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ABSTRACT

A signal processing method for the separation of concurrent
harmonic sounds is described. The method is based on a two-
stage approach. First, a multipitch estimator is applied to find ini-
tial sound parameters which are reliable, but inaccurate and static.
In a second stage, more accurate and time-varying sinusoidal
parameters are estimated in an iterative procedure, which imposes
certain constraints for the amplitudes and frequencies between the
components of each sound. The proposed algorithm makes it pos-
sible to reconstruct separated sounds that are perceptually close to
the original ones before mixing. Experimental data comprised
sung vowels and 26 musical instruments. Sound separation was
performed for random sound mixtures ranging from one to six
simultaneous sounds. The system is able to produce meaningful
results in all polyphonies, the quality of separated sounds gradu-
ally degrading along with the polyphony. Demonstration signals
are available at http://www.cs.tut.fi/~tuomasv/demopage.html.

1.  INTRODUCTION

Separation of mixed sounds has several applications in the
analysis, editing and manipulation of audio signals. These include
for example structured audio coding, automatic transcription of
music, audio enchancement and computational auditory scene
analysis [1].

Whereas the human auditory system is very effective in
“hearing out” sounds in complex signals, computational modeling
of this function has proved to be very difficult [2]. Only few pub-
lished reports focus on this problem. However, some proposals
have been made that apply knowledge about human auditory
scene analysis [3], apply iterative estimation and cancellation [4],
or aim at more practical goals [5].

When two sounds overlap in time and frequency, separating
them is difficult and there is no general method to resolve the
component sounds. In this paper, two properties of harmonic
sounds are utilized to estimate the parameters of the underlying
sounds: the harmonic structure of the sounds is used in frequency
estimation and the spectral envelope continuity of natural sounds
is used in amplitude estimation. With these cues, it is possible to
reconstruct separated sounds which are perceptually close to the
original ones before mixing.

1.1. System overview

The overall structure of the system is presented in Figure 1.
The input signal is passed to a multipitch estimator which esti-
mates the number of the sounds present, the fundamental frequen-
cies of the sounds and frequencies of each harmonic component
of each sound. The multipitch estimator is explained in detail in
Section 2.

The frequencies given by the multipitch estimator are used
a starting point for an iterative sinusoidal analysis system. T
sinusoidal model represents the harmonic components of a so
with sinusoids that have time-varying frequencies, amplitudes a
phases [6]. The sinusoidal model uses significantly shorter ti
frames than the multipitch estimator, therefore being able to tra
parameter changes inside one large multipitch estimation fram

The exact time-varying frequencies and amplitudes of t
components are analyzed using an iterative approach. Star
from the estimates given by the multipitch estimator, the accura
of the parameters is improved in the least-squares sense, retai
the harmonic structure of the sounds. The spectral envelope
each sound is smoothed using a perceptually motivated mec
nism which cuts off single higher-amplitude harmonic partia
that result from coinciding partials of different sounds. Once th
parameters of the harmonic components are analyzed in each
frame, the sounds can be synthesized separately.

input sound

multipitch estimation
(large frames)

amplitude estimation

rough frequency estimates

amplitude smoothing

frequency estimation
(detect small changes)

iterate

time-varying frequencies
and amplitudes

synthesis

separated sounds

Figure 1.Block diagram of the separation system.
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2.  MULTIPITCH ESTIMATION

The sinusoidal model alone has been used for sound separa-
tion in [7]. However, it cannot produce reliable results if the
number of concurrent sounds is too large. Harmonic relations of
the frequency components, in turn, were found to be an effective
organization force in rich sound mixtures. A signal processing
method for estimating the multiple fundamental frequencies of
concurrent musical sounds has been presented in [8]. The method
is able to find reliably the most prominent sounds even in rich
sound mixtures.

The multipitch estimation system is used to initialize the sep-
aration system. The multipitch estimator takes a single 90–
200 ms frame of the acoustic input signal and outputs the funda-
mental frequencies and the rough frequency estimates of the har-
monic partials of each sound. Detected sounds are outputted in
the order of decreasing priority, the first one being aurally the
most prominent and reliable.

The iterative parameter estimation stage looks again at the
input signal, and calculates time-varying and significantly more
accurate parameter estimates for the components of the sounds
proposed by the multipitch estimation system. The separation
algorithm assumes that the fundamental frequencies given by the
multipitch estimation system are correct, and it cannot converge
correctly if the initialization is wrong. This is not a very degrad-
ing assumption, since the multipitch estimation system in itself
was found to be quite accurate, outperforming the average of
trained musicians in musical chord identification tasks. Particu-
larly, the firstly detected and most prominent sounds are very reli-
able even in rich sound mixtures. The overall error rate in four-
voice mixtures is 8.1%, and the error rate for the firstly detected
sound stays below 1% even in six-voice polyphonies. The multip-
itch estimation system is also applicable for real musical record-
ings, is instrument-independent, and is able to estimate the
number of concurrent voices in input signals [8].

3.  ITERATIVE PARAMETER ESTIMATION

3.1. Sinusoidal model

Mixed sounds are represented using sinusoids with time-vary-
ing frequencies, amplitudes and phases. The sinusoids are
assumed constant in single analysis frame, so that the local model
of the signals(t) is

, (1)

whereN is the number of the mixed sounds,Sn is the set of har-
monic components belonging to soundn, andak, fk and are the
amplitudes, frequencies and phases of the harmonic componentk.
The short-time Fourier transform of the model is given by
the parametric expression

, (2)

whereW(f) is the complex-valued Fourier transform of the analy-
sis window translated at frequencyf.

3.2. Amplitude and phase estimation

Initial estimates of the frequencies of the harmonic compo-

nents are given by the multipitch estimator. The objective is
find the parameters for which the model best fits the obse
bed spectrumS(f). Least-square solution of amplitudes and phas
for the given frequencies can be found using the following line
structure for the spectrum estimator [9]:

, (3)

where each spectral component is represented with two unkno
parameterspk andpK+k, defined as

(4)

andRk, the 2K known expressions related to the Fourier transfor
of the window function are

. (5)

The least-square solution for amplitudes and phases is given
the expression

(6)
where the vectorsRk are used as columns of the matrix evalu
ated at discrete frequency pointsFj : .

3.3. Amplitude smoothing

If sounds are in simple rational number relations, i.e., ha
monic relations, some of the harmonic components overlap w
each other in frequency domain. In the case of musical signa
this happens often since harmonic intervals are usually favou
over dissonant ones. In the case of dissonant intervals, the
harmonics are not overlapping, but they can still be quite close
each other. Closely spaced frequencies are a serious problem
parameter estimation. In amplitude estimation, matrix
Equation 6 becomes singular and the parameters cannot be so
directly.

The problem of closely spaced components in the amplitu
estimation is solved by the following procedure. At first, the com
ponents that are too close to each other are detected. This ca
done simply by setting a fixed frequency limit, since the roug
frequency estimates of all components are known. Only one c
umn in is created to represent each group of overlapping co
ponents, and the obtained amplitudes and phases are then use
the whole group. Overlapping partials result in single highe
amplitude partials in the harmonic series of the sounds. This
handled in the last stage, in which the whole harmonic series
all sounds is processed with a perceptually motivated smooth
mechanism [10]. In practice, the amplitude envelope of ea
sound is first smoothed over a critical-band frequency scale, a
then the minimum between the original and smoothed amplitu
value is substituted for each partial amplitude. This cuts off sing
higher-amplitude harmonic partials that are resulted fro
detected or undetected co-occurring sounds, without corrupt
the perceived timbre of the sounds.

If only two harmonic components are overlapping with eac
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other, but the frequencies of the components are not exactly the
same, the amplitude modulation caused by the frequency differ-
ence can be used to estimate the amplitudes of both colliding
sounds. This was used in the system described in [8].

3.4. Frequency estimation

Spectrum estimator in Equation 2 is nonlinear in terms offk.
Depalle and Hélie [9] used a first-order limited expansion of the
Fourier Transform of the analysis window around each frequency
component to find a better estimate of each frequency. Alternative
stages of amplitude and frequency estimation were iteratively
repeated to converge towards an optimal estimate in the least-
squares sense. The mentioned expansion is denoted by

, (7)

where is the distance between the correct frequency and its
estimate , andW’ is the derivative of the Fourier
transformW of the window function. IfS is the observed spec-
trum and the spectrum obtained with frequency estimates
and fixed amplitudes and phases, and matrix  defined by

, (8)

the least-square solution for the frequencies is

. (9)
The frequency estimation is very sensitive to the shape of the win-
dow function. In practise, the Fourier transform of the window
function must not have sidelobes [9].

3.5. Extension to harmonics sounds by introducing con-
straints for frequency relations

The frequency partials of real-world harmonic sounds cannot
be assumed to be in exact integer ratios. However, it can be
assumed that the frequency ratios of a sound remain constant
through time, even though the fundamental frequency varies [11].

Let the frequency ratio of the componentk to the lowest-fre-
quency partial of the sound it belongs to be denoted byrk. This
value is constant for each partial. Usuallyrk is close to the integer
number corresponding to the index of the harmonic partial, i.e.,
unity for the fundamental frequency, five for the fifth harmonic
etc. Let us define to be the distance between the estimated and
correct frequency of the lowest frequency component of soundn.
The expansion can now be written in the form

, .(10)

Since the frequencies of a single sound are linearly dependent on
each other,  can now be written in the form

(11)

and the solution for  is given by

. (12)

Now we get a better estimation for frequency component by

, . (13)

This method retains the harmonic structure of a sound since
the ratios of the frequencies belonging to a common sound do not
change. The corrected fundamental frequency value is based on

all the harmonic components.

3.6. Iteration

Successive amplitude/phase estimation, amplitude smooth
and frequency estimation stages are repeated until the values
verge. In the first time frame, more than ten iterations are need
In subsequent frames, the previous frame is used to initialize
frequencies, instead of using the multipitch estimator. In this ca
only less than five iterations are needed. This makes the comp
tional complexity of the algorithm practically applicable. Figure
illustrates the time-varying fundamental frequency of a flute ton

Like in amplitude estimation, nearby harmonic componen
of other sounds can disturb the frequency estimation. Larg
amplitude partials can even “catch” the analyzed harmonics
that a wrong sound becomes detected. This problem can be so
by choosing only some of the harmonic components of ea
sound to estimate the frequency changes. The components
chosen so that there is no interfering components at nearby
quencies. If there is not enough such components, we cho
components that have large amplitudes compared to those of
interfering components.

4.  SYNTHESIS

Once the parameters of the harmonic components have b
estimated in each frame, the sounds can be synthesized s
rately. In synthesis, the frequencies, amplitudes and phases
interpolated from frame to frame, and time-domain signals a
obtained by summing up all the harmonic components of ea
sound [6].

The parameters of the sounds can also be further analyzed
manipulation can be performed on the parametric data [8]. A
example of the synthesized signals is illustrated in Figure 3.

5.  EXPERIMENTAL RESULTS

Simulations experiments were carried out to monitor th
behaviour of the proposed algorithm. Test material consisted o
database of sung vowels plus 26 different musical instrume
comprising plucked and bowed string instruments, flutes, a
brass and reed instruments. These introduce several diffe
sound pruduction mechanisms, and a variety of spectra. Semir
dom sound mixtures were generated by first allotting an instr
ment, and then a random note from its whole playing rang
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Figure 2.Fundamental frequency of a flute. The dashed line 
the rough estimate given by the multipitch estimator. The sol
line is obtained using the iterative estimation procedure.
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however, restricting the pitch over five octaves between 65 Hz and
2100 Hz. A number of one to six simultaneous sounds were allot-
ted, and then mixed with equal mean-square levels. Acoustic
input was fed to the separation algorithm. Separated sounds were
resynthesized and compared to the originals in informal listening
tests.

For two or three-voice polyphonies and dissonant intervals,
the system was able to produce good results in almost all cases. In
very simple harmonic relations, such as the octave relation, most
of the harmonic components of the sounds are overlapping and
the error in resynthesized signal was usually clearly audible.
Also, the sharp attacks in sounds like guitar and piano were some-
what smeared due to the sinusoidal model used. In spite of the
degraded quality of the separated sounds, the system was still able
to produce perceptually meaningful results most of the time in all
polyphonies ranging from one to six simultaneous sounds.

When the polyphony increased, the perceptual quality of the
outputted sounds decreased gradually. In four and five-voice poly-
phonies, the system was able to produce good results in some
cases, but usually the quality of synthesized signals was already
remarkably reduced. For six-sound polyphonies the system could
still produce applicaple results for some of the notes, but typically
at least one of the sounds was defective.

6.  CONCLUSIONS

A sound separation system was described that is able to
resolve mixtures of harmonic sounds reliably and withouta priori

knowledge about the number of voices or type of sound sourc
involved. The proposed new principles, frequency-ratio co
strained iterative parameter estimation and critical-band fr
quency scale spectral envelope smoothing were effective a
produced perceptually good sound quality. The overall approa
of first detecting the fundamental frequencies of the sounds in
longer window and then estimating more accurate time-varyi
parameters was successful in combining robustness and accu
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