (X <
Y < Z ) with three Boolean variables (i.e., variables that can only contain
the values 0 or 1). We attach a formula to each variable, that use the
variables from T as atomic formulas. Each variable is given an initial value
(upper index 0), which is either 0 or 1. Each variable calculates a new truth
value for itself by slotting the previous truth values of all variables into its
associated formula. This can carry on indefinitely.

X :− Y ∧ Z ,

Y :− ¬X ,
Z :− X ∨ Z .

X 0 = 0, X 1 = 0, X 2 = 1, X 3 = 1, . . .

Y 0 = 0, Y 1 = 1, Y 2 = 1, Y 3 = 0, . . .

Z 0 = 1, Z 1 = 1, Z 2 = 1, Z 3 = 1, . . .

The list on the left, which contains variables and formulae associated with
them, is called a program of BNL0 (Boolean network logic).
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Input and output (informally)

Because the variables of the program are ordered, the initial values of the
variables can be seen as a bit string X 0Y 0Z 0 = 001; this is called the input
of the program. We choose a set of print predicates from the variables of the
program; let us choose the variables X and Z . The output of the program
is likewise a bit string X tZ t , which consists of the truth values of the print
predicates at some time t ∈ N. For instance, if we print at time t = 2, then
the output of the program is X 2Z 2 = 11.

X :− Y ∧ Z ,

Y :− ¬X ,
Z :− X ∨ Z .

X 0 = 0, X 1 = 0, X 2 = 1, X 3 = 1, . . .

Y 0 = 0, Y 1 = 1, Y 2 = 1, Y 3 = 0, . . .

Z 0 = 1, Z 1 = 1, Z 2 = 1, Z 3 = 1, . . .

The input of the program is marked in blue and the output in red.
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Predicates

Let VAR = {Vi | i ∈ N } be a countably infinite set of schema variables
(or simply variables), and let <VAR denote a linear order of the variables.
Typically, we use metavariables X ,Y ,Z , . . . or X1,X2, . . . to denote symbols
in VAR.

Each subset T ⊆ VAR induces an ordering <T for the elements of T . In
other words, if X ,Y ∈ T and X <VAR Y , then X <T Y . For simplicity, we
may denote the ordering of the set T with <, if the set T is clear from the
context. When using subindexing, we assume that variables X1, . . . ,Xn are
in the order X1 < X2 < · · · < Xn.
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BNL0-program

Definition 1
Let T = {X1, . . . ,Xn} ⊆ VAR be a set of n ∈ Z+ distinct schema variables.
A T -program of the logic BNL0 is a triple (L,P,A), where L is a list

X1 :− ψ1,

...
Xn :− ψn,

where ψ1, . . . , ψn are formulae of the language

ψ ::= ⊤ | Xi | ¬ψ | ψ ∧ ψ

(Xi ∈ T ), P ⊆ T is a set of print predicates and A : {0, 1}|T | → ℘(N) is
an attention function. A single item on the list Xi :− ψi is a rule of the
program, where Xi is the head predicate and ψi is the body of the rule.
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Running BNL0-programs

Let Λ = (L,P,A) be some T -program of the logic BNL0, and let π : T → {0, 1}
be a function. We let X t denote the truth value of a predicate X ∈ T at time
t ∈ N. It is defined recursively as follows:

At time 0, we define that X 0 = π(X ).

Assume that the truth values of all predicates is defined at time t ∈ N. At
time t + 1, we define that X t+1 = 1 if the formula ψ associated with X is
true, when the truth values of the predicates appearing in ψ are interpreted
at time t. (Here ψ is the formula for which the rule X :− ψ appears in the
program.)

The input of Λ is the bit string X
0
= X 0

1 · · ·X 0
n , where T = {X1, . . . ,Xn}. Let

P = {Y1, . . . ,Yℓ} and Y
t
= Y t

1 · · ·Y t
ℓ for all t ∈ N. If m ∈ A(X

0
), then we say

that Λ outputs Y
m

in round m and m is an output round. Also Λ induces an
output sequence (Y

t
)
t∈A(X

0
)

with input X
0
.

Note that the predicates are arranged according to the indexes.
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Example: Lexicographical ordering

Example 2
Let T = {X1, . . . ,Xn}. Observe the program

X1 :−
(
¬X1 ∧

n∧
k=2

Xk

)
∨
(
X1 ∧

n∨
k=2

¬Xk

)
,

X2 :−
(
¬X2 ∧

n∧
k=3

Xk

)
∨
(
X2 ∧

n∨
k=3

¬Xk

)
,

...
Xn :− ¬Xn.

Moreover assume that assume that A(X
0
) = {0, 2, 4, . . .} for all inputs X

0
. The

program simply goes through all bit strings of length n in lexicographical order and
outputs precisely on even rounds. For instance, if n = 3 and the input is 000, then
the program will cycle through bit strings in the order 000 → 001 → 010 → 011 →
100 → 101 → 110 → 111 → 000 → . . . . For example the program outputs 010 in
round 2 and 011 in round 4.
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Boolean networks

As its name would suggest, a program of Boolean network logic can be
written as a directed network. The predicates X are interpreted as vertices
vX . There is an edge from vX to vY if and only if X appears in the formula
associated with Y . For example, in the example of the previous slides the
predicate X appears in the formula ¬X associated with Y . Thus, the graph
would have an edge from vX to vY . One can imagine that the vertices send
their truth values to each other via the edges, and change their state by
slotting the truth values into their formula.

vX , X :− Y ∧ Z vY , Y :− ¬XvZ , Z :− X ∨ Z

Figure: The graph representation of the BNL0-program X :− Y ∧ Z ; Y :− ¬X ;
Z :− X ∨ Z .
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BNL-program (informally)

The main weakness of BNL0-programs is that each head predicate takes an
input. This does not seem a big deal but it actually restricts which kinds of
output sequences we can produce.
Let us modify the previous program by changing X and Z into “auxiliary
predicates”.

X 0 = 1, X :− Y ∧ Z ,

Y :− ¬X ,
Z 0 = 0, Z :− X ∨ Z .

X 0 = 1, X 1 = 0, X 2 = 0, . . .

Y 0 = 1, Y 1 = 0, Y 2 = 1, . . .

Z 0 = 0, Z 1 = 1, Z 2 = 1, . . .

Now the length of the input is only 1, because X and Z don’t receive any
input. The program is an implementation of a function {0, 1} → {0, 1}2,
and with the input 1 it outputs 01. A program that has two lists - one with
initial values for auxiliary predicates and one with formulae corresponding to
all predicates - is called a program of the logic BNL.
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BNL-program

Definition 3
Let T = {X1, . . . ,Xn} ⊆ VAR be a set of n ∈ Z+ distinct schema variables. A
T -program of the logic BNL is a triple (L,P,A), where L is a list

Y 0
1 = b1, X1 :− ψ1,

...
...

Y 0
m = bm, Xm :− ψm

...
Xn :− ψn,

where A = {Y1, . . . ,Ym} ⊆ T is a set of auxiliary predicates, b1, . . . , bm ∈ {0, 1},
I = T \ A is a set of input predicates, ψ1, . . . , ψn are formulae defined over the
language ψ ::= ⊤ | Xi | ¬ψ | ψ ∧ ψ (Xi ∈ T ), P ⊆ T is a set of print predicates
and A : {0, 1}|I| → ℘(N) is an attention function.
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BNL: semantics

Let Λ = (L,P,A) be some T -program of the logic BNL and let π : T →
{0, 1} be a function. We let X t denote the truth value of X ∈ T at time
t ∈ N. It is defined recursively as follows:

At time 0 we define that X 0 = b if the rule X 0 = b appears in the
program for some b ∈ {0, 1}. Otherwise, we define that X 0 = π(X ).
Assume we have defined the truth value of each predicate at time t ∈ N.
The truth value of X at time t + 1 is defined exactly as in BNL0.

The input of Λ is the bit string X
0
= X 0

1 · · ·X 0
n , where X1, . . . ,Xn are exactly

the input predicates of Λ. Let P = {Y1, . . . ,Yℓ} and Y
t
= Y t

1 · · ·Y t
ℓ for all

t ∈ N. If m ∈ A(X
0
), then we say that Λ outputs Y

m in round m and m
is an output round.
Λ induces an output sequence (Y

t
)
t∈A(X 0

)
with input X 0.

Note that the predicates are arranged according to the indexes.
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Example: Flagging

Example 4
Let T = {F ,X ,Y ,Z}. Consider the following BNL-program.

F 0 = 0, F :− ⊤,
X :− (¬F ∧ (Y ∧ Z )) ∨ (F ∧ X ),

Y :− (¬F ∧ ¬X ) ∨ (F ∧ Y ),

Z :− (¬F ∧ (X ∨ Z )) ∨ (F ∧ Z ).

The program is a modification of a previous BNL0-program; the erstwhile
rules of predicates X , Y and Z are written in blue, but now a predicate F
(called a flag) acts as a precondition for them. No matter the input of the
program, we have F t = F 1, X t = X 1, Y t = Y 1 and Z t = Z 1 for all t ≥ 2.
In other words, the program applies the rules of the BNL0-program exactly
once. A program of BNL0 could produce the same output at time t = 1,
but it is not capable of counting rounds, unlike a BNL-program.
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Attractors and transient time

Given that the number of states is finite, a BNL-program (BNL0-program)
will eventually either reach a single stable state or begin looping through a
sequence of states. A stable state is called a point attractor, a fixed-point
attractor or simply a fixed point, whereas a looping sequence of multiple
states is a cycle attractor.
The smallest amount of time it takes to reach an attractor from a given state
is called the transient time of that state. The transient time of a BNL-
program is the maximum transient time of a state in its state space. The
concept of transient time is also applicable to SC, since it is also deterministic
and eventually stabilizes with each input.
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Halting BNL-programs

A BNL-program that only has fixed points (i.e., no input leads to a cycle
attractor) and outputs precisely at fixed points, is called a halting BNL-
program. For a halting BNL-program Λ with input predicates I and print
predicates P, each input i ∈ {0, 1}|I| results in a single (repeating) output
denoted by Λ(i), which is the output string determined by the fixed-point
values of the print predicates. In this sense, a halting BNL-program is like
a function Λ: {0, 1}|I| → {0, 1}|P|. We say that Λ specifies a function
f : {0, 1}ℓ → {0, 1}k if |I| = ℓ, |P| = k and Λ(i) = f (i) for all i ∈ {0, 1}ℓ.
The computation time of a halting BNL-program is its transient time.

Veeti Ahvonen, Damian Heiman (Tampereen yliopisto)Descriptive complexity for neural networks via Boolean networks2023 21 / 53



Size and depth

The size of a BNL-program is the number of appearances of symbols ⊤, X ,
¬, and ∨ in the formulae ψ that appear in rules X :− ψ in the program.
The depth of a BNL-program Λ is the maximum number of nested Boolean
connectives in the formulae ψ that appear in rules X :− ψ in the program.
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Motivation

In various literature, neural networks usually use real numbers numbers
for computing.
In a practical scenarios real numbers are presented with floating-point
numbers.
Most of the neural networks that are used in applications are run by
computers, i.e., most of the applied neural networks use floating-point
arithmetic to compute.
Therefore, in order to characterize neural networks with BNL-programs,
we have to simulate floating-point arithmetic.
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Floating-point numbers

A floating-point number in a system S = (p, q, β) (where p, q, β ∈ Z+,
β ≥ 2) is a number that can be represented in the form

± 0.d1d2 · · · dp︸ ︷︷ ︸
=f

×β±e1···eq ,

where di , ei ∈ [0;β−1]. For such a number in system S , we call f the frac-
tion, the dot between 0 and d1 the radix point, p the fraction precision,
e = ±e1 · · · eq the exponent, q the exponent precision and β the base
(or radix).
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Normalized fp-numbers

A floating-point number in a system S may have many different representa-
tions such as 0.10 × 101 and 0.01 × 102 which are both representations of
the number 1. To ensure that our calculations are well defined, we desire a
single form for all non-zero numbers.
We say that a floating-point number (or more specifically, a floating-point
representation) is normalized, if 1) d1 ̸= 0, or 2) f = 0, e is the smallest
possible value and the sign of the fraction is +.
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Raw fp-numbers

For a floating-point system S = (p, q, β), we define an extended system of
raw floating-point numbers S+(p′, q′) (where p′ ≥ p and q′ ≥ q) that
possess a representation of the form ±d0.d1d2 · · · dp′ × β±e1...eq′ .
When performing floating-point arithmetic, the precise outcomes of the
calculations may be raw numbers, i.e., no longer in the same system as
the operands strictly speaking. Therefore, in practical scenarios, we have
p′ = O(p) and q′ = O(q). Consider, e.g., the numbers 99 and 2 which are
both in the system S = (2, 1, 10), but their sum 101 is not, because 3 digits
are required to represent the fraction precisely. For this purpose, we must
round numbers e.g. truncation or round-to-nearest ties-to-even.
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Representing integers in binary

Informally, we represent integers with bit strings that are split into substrings
of length β, where exactly one bit in each substring is 1 and the others are 0.
Formally, let s1, . . . , sk ∈ {0, 1}β be one-hots, i.e. bit strings with exactly
one 1. We say that s = s1 · · · sk corresponds to b1 · · · bk ∈ [0;β−1]k if for
every bi , we have si (bi ) = 1 (and other values in si are zero). For example, if
β = 5, then 00100 ·01000 ·00001 ∈ {0, 1}β·3 corresponds to 2 ·1 ·4 ∈ [0; 4]3.
We say that s is a one-hot representation of b1 · · · bk .
Using the binary one-hot representations, we can present integers in BNL
by assigning each bit with a head predicate that is true if and only if the bit
is 1. The sign (+ or −) of a number can likewise be handled with a single
bit that is true iff the sign is positive.
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Representation of fp-numbers in binary

Let F = ±f × β±e be a floating-point number in system S . Let p1, p2 ∈
{0, 1} and s1, . . . , sq, s′1, . . . , s

′
p ∈ {0, 1}β . We say that

s = p1p2s1 · · · sqs′1 · · · s′p
corresponds to F (or s is a one-hot representation of F ) if

1 p1 = 1 iff the sign of the exponent is +,
2 p2 = 1 iff the sign of the fraction is +,
3 s1 · · · sq corresponds to e = e1 · · · eq,
4 s′1 · · · s′p corresponds to f = 0.d1d2 · · · dp (or, more precisely, to

d1 · · · dp).
Likewise, we say that a bit string s corresponds to a sequence (F1, . . . ,Fk)
of floating-point numbers if s is the concatenation of the bit strings that
correspond to F1, . . . ,Fk from left to right. For example, in the system
S = (4, 3, 3) the number −0.2001 × 3+120 has the corresponding string

1︸︷︷︸
p1

· 0︸︷︷︸
p2

· 010 · 001 · 100︸ ︷︷ ︸
s1s2s3

· 001 · 100 · 100 · 010︸ ︷︷ ︸
s′1s

′
2s

′
3s

′
4

.
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Simulating floating-point functions

Definition 5
Let S = (p, q, β) be a floating-point system. We say that a halting
BNL-program Λ simulates a function f : Sℓ → Sk , if the output
Λ(i1 · · · iℓ) corresponds to f (F1, . . . ,Fℓ) for any F1, . . . ,Fℓ ∈ S and the
corresponding inputs i1, . . . , iℓ ∈ {0, 1}2+β(p+q).
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Results

Lemma 6

Let S = (p, q, β) be a floating-point system. Normalization of a raw
floating-point number in S+(p′, q′) to the floating-point system S , where
p′ = O(p) and q′ = O(q), can be simulated with a (halting) BNL-program
of size O(r3 + r2β2) and computation time O(1), where r = max{p, q}.

Lemma 7

Addition of two (normalized) floating-point numbers in S = (p, q, β) can
be simulated with a (halting) BNL-program of size O(r3 + r2β2) and
computation time O(1), where r = max{p, q}.
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Lemma 8

Multiplication of two (normalized) floating-point numbers in S = (p, q, β)
can be simulated with a (halting) BNL-program of size O(r4 + r3β2 + rβ4)
and computation time O(log(r) + log(β)), where r = max{p, q}.

Theorem 9

Assume we have a piecewise polynomial function α : S → S , where each
polynomial is of the form anx

n + · · ·+ a1x + a0 where n ∈ N,
ai ∈ S = (p, q, β) for each 0 ≤ i ≤ n and r = max{p, q} (addition and
multiplication approximated in S). Let Ω be the highest order of the
polynomials (or 1 if the highest order is 0) and let P ∈ Z+ be the number
of pieces. We can construct a BNL-program Λ that simulates α(x) such
that

1 the size of Λ is O(PΩ2(r4 + r3β2 + rβ4)), and
2 the computation time of Λ is O((log(Ω) + 1)(log(r) + log(β))).
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What is machine learning?

Informally, machine learning means solving problems by “teaching” a
machine to find a sufficiently good algorithm that solves the problem
instead of defining the algorithm oneself.
Machine learning considers various “machines”, and the most central of
these in current research are neural networks.

Example 10
Consider a machine whose purpose is to recognize whether a picture contains
a cat or a dog. If the machine gives a wrong answer, it is told about it,
and the machine adjusts the algorithm to improve it by e.g. more closely
examining the shape of the creature’s ears.
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Introduction to neural networks

A neural network is a type of distributed system used in machine learning. Its
design is modeled after the human brain. Neural networks typically perform
calculations with real numbers, and they have an input and an output.

Consideration is often limited to feedforward neural networks (FNNs) whose
topology is restricted. We consider a more general class of neural networks
where the network topology is simply that of a directed graph. Furthermore,
our neural networks perform calculations with floating-point numbers instead
of real numbers, as this is more realistic for computers.

We start with an informal description of the type of neural network we’re
examining by constructing an example neural network step by step. After
that we go over how it operates.
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A neural network is shaped like a network (akin to the brain). Nodes of the
network may be referred to as neurons and the edges as synapses. We
assume there is an ordering for the nodes.
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input

input

input

Neural networks have named input nodes and output nodes. We mark
the input nodes with arrows and output nodes with doubled outlines.
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Introduction to how neural networks operate

Before going any further, we consider the purpose of a neural network. Since
a neural network is modeled after the brain, its operation should describe how
a brain works in some way.

An individual neuron has an activation value (a floating-point number)
that changes while the network is running. Each neural network is thus
associated with some floating-point system S = (p, q, β).
A neural network operates synchronically in discrete rounds. The initial
activation value of input nodes depends on the input, while each non-
input node has some fixed initial value. In each round, the neurons
send their activation values via edges to other neurons according to the
directions of the edges. Then each node calculates a new activation
value based on the activation values received in that round.

We must describe neural networks more precisely to show how they calculate
activation values. We will do this one step at a time.
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0.1input

−2input

1.87input

−7

1.12

4.20

0

Each node v is equipped with a bias term bv ∈ S .
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Each edge e is equipped with a weight we ∈ S .
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Finally, each node v is equipped with an activation function αv : S → S .
The function may be different for each node, but they are typically the same.
We assume that the activation functions are floating-point approximations
of piecewise polynomial functions. Well-known activation functions include
ReLU(x) = max{0, x} and the sigmoid σ(x) = 1

1+e−x .
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An informal description of an individual neuron

Let us examine the node from the previous slide with the bias term −7 and
call it s. Let us assume that each node in the network has an activation
value and that the activation function of s is ReLU(x) = max{0, x}. The
neuron has 2 incoming edges, both of which have an individual weight. A
new activation value for the neuron s is calculated in the following steps:

1 The predecessors of s send their activation values to s along edges.
2 Each of these activation values is multiplied by the weight of the edge

it’s arriving across.
3 These products are added together along with the bias term of s.
4 This sum becomes the argument for the activation function, and its

image is the new activation value of s.
This is demonstrated in the next slide.
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−7

a1, 0.7

a2,−5

ReLU(0.7a1 + (−5)a2 − 7)

In the picture, a1 and a2 are the activation values arriving from other
nodes. A new activation value is obtained with the following formula:
ReLU(0.7a1 + (−5)a2 + (−7)). If for instance a1 = −2 and a2 = −0.9,
then ReLU(0.7(−2) + (−5)(−0.9) + (−7)) = ReLU(−1.4 + 4.5 − 7) =
ReLU(−3.9) = 0.
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How a neural network functions informally

As stated before, the nodes of a neural network are separated into two
categories: input nodes I and non-input nodes V \ I . A neural network is
equipped with a function π : V \ I → S that assigns an initial value to each
non-input node. A neural network performs calculations in discrete rounds
t ∈ N. Given an input (F1, . . . ,F|I |) ∈ S |I |, we define the activation value
of a node v ∈ V at time t ∈ N (denoted by v t) as follows.

1 If t = 0 and v ∈ V \ I , then v0 = π(v). If v ∈ I and v is the ith input
node, then v0 = Fi .

2 Assume we have defined ut for all u ∈ V . Let u1, . . . , un denote the
predecessors of v at time t, let w1, . . . ,wn denote the weights of the
associated edges, and let bv denote the bias of v . Then

v t+1 = αv

( n∑
i=1

uti wi + bv
)
.
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A neural network contains a set O ⊆ V of output nodes. A neural network
is also equipped with an attention function function a : S |I | → ℘(N) that
assigns a set of output rounds (natural numbers) to each input. We can, for
instance, define that with a specific input a neural network outputs precisely
in rounds 3n where n ∈ N. This is consistent with the output method of
BNL-programs, only generalized for floating-point numbers.

Let v1, . . . , v|O| denote the output nodes, and let v t = (v t1 , . . . , v
t
|O|) ∈ S |O|

be the tuple of activation values of the output nodes in round t with an
input F ∈ S |I |. If t ∈ a(F), then we say that the output of the neural
network at time t is v t . Given the input F , a neural network produces an
output sequence (v t)t∈a(F) (each component v t of the output sequence
is itself a sequence of floating-point numbers).
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Formal definition for neural networks

Definition 11
A neural network in the system S = (p, q, β) is an ordered directed graph
(V ,E , <V ) (a directed graph where the nodes are ordered according to <V ),
which also includes

a set of input nodes I ⊆ V and output nodes O ⊆ V ,
a weight we ∈ S for each edge e ∈ E ,
a bias bv ∈ S for each node v ∈ V ,
an activation function αv : S → S for each node v ∈ V ,
an initializing function π : V \ I → S ,
an attention function a : S |I | → ℘(N).

If we want to be more precise, a neural network is the following tuple: N =
((V ,E , <V ),S , I ,O, (we)e∈E , (bv )v∈V , (αv )v∈V , π, a) (Phew!).
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Important qualities of a neural network

The degree of a neural network N is the maximum in-degree of the under-
lying graph.

The piece-size of N is the maximum number of “pieces” across all its piece-
wise polynomial activation functions.

The order of N is the highest order of a “piece” of its piecewise polynomial
activation functions.
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Asynchronous equivalence

When translating a neural network into a program of BNL, notice that we
are transitioning from a floating-point framework to a Boolean framework.
We use one-hot representations of floating-point numbers to represent them
in binary. By equivalence we basically mean that the neural network and the
BNL-program have matching output sequences.

Definition 12
Let N be a neural network (for S = (p, q, β)) and let Λ be a BNL-program.
Let I be the set of input nodes of N , and let a and A be the attention
functions of N and Λ respectively. We say that N and Λ are asynchronously
equivalent in S if for all F ∈ S |I | it holds that if i ∈ {0, 1}(β(p+q)+2)|I | is the
bit string that corresponds to F , then the elements of (X t

)t∈A(i) correspond
to the elements of (v t)t∈a(F).

Note that though the output sequences have to be corresponding, the output
rounds may differ, hence the name “asynchronous”.
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Computation delay

Given two asynchronously equivalent objects x and y , we define a notion
of computation delay. Let x1, x2, . . . and y1, y2, . . . enumerate the output
rounds of x and y respectively. Furthermore, assume that xn ≥ yn for every
n ∈ N. The computation delay of x (w.r.t. y) is the smallest T ∈ N
such that T · yn ≥ xn for every n ∈ N. (If such a number T does not exist,
then we could define that the computation delay of x is ∞, but we do not
consider such scenarios.)
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From neural networks to BNL-programs

The first of our two results is given below.

Theorem 13

Given a general neural network N for S = (p, q, β) with N nodes, degree
∆, piece-size P and order Ω (or Ω = 1 if the order is 0), we can construct
a BNL-program Λ such that N and Λ are asynchronously equivalent in S
where for r = max{p, q},

1 the size of Λ is O(N(∆ + PΩ2)(r4 + r3β2 + rβ4)), and
2 the computation delay of Λ is

O((log(Ω) + 1)(log(r) + log(β)) + log(∆)).
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Asynchronous equivalence in binary

When translating a BNL-program into a neural network, we don’t need
complex floating-point representations; we can simply use the floating-point
representations of 0 and 1 in the neural network. Instead of producing a
corresponding output sequence, the neural network produces essentially the
very same output sequence.

Definition 14
Let Λ be a BNL-program and let N be a neural network (for S = (p, q, β)).
Let I be the set of input predicates of Λ, and let A and a be the output
functions of Λ and N respectively. We say that Λ and N are asynchronously
equivalent in binary if for all i ∈ {0, 1}|I| we have that (X

t
)t∈A(i) =

(v t)t∈a(i).
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From BNL-programs to neural networks

The second of our two main results is given below.

Theorem 15

Given a BNL-program Λ of size s and depth d , we can construct a neural
network N for any floating-point system S with at most s nodes, degree
at most 2, ReLU (or Heaviside) activation functions and computation delay
O(d) such that Λ and N are asynchronously equivalent in binary.

(Reminder: The rectified linear unit is defined by ReLU(x) = max{0, x}.
The Heaviside step function is defined by H(x) = 1 if x > 0, and H(x) = 0
otherwise.)
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