
New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

New Directions in Descriptive Complexity

Veeti Ahvonen

January 5, 2024

1 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

What is descriptive complexity?

In classical descriptive complexity aim is to characterize
complexity classes (or class of computational models) via
logic, i.e., obtain “logical characterization” for the
computational problems in complexity class.
Questions: Does a computational model class (or a
complexity class) C of have the same expressive power as a
formula class Φ?
Informally, we want to obtain an equivalence, where a
single computational model in C corresponds to a logical
formula in Φ and vice versa.

2 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Example: Fagin’s Theorem

The complexity class NP contains all the (decision)
problems that are solvable by a non-deterministic Turing
machine in polynomial time.
Fagin’s theorem: Problems in the complexity class NP
are precisely the problems expressed in the existential
second order logic (also known as ESO).1

Therefore, properties in NP apply to ESO and vice versa.

1Ronald Fagin. “Generalized first-order spectra and polynomial-time
recognizable sets”. In: Complexity of computation (Proc. SIAM-AMS
Sympos., New York, 1973). Vol. 7. SIAM-AMS Proc. 1974, pp. 43–73.

3 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Why?

So descriptive complexity theory gives as a highly useful
tool; we can apply logic-based methods to reason about
the complexity class.
Many results in descriptive complexity theory only concerns
classical models e.g. Turing machines and finite
deterministic automata.

4 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Recent developments

In this talk, I will introduce a recent developments in the descrip-
tive complexity theory for modern computational models.2

Goal: We will show how to characterize a class of neural networks
with a rule-based Boolean logic.

2Veeti Ahvonen, Damian Heiman, and Antti Kuusisto. “Descriptive
complexity for neural networks via Boolean networks”. In: CoRR
abs/2308.06277 (2023). DOI: 10.48550/ARXIV.2308.06277. arXiv:
2308.06277. URL: https://doi.org/10.48550/arXiv.2308.06277.

5 / 22

https://doi.org/10.48550/ARXIV.2308.06277
https://arxiv.org/abs/2308.06277
https://doi.org/10.48550/arXiv.2308.06277

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

What are neural networks?

The most central machine learning framework currently is
neural networks (or simply NNs).

Neural networks are inspired by human brain. They are often
represented as weighted graphs, which compute in discrete
rounds. Each node has an “activation value” and nodes up-
date these values by communicating synchronously to each
other.

6 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

What are neural networks?

The most central machine learning framework currently is
neural networks (or simply NNs).
Neural networks are inspired by human brain. They are often
represented as weighted graphs, which compute in discrete
rounds. Each node has an “activation value” and nodes up-
date these values by communicating synchronously to each
other.

6 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Framework informally

Neural networks are based on the weighted directed graphs
(self-loops are allowed).
Computation is carried by floating-point numbers instead
of real numbers.
The “activation values” are computed by using “activation
functions” that are floating-point approximations of
polynomial piecewise functions.

7 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Preliminaries: floating-point numbers

A floating-point number in a system S(p, q, β) (where p, q, β ∈
Z+, β ≥ 2) is a number that can be represented in the form

± 0.d1d2 · · · dp︸ ︷︷ ︸
=f

×β±e1···eq ,

where di , ei ∈ {0, . . . , β − 1}.

For example, 0.10× 101 and 0.01× 102 are both representations
of the number 1.
From now, assume that a neural network is fixed with a floating-
point system S .

8 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Closer look on our framework

input

input

input

A neural network is a directed ordered graph (V ,E , <V), which
includes named input nodes I ⊆ V and output nodes O ⊆ V .
A neural network is also equipped with an initializing function
π : V \ I → S , which gives an initial value for each non-input
node.

9 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Bias terms and weights

0.1input

−2input

1.87input

−7

1.12

4.20

0

0.7

1.1

−5

0

−1.9

10100

6.3

8.3

−1

4.5

Each node v is equipped with a bias term bv ∈ S . Each edge e
is equipped with a weight we ∈ S .

10 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Activation function

0.1input

−2input

1.87input

−7

1.12

4.20

0

0.7

1.1

−5

0

−1.9

10100

6.3

8.3

−1

4.5

Also, each node v is equipped with an activation function
αv : S → S . We assume that the activation functions are floating-
point approximations of piecewise polynomial functions.

11 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

How does a neural network compute?

A neural network computes in discrete rounds t ∈ N and
computes an activation value for each node as follows.

In round t = 0, each input node v ∈ I is fed with a
floating-point number v0 ∈ S and non-input nodes V \ I
are initialized by a function π.
In round t > 0, each node v computes a new value v t as
follows. Let ut−1

1 , . . . , ut−1
n denote the activation values of

predecessors of v at round t − 1, let w1, . . . ,wn denote the
weights of the associated edges, and let bv denote the bias
of v . Then the value of v at round t is computed by the
formula

αv

(n∑
i=1

uti wi + bv
)
.

12 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

How does a neural network compute?

A neural network computes in discrete rounds t ∈ N and
computes an activation value for each node as follows.
In round t = 0, each input node v ∈ I is fed with a
floating-point number v0 ∈ S and non-input nodes V \ I
are initialized by a function π.

In round t > 0, each node v computes a new value v t as
follows. Let ut−1

1 , . . . , ut−1
n denote the activation values of

predecessors of v at round t − 1, let w1, . . . ,wn denote the
weights of the associated edges, and let bv denote the bias
of v . Then the value of v at round t is computed by the
formula

αv

(n∑
i=1

uti wi + bv
)
.

12 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

How does a neural network compute?

A neural network computes in discrete rounds t ∈ N and
computes an activation value for each node as follows.
In round t = 0, each input node v ∈ I is fed with a
floating-point number v0 ∈ S and non-input nodes V \ I
are initialized by a function π.
In round t > 0, each node v computes a new value v t as
follows. Let ut−1

1 , . . . , ut−1
n denote the activation values of

predecessors of v at round t − 1, let w1, . . . ,wn denote the
weights of the associated edges, and let bv denote the bias
of v . Then the value of v at round t is computed by the
formula

αv

(n∑
i=1

uti wi + bv
)
.

12 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Neural network output conditions

Each neural network is also associated with an attention func-
tion a : S |I | → ℘(N) that assigns a set of output rounds (a set
of natural numbers) to each input for the neural network.

13 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Neural network output conditions

v1input v2 v3

v1

v2

v3

v0
1 = 1.1, v1

1 = −0.1, v2
1 = −1.1, v3

1 = −2.1, . . .

v0
2 = 2.6, v1

2 = 2.7, v2
2 = 2.9, v3

2 = 3.4, . . .

v0
3 = 0.7, v1

3 = −0.71, v2
3 = 1.5, v3

3 = 5.0, . . .

The node v1 is an input node and it is fed with value 1.1 in blue
and other nodes has a fixed initial value. Assume that output
rounds are {1, 3, 6, . . .} with input 1.1. The colored red values
of v3 are the output values in the output rounds.

13 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Neural network output conditions

Therefore, a neural network N with a given input F ∈ S |I | pro-
duces an output sequence N (F) = (v t)t∈a(F), where v t ∈ S |O|

is floating-point sequence induces by the outputs of output nodes
at round t.

13 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL-programs

Let T = {X ,Y ,Z} be a finite ordered set (X < Y < Z) with three
Boolean variables (or predicates) i.e., variables that can only contain
the values 0 or 1.

14 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL-programs

Let T = {X ,Y ,Z} be a finite ordered set (X < Y < Z) with three
Boolean variables (or predicates) i.e., variables that can only contain
the values 0 or 1.

We attach a Boolean formula to each variable, that use the
variables from T (we also allow to use ⊤ symbol).

Each variable is given an initial value in round 0 (upper index
0), which is either 0 or 1.

Each variable calculates a new truth value for itself in each
round t > 0 by slotting the truth values of all variables from
previous round t − 1 into its associated formula. This can carry
on indefinitely.

X :− Y ∧ Z ,

Y :− ¬X ,

Z :− X ∨ Z .

14 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL-programs

Let T = {X ,Y ,Z} be a finite ordered set (X < Y < Z) with three
Boolean variables (or predicates) i.e., variables that can only contain
the values 0 or 1.

We attach a Boolean formula to each variable, that use the
variables from T (we also allow to use ⊤ symbol).

Each variable is given an initial value in round 0 (upper index
0), which is either 0 or 1.

Each variable calculates a new truth value for itself in each
round t > 0 by slotting the truth values of all variables from
previous round t − 1 into its associated formula. This can carry
on indefinitely.

X :− Y ∧ Z ,

Y :− ¬X ,

Z :− X ∨ Z .

X 0 = 0,

Y 0 = 0,

Z 0 = 1,

14 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL-programs

Let T = {X ,Y ,Z} be a finite ordered set (X < Y < Z) with three
Boolean variables (or predicates) i.e., variables that can only contain
the values 0 or 1.

We attach a Boolean formula to each variable, that use the
variables from T (we also allow to use ⊤ symbol).

Each variable is given an initial value in round 0 (upper index
0), which is either 0 or 1.

Each variable calculates a new truth value for itself in each
round t > 0 by slotting the truth values of all variables from
previous round t − 1 into its associated formula. This can carry
on indefinitely.

X :− Y ∧ Z ,

Y :− ¬X ,

Z :− X ∨ Z .

X 0 = 0,

Y 0 = 0,

Z 0 = 1,

X 1 = 0, X 2 = 1, X 3 = 1, . . .

Y 1 = 1, Y 2 = 1, Y 3 = 0, . . .

Z 1 = 1, Z 2 = 1, Z 3 = 1, . . .

14 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL-programs

X :− Y ∧ Z ,

Y :− ¬X ,

Z :− X ∨ Z .

X 0 = 0,

Y 0 = 0,

Z 0 = 1,

X 1 = 0, X 2 = 1, X 3 = 1, . . .

Y 1 = 1, Y 2 = 1, Y 3 = 0, . . .

Z 1 = 1, Z 2 = 1, Z 3 = 1, . . .

The list on the left, which contains variables and formulae associated
with them, is called a program of BNL (Boolean network logic). On
the right is the run of the program, where upper index t for the variable
means the value of the variable at the time step t.

14 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL: input and output conditions

Each program is associated with a set of input predicates
I ⊆ T . The input for the program is a binary string
i ∈ {0, 1}|I| that gives an initial value for each input predicate
(w.r.t. order of variables).

The predicates in T \ I are called auxiliary predicates. Each
auxiliary predicate X ∈ T \ I is associated with a rule X 0 = b,
where b ∈ {0, 1}, which gives an initial value for auxiliary
predicate X .

Each program is associated with a set of print predicates
P ⊆ T .

Each program is also associated with an attention function
A : {0, 1}|I| → ℘(N) which assigns a set of output rounds for
each input.

15 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL: input and output conditions

Each program is associated with a set of input predicates
I ⊆ T . The input for the program is a binary string
i ∈ {0, 1}|I| that gives an initial value for each input predicate
(w.r.t. order of variables).

The predicates in T \ I are called auxiliary predicates. Each
auxiliary predicate X ∈ T \ I is associated with a rule X 0 = b,
where b ∈ {0, 1}, which gives an initial value for auxiliary
predicate X .

Each program is associated with a set of print predicates
P ⊆ T .

Each program is also associated with an attention function
A : {0, 1}|I| → ℘(N) which assigns a set of output rounds for
each input.

15 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL: input and output conditions

Each program is associated with a set of input predicates
I ⊆ T . The input for the program is a binary string
i ∈ {0, 1}|I| that gives an initial value for each input predicate
(w.r.t. order of variables).

The predicates in T \ I are called auxiliary predicates. Each
auxiliary predicate X ∈ T \ I is associated with a rule X 0 = b,
where b ∈ {0, 1}, which gives an initial value for auxiliary
predicate X .

Each program is associated with a set of print predicates
P ⊆ T .

Each program is also associated with an attention function
A : {0, 1}|I| → ℘(N) which assigns a set of output rounds for
each input.

15 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL: input and output conditions

Each program is associated with a set of input predicates
I ⊆ T . The input for the program is a binary string
i ∈ {0, 1}|I| that gives an initial value for each input predicate
(w.r.t. order of variables).

The predicates in T \ I are called auxiliary predicates. Each
auxiliary predicate X ∈ T \ I is associated with a rule X 0 = b,
where b ∈ {0, 1}, which gives an initial value for auxiliary
predicate X .

Each program is associated with a set of print predicates
P ⊆ T .

Each program is also associated with an attention function
A : {0, 1}|I| → ℘(N) which assigns a set of output rounds for
each input.

15 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL: input and output conditions

For example, assume that the set of input and print predicates for the
program below is {X ,Z} and Y 0 = 0. If the input for the program is
X 0Z 0 = 01 and A(01) = {2}, then the output of the program with
input 01 is X 2Z 2 = 11. The input of the program is marked in blue
and the output in red.

X :− Y ∧ Z ,

Y 0 = 0 Y :− ¬X ,

Z :− X ∨ Z .

X 0 = 0, X 1 = 0, X 2 = 1, . . .

Y 0 = 0, Y 1 = 1, Y 2 = 1, . . .

Z 0 = 1, Z 1 = 1, Z 2 = 1, . . .

15 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

BNL: input and output conditions

For example, assume that the set of input and print predicates for the
program below is {X ,Z} and Y 0 = 0. If the input for the program is
X 0Z 0 = 01 and A(01) = {2}, then the output of the program with
input 01 is X 2Z 2 = 11. The input of the program is marked in blue
and the output in red.

X :− Y ∧ Z ,

Y 0 = 0 Y :− ¬X ,

Z :− X ∨ Z .

X 0 = 0, X 1 = 0, X 2 = 1, . . .

Y 0 = 0, Y 1 = 1, Y 2 = 1, . . .

Z 0 = 1, Z 1 = 1, Z 2 = 1, . . .

Therefore, a BNL-program Λ with a given input i ∈ {0, 1}|I| induces
a output sequence Λ(i) = (X

t
)t∈A(i), where X

t ∈ {0, 1}|P| induced
by the print predicates at round t.

15 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Representation of fp-numbers in binary

Given a floating-point system S(p, q, β) there are various
ways to represent floating-points in binary. For example,
IEEE 754 standard. So each floating-point number F in S
has a corresponding binary representation bit(F).
The main idea is simple. A single fp-number can be
represented as a binary string in {0, 1}2+(p+b)β , where
signs are marked with 0 or 1 depending on the signs and
each digit of the exponent and the fraction are represented
by the string in {0, 1}β where precisely one bit that is 1
and others are 0.

16 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Asynchronous equivalence in fp-system

By equivalence we basically mean that the neural network and the
BNL-program have matching output sequences.

Definition 1
Let N be a neural network (in fp-system S) with input nodes I and
let Λ be a BNL-program. We say that N and Λ are asynchronously
equivalent in S if for all F ∈ S |I | and the corresponding sequence
of bit string i = bit(F), the output sequence Λ(i) correspond to the
output sequence N (F).3

3The definition could be extend between two neural networks.
17 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Computation delay

Let x and y be two asynchronously equivalent objects and let
x1, x2, . . . and y1, y2, . . . enumerate the output rounds of x and y
respectively. Furthermore, assume that xn ≥ yn for every n ∈ N.
The computation delay of y (w.r.t. x) is the smallest T ∈ N
such that T · yn ≥ xn for every n ∈ N.

18 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

From neural networks to BNL-programs

The first of our two results is given below.

Theorem 2
Given a neural network N in fp-system S , we can construct a BNL-
program Λ such that N and Λ are asynchronously equivalent in S and

1 the size of Λ is “small” (polynomial in the sizes of N), and

2 the computation delay of “small” (polylogarithmic in the sizes of
N).

Proof.
(Sketch) Each aggregation in the nodes can be simulated by the
subprogram for floating-point addition and multiplication. The
activation functions are simulated by the subprogram for piecewise
polynomial activation functions.

19 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

From neural networks to BNL-programs

The first of our two results is given below.

Theorem 2
Given a neural network N in fp-system S , we can construct a BNL-
program Λ such that N and Λ are asynchronously equivalent in S and

1 the size of Λ is “small” (polynomial in the sizes of N), and

2 the computation delay of “small” (polylogarithmic in the sizes of
N).

Proof.
(Sketch) Each aggregation in the nodes can be simulated by the
subprogram for floating-point addition and multiplication. The
activation functions are simulated by the subprogram for piecewise
polynomial activation functions.

19 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Asynchronous equivalence in binary

When translating a BNL-program into a neural network, we don’t
need complex floating-point representations; we can simply use
the floating-point representations of 0 and 1 in the neural net-
work.

Definition 3

Let Λ be a BNL-program with input predicates I and let N be a
neural network (in fp-system S) with input nodes I . We say that
Λ and N are asynchronously equivalent in binary if for all
i ∈ {0, 1}|I| and corresponding fp-numbers F ∈ S |I |, the output
sequence N (F) corresponds to the output sequence Λ(i).4

4The definition could be extend between two BNL-programs.
20 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Asynchronous equivalence in binary

When translating a BNL-program into a neural network, we don’t
need complex floating-point representations; we can simply use
the floating-point representations of 0 and 1 in the neural net-
work.

Definition 3

Let Λ be a BNL-program with input predicates I and let N be a
neural network (in fp-system S) with input nodes I . We say that
Λ and N are asynchronously equivalent in binary if for all
i ∈ {0, 1}|I| and corresponding fp-numbers F ∈ S |I |, the output
sequence N (F) corresponds to the output sequence Λ(i).4

4The definition could be extend between two BNL-programs.
20 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

From BNL-programs to neural networks

The second of our two main results is given below. Well-known acti-
vation functions include ReLU(x) = max{0, x}.

Theorem 4
Given a BNL-program Λ, we can construct a neural network N for any
floating-point system S with ReLU activation functions such that Λ
and N are asynchronously equivalent in binary and

1 the size of N is linear in the size of Λ, and

2 the computation delay is “small”.

Proof.
(Sketch) The BNL-program Λ is first transformed to the
asynchronously equivalent BNL-program Γ (with “small” delay),
where in each rule simplified. From Γ, it is easy to define
asynchronously equivalent neural network by using ReLU (other
activation functions are possible).

21 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

From BNL-programs to neural networks

The second of our two main results is given below. Well-known acti-
vation functions include ReLU(x) = max{0, x}.

Theorem 4
Given a BNL-program Λ, we can construct a neural network N for any
floating-point system S with ReLU activation functions such that Λ
and N are asynchronously equivalent in binary and

1 the size of N is linear in the size of Λ, and

2 the computation delay is “small”.

Proof.
(Sketch) The BNL-program Λ is first transformed to the
asynchronously equivalent BNL-program Γ (with “small” delay),
where in each rule simplified. From Γ, it is easy to define
asynchronously equivalent neural network by using ReLU (other
activation functions are possible).

21 / 22

New
Directions in
Descriptive
Complexity

Veeti
Ahvonen

Introduction

Neural
networks

Boolean
network logic

Equivalence

Conclusion

We obtained translations with small size and time
explosions.
Since the asynchronous equivalence could be extended
between two neural networks, we can translate a single
neural network to other asynchronously equivalent neural
network which uses ReLU with our results.
BNL is also highly linked to distributed computing and
Boolean circuits.5

THANKS!
5Veeti Ahvonen et al. “Descriptive Complexity for Distributed

Computing with Circuits”. In: 48th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2023, August 28
to September 1, 2023, Bordeaux, France. Vol. 272. 2023, 9:1–9:15.

22 / 22

	Introduction
	Neural networks
	Boolean network logic
	Equivalence

