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ABSTRACT : . - :
The frequencies given by the multipitch estimator are used as

A signal processing method for the separation of concurrent a starting point for an iterative sinusoidal analysis system. The
harmonic sounds is described. The method is based on a two-sinusoidal model represents the harmonic components of a sound
stage approach. First, a multipitch estimator is applied to find ini- with sinusoids that have time-varying frequencies, amplitudes and
tial sound parameters which are reliable, but inaccurate and staticphases [6]. The sinusoidal model uses significantly shorter time
In a second stage, more accurate and time-varying sinusoidalframes than the multipitch estimator, therefore being able to track
parameters are estimated in an iterative procedure, which imposeparameter changes inside one large multipitch estimation frame.
certain constraints for the amplitudes and frequencies betweenthe The exact time-varying frequencies and amplitudes of the
components of each sound. The proposed algorithm makes it poscomponents are analyzed using an iterative approach. Starting
sible to reconstruct separated sounds that are perceptually close terom the estimates given by the multipitch estimator, the accuracy
the original ones before mixing. Experimental data comprised of the parameters is improved in the least-squares sense, retaining
sung vowels and 26 musical instruments. Sound separation washe harmonic structure of the sounds. The spectral envelope of
performed for random sound mixtures ranging from one to six each sound is smoothed using a perceptually motivated mecha-
simultaneous sounds. The system is able to produce meaningfuhism which cuts off single higher-amplitude harmonic partials
results in all polyphonies, the quality of separated sounds gradu-that result from coinciding partials of different sounds. Once the
ally degrading along with the polyphony. Demonstration signals parameters of the harmonic components are analyzed in each time
are available at http://www.cs.tut.fi/~tuomasv/demopage.html.  frame, the sounds can be synthesized separately.

1. INTRODUCTION

input sound
Separation of mixed sounds has several applications in the
analysis, editing and manipulation of audio signals. These include multipitch estimatioT
for example structured audio coding, automatic transcription of (large frames)
music, audio enchancement and computational auditory scene )
analysis [1]. rough frequency estimates

Whereas the human auditory system is very effective in
“hearing out” sounds in complex signals, computational modeling FSF\IU_SOTD ;_ I\/I_OD_EL_KIG_AI\TAL?SIE(STnaFfr;n;)
of this function has proved to be very difficult [2]. Only few pub- | i
lished reports focus on this problem. However, some proposals [ |
have been made that apply knowledge about human auditory amplitude estimatio
scene analysis [3], apply iterative estimation and cancellation [4], | iterate
or aim at more practical goals [5]. | l

When two sounds overlap in time and frequency, separating |
them is difficult and there is no general method to resolve the
component sounds. In this paper, two properties of harmonic l
sounds are utilized to estimate the parameters of the underlying
sounds: the harmonic structure of the sounds is used in frequency |
estimation and the spectral envelope continuity of natural sounds

| amplitude smoothingl

frequency estimatiory
(detect small changes)

is used in amplitude estimation. With these cues, it is possibleto J
reconstruct separated sounds which are perceptually close to the time-varying frequencies
original ones before mixing. and amplitudes

1.1. System overview

The overall structure of the system is presented in Figure 1. synthesis |

The input signal is passed to a multipitch estimator which esti-

mates the number of the sounds present, the fundamental frequen- l l l l
cies of the sounds and frequencies of each harmonic component
of each sound. The multipitch estimator is explained in detail in
Section 2.

separated sounds

Figure 1.Block diagram of the separation system.
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2. MULTIPITCH ESTIMATION nents are given by the multipitch estimator. The objective is to
The sinusoidal model alone has been used for sound separafind the parameters for which the modg(f)  best fits the obser-
tion in [7]. However, it cannot produce reliable results if the Ped spectruni(f). Least-square solution of amplitudes and phases
number of concurrent sounds is too large. Harmonic relations of fr the given frequencies can be found using the following linear

the frequency components, in turn, were found to be an effective structure for the spectrum estimator [9]:

organization force in rich sound mixtures. A signal processing . N
method for estimating the multiple fundamental frequencies of S(f) = Z gsﬂ[kak(f) *+ P+ kR 3)
concurrent musical sounds has been presented in [8]. The method n=1k
is able to find reliably the most prominent sounds even in rich Where each spectral component is represented with two unknown
sound mixtures. parameterg, andpy.y, defined as

The multipitch estimation system is used to initialize the sep- 0 a
aration system. The multipitch estimator takes a single 90— Op, = —kcoscpk kO[L K]
200 ms frame of the acoustic input signal and outputs the funda- E 2 ()
mental frequencies and the rough frequency estimates of the har- 0 a
monic partials of each sound. Detected sounds are outputted in EpK+k = 5 sing kO[1,K]

the order of decreasing priority, the first one being aurally the

most prominent and reliable. andRy, the K known expressions related to the Fourier transform
The iterative parameter estimation stage looks again at theof the window function are

input signal, and calculates time-varying and significantly more 0 R(f) = W(f—f)+W(f+f)

accurate parameter es_ti_mates fpr th_e components of the sognds ER (F) = iW(F= f.)—W(F+ f)]° (5)

proposed by the multipitch estimation system. The separation K+k k k

algorithm assumes that the fundamental frequencies given by theThe least-square solution for amplitudes and phases is given by
multipitch estimation system are correct, and it cannot converge the expression

correctly if the initialization is wrong. This is not a very degrad- H_-1_H

ing assumption, since the multipitch estimation system in itself p=(0"0) 0O°S (6)

was found to be quite accurate, outperforming the average ofwhere the vector®, are used as columns of the matfix ~ evalu-
trained musicians in musical chord identification tasks. Particu- ated at discrete frequency poifis (0); , = R (F;).

larly, the firstly detected and most prominent sounds are very reli- 3.3, Amplitude smoothing

able even in rich sound mixtures. The overall error rate in four-
voice mixtures is 8.1%, and the error rate for the firstly detected
sound stays below 1% even in six-voice polyphonies. The multip-
itch estimation system is also applicable for real musical record-
ings, is instrument-independent, and is able to estimate the
number of concurrent voices in input signals [8].

If sounds are in simple rational number relations, i.e., har-
monic relations, some of the harmonic components overlap with
each other in frequency domain. In the case of musical signals,
this happens often since harmonic intervals are usually favoured
over dissonant ones. In the case of dissonant intervals, the low
harmonics are not overlapping, but they can still be quite close to
3. ITERATIVE PARAMETER ESTIMATION each other. Closely spaced frequencies are a serious problem in
parameter estimation. In amplitude estimation, matfix in
Equation 6 becomes singular and the parameters cannot be solved

Mixed sounds are represented using sinusoids with time-vary- directly.
ing frequencies, amplitudes and phases. The sinusoids are The problem of closely spaced components in the amplitude
assumed constant in single analysis frame, so that the local modekstimation is solved by the following procedure. At first, the com-

3.1. Sinusoidal model

of the signak(t) is ponents that are too close to each other are detected. This can be
N done simply by setting a fixed frequency limit, since the rough
8(t) = z gs‘akcos(ankt +@), (1) frequency estimates of all components are known. Only one col-
n=1k umnin O is created to represent each group of overlapping com-

whereN is the number of the mixed sounds, is the set of har- ponents, and the obtained amplitudes and phases are then used for
monic components belonging to soumdanday, fy and @, are the the whole group. Overlapping partials result in single higher-
amplitudes, frequencies and phases of the harmonic compknent amplitude partials in the harmonic series of the sounds. This is
The short-time Fourier transfor§(f)  of the model is given by handled in the last stage, in which the whole harmonic series of
the parametric expression all sounds is processed with a perceptually motivated smoothing
N mechanism [10]. In practice, the amplitude envelope of each
& A ig —i @y . -
S(f) = z gsﬂ_z_(e W(f-f)+e "W(f+f)), (2) sound is fII"St' smoothed over a crltllc.al-band frequency scale', and
N1k then the minimum between the original and smoothed amplitude
whereW(f) is the complex-valued Fourier transform of the analy- vglue is sub_stituted for eac_h partia_l amplitude. This cuts off single
sis window translated at frequericy higher-amplitude harmonic partials that are resulted from
detected or undetected co-occurring sounds, without corrupting
the perceived timbre of the sounds.
Initial estimates of the frequencies of the harmonic compo- If only two harmonic components are overlapping with each

3.2.  Amplitude and phase estimation
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other, but the frequencies of the components are not exactly theall the harmonic components.
same, the amplitude modulation caused by the frequency differ-3_6_
ence can be used to estimate the amplitudes of both colliding
sounds. This was used in the system described in [8].

Iteration

Successive amplitude/phase estimation, amplitude smoothing,
o and frequency estimation stages are repeated until the values con-
3.4. Frequency estimation verge. In the first time frame, more than ten iterations are needed.

Spectrum estimator in Equation 2 is nonlinear in term§of In subsequent frames, the previous frame is used to initialize the
Depalle and Hélie [9] used a first-order limited expansion of the frequencies, instead of using the multipitch estimator. In this case,
Fourier Transform of the analysis window around each frequency only less than five iterations are needed. This makes the computa-
component to find a better estimate of each frequency. Alternativetional complexity of the algorithm practically applicable. Figure 2
stages of amplitude and frequency estimation were iteratively illustrates the time-varying fundamental frequency of a flute tone.
repeated to converge towards an optimal estimate in the least- Like in amplitude estimation, nearby harmonic components
squares sense. The mentioned expansion is denoted by of other sounds can disturb the frequency estimation. Large-

_ _ —EN N f ok 2 amplitude partials can even “catch” the analyzed harmonics so
W(FF fi) = WT= ) FW(F = Tga+ody),  (7) that a wrong sound becomes detected. This problem can be solved
where Ak is the di§tance between the correct frequency and |tSby Choosing On|y some of the harmonic Components of each
estimatep, = f, —f,) , andV is the derivative of the Fourier  sound to estimate the frequency changes. The components are
transformW of the window function. IfSis the observed spec-  chosen so that there is no interfering components at nearby fre-
trum andS the spectrum obtained with frequency estiméfes  quencies. If there is not enough such components, we choose
and fixed amplitudes and phases, and m&¥rix  defined by components that have large amplitudes compared to those of the

(Q)j,k _ %,_((_ e'%W'( Fo Fo+ e_'%W'( P+ ) interfering components.

. Lo 4. SYNTHESIS
the least-square solution for the frequencies is

~ Ho -1 . Once the parameters of the harmonic components have been
f=1+(Q Q) Q(S-9. 9 estimated in each frame, the sounds can be synthesized sepa-
The frequency estimation is very sensitive to the shape of the win-rately. In synthesis, the frequencies, amplitudes and phases are
dow function. In practise, the Fourier transform of the window interpolated from frame to frame, and time-domain signals are
function must not have sidelobes [9]. obtained by summing up all the harmonic components of each
sound [6].
The parameters of the sounds can also be further analyzed, or
manipulation can be performed on the parametric data [8]. An
example of the synthesized signals is illustrated in Figure 3.

3.5. Extension to harmonics sounds by introducing con-
straints for frequency relations

The frequency partials of real-world harmonic sounds cannot
be assumed to be in exact integer ratios. However, it can be
assumed that the frequency ratios of a sound remain constant 5. EXPERIMENTAL RESULTS
through time, even though the fundamental frequency varies [11].

Let the frequency ratio of the compondato the lowest-fre-
guency partial of the sound it belongs to be denoted by his
value is constant for each partial. Usualjyis close to the integer
number corresponding to the index of the harmonic partial, i.e.
unity for the fundamental frequency, five for the fifth harmonic
etc. Letus defind, to be the distance between the estimated an
correct frequency of the lowest frequency component of sound
The expansion can now be written in the form

W(FF f)=W(f F ) FW(fF Fr 3, +o(A), kO S,.(10) -

Since the frequencies of a single sound are linearly dependent on
each otherQ can now be written in the form

(@)= T (e W(F - T +e *W(F;+ ) (11)
=22

Simulations experiments were carried out to monitor the
behaviour of the proposed algorithm. Test material consisted of a
database of sung vowels plus 26 different musical instruments
comprising plucked and bowed string instruments, flutes, and
" brass and reed instruments. These introduce several different
éound pruduction mechanisms, and a variety of spectra. Semiran-
dom sound mixtures were generated by first allotting an instru-
ment, and then a random note from its whole playing range,

[N
[=3
o

Y
(=3
>

frequency/Hz

and the solution fob = [3,, ..., 8] is given by

-1 N
5=(Q"0) as-9. (12) 22
Now we get a better estimation for frequency component by 200 L |
fi, =0, kKOS,. (13) ° ¥ frame o ’

This method retains the harmonic structure of a sound since Figure 2.Fundamental frequency of a flute. The dashed line is
the ratios of the frequencies belonging to a common sound do not - the rough estimate given by the multipitch estimator. The solid
change. The corrected fundamental frequency value is based on |ine is obtained using the iterative estimation procedure.
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however, restricting the pitch over five octaves between 65 Hz andknowledge about the number of voices or type of sound sources

2100 Hz. A number of one to six simultaneous sounds were allot- involved. The proposed new principles, frequency-ratio con-

ted, and then mixed with equal mean-square levels. Acoustic strained iterative parameter estimation and critical-band fre-

input was fed to the separation algorithm. Separated sounds weregjuency scale spectral envelope smoothing were effective and
resynthesized and compared to the originals in informal listening produced perceptually good sound quality. The overall approach

tests. of first detecting the fundamental frequencies of the sounds in a
For two or three-voice polyphonies and dissonant intervals, longer window and then estimating more accurate time-varying

the system was able to produce good results in almost all cases. Irparameters was successful in combining robustness and accuracy.

very simple harmonic relations, such as the octave relation, most

of the harmonic components of the sounds are overlapping and
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