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Voice Conversion Using Partial
Least Squares Regression
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Abstract—Voice conversion can be formulated as finding a map-
ping function which transforms the features of the source speaker
to those of the target speaker. Gaussian mixture model (GMM)-
based conversion is commonly used, but it is subject to overfitting.
In this paper, we propose to use partial least squares (PLS)-based
transforms in voice conversion. To prevent overfitting, the degrees
of freedom in the mapping can be controlled by choosing a suitable
number of components. We propose a technique to combine PLS
with GMMs, enabling the use of multiple local linear mappings. To
further improve the perceptual quality of the mapping where rapid
transitions between GMM components produce audible artefacts,
we propose to low-pass filter the component posterior probabili-
ties. The conducted experiments show that the proposed technique
results in better subjective and objective quality than the baseline
joint density GMM approach. In speech quality conversion pref-
erence tests, the proposed method achieved 67% preference score
against the smoothed joint density GMM method and 84% prefer-
ence score against the unsmoothed joint density GMM method. In
objective tests the proposed method produced a lower Mel-cepstral
distortion than the reference methods.

Index Terms—Gaussian mixture model (GMM), partial least
squares regression, voice conversion.

I. INTRODUCTION

F EATURE transformation refers to a process where fea-
tures from one domain are mapped to another domain in a

desired way. In the area of speech processing, feature transfor-
mation techniques can be utilized in many applications, such as
bandwidth extension of narrowband speech [1], emotional con-
version [2], and single-channel enhancement [3], but perhaps
the most evident application is voice conversion (VC). The goal
in voice conversion is to modify speech spoken by one speaker
(source) to give an impression that it was spoken by another spe-
cific speaker (target). The features to be transformed in voice
conversion can be any parameters describing the speech and the
speaker, including segmental cues in the spectral envelope and
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suprasegmental cues such as the fundamental frequency and
phoneme durations.

Among the different applications of feature transformation,
voice conversion involves some unique properties that make it
a challenging process. First, the conversion result should ful-
fill the sometimes contradictory goals related to speech quality
and the success of identity conversion. Second, the amount of
data available for training is often rather limited in practical use
cases. Additional challenges are also caused by the fact that
the perception of quality is largely subjective, although objec-
tive quality measures approximating the subjective rating have
been proposed [4]. To add another degree of complexity to the
problem, the same person can utter the same sentence in mul-
tiple different ways. Due to the above-mentioned fact and the
lack of high-quality objective measures, listening tests should
always be used in the development and evaluation of voice con-
version systems.

A conventional problem formulation in voice conversion in-
volves a source speaker whose speech characteristics are to be
transformed to resemble the speaker characteristics of the target
speaker as closely as possible. A prerequisite for building any
type of voice conversion model is that there has to be a certain
amount of training data available from both the source speaker
and the target speaker. The requirements for the training data
sizes are system specific, and the data can be either parallel,
i.e., the speakers have uttered the same sentences, or nonpar-
allel. The sentences spoken by the speakers can be known or un-
known, corresponding to the cases of text dependent and text in-
dependent voice conversion. The most extreme case of text inde-
pendent voice conversion is cross-lingual conversion [5] where

and speak different languages that may even have different
phoneme sets.

The performance of a voice conversion system is typically
rather heavily dependent on the speaker pair , which cre-
ates large variations in the observed quality. This issue has been
tackled at least partly in average-speaker hidden Markov model
(HMM)-based speech synthesis [6], [7] or through the use of
eigenvoices [8]. In HMM-based speech synthesis, voice adapta-
tion enables mimicking of new voices using only small training
data sets in a manner similar to that of speech recognition. The
average voice model has been found to effectively serve as a
“source speaker” [6]. In the eigenvoice approach, also origi-
nally developed for speaker adaptation [9], it is assumed that
the parameters of any speaker can be formed as a linear combi-
nation of eigenvoices. The eigenvoices can capture speaker vari-
ations effectively. There are, however, factors that limit the gen-
eral usefulness of the above approaches, i.e., the average voice
model requires an HMM-based speech synthesis system, and in
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the eigenvoice approach, a large number of pre-stored speakers
with parallel training data must be available. In general, the re-
quirement of having large amounts of parallel training data is
prohibitive and there have also been proposals for coping with
nonparallel data [10].

The parameterization of the speech data and the flexibility
of the analysis/synthesis framework play an important role
in the final speech quality of converted speech. There is no
straightforward solution to the parameterization problem. For
example, speaker identity could be conveniently characterized
in part with formant heights and positions but robust estimation
of formants is, however, difficult. The most common features
used for modeling spectral content in voice conversion are
based on the direct use of spectral bands or on the source-filter
theory. Examples of typical features include MFCCs (Mel-fre-
quency cepstral coefficients) (e.g., [11]), LSFs (line spectral
frequencies) (e.g., [12], [13]) or MGCs (mel-generalized cep-
stral coefficients) (e.g., [14]).

In addition to the information on speaker identity that can
be represented using spectral features, speech prosody includes
important cues of identity. Compared to the attention attracted
by short-term spectral conversion, there has not been much re-
search done on converting prosodic features such as move-
ments and speaking rhythm. Prosody is a supra-segmental phe-
nomenon that is not conveyed through a single phonetic seg-
ment but through larger units as words, sentences, utterances or
even paragraphs. Perhaps due to this reason, prosodic modeling
in identity conversion has often been neglected. In most cases,
only simple statistical mean and variance based conversion
methods are applied, sometimes together with average speaking
rate modification. More detailed prosody conversion techniques
have been proposed for example in [15]–[17].

Mapping the source spectral envelope into the target spec-
tral envelope has gained a lot of interest. The most common ap-
proaches are based on codebook mapping (e.g., [13], [18]) or
acoustic space modeling with Gaussian mixture models ([11],
[12]). The former approach is prone to errors due to discon-
tinuity, and in addition, the amount of training data must be
rather high in order to guarantee good quality. The latter ap-
proach, which uses GMMs, has been found to offer a reasonably
good performance. On the other hand, the well-known draw-
backs of GMM-based conversion are oversmoothing and over-
fitting. In addition, another problem is that GMM-based con-
version is time-independent. An approach for solving the time-
independency and over-smoothing problems was proposed in
[14] through the introduction of maximum-likelihood estima-
tion (MLE) of spectral parameter trajectory and retention of
the global variance of the original parameters similarly as in
HMM-based speech synthesis. To overcome the speech quality
problems, the usage of frequency warping with a GMM was pro-
posed in [19]. The warping itself does not introduce much dis-
tortion but the quality of identity conversion is typically poor,
leaving the method insufficient for many potential applications.
In an attempt to overcome this limitation, combining the fre-
quency-warped source spectra with parts of the target spectra
selected from the training data has been proposed in [20].

A fundamental problem in VC is how to find a proper bal-
ance between simple and complex models, especially when the

amount of training data is limited. This problem is common for
all regression and model fitting tasks, and it is also referred to
as bias-variance dilemma [21]. In essence, simple VC models
may not be able to capture the underlying relationships between
the source and the target data and are typically subject to over-
smoothing, whereas the use of complex models may easily re-
sult in overfitting. Overfitting occurs when a model has too many
degrees of freedom compared to the amount of training data
available. Overfitting results in poor prediction ability on new
data while giving very good results for the training data; small
fluctuations in the data become over-emphasized.

In GMM-based VC overfitting can be caused by two factors:
first, the GMMs may be overfitted to the training set. Second,
when a separate mapping function is estimated, it may also be-
come overfitted. In particular, GMMs with full covariance ma-
trices are difficult to estimate and are subject to overfitting as il-
lustrated in [22]. Using full covariance matrices in GMM-based
conversion poses the requirement of large training data sizes
but an effective representation can be formed with a reasonably
low number of mixtures. In contrast, a high number of mixtures
is required for accurate parameter modeling with simple diag-
onal covariance matrices. Considering these problems, a mix-
ture of factor analyzers was applied in [23]. Alternatively, a
source GMM can be built from a larger data set and only the
means are adapted using maximum a posteriori estimation [24].
Also for speaker identification, it is common to adapt only the
means [25].

In this paper, we propose to use partial least squares (PLS) to
obtain a mapping function between the source and the target.
PLS is a regression method which specifically addresses the
cross-correlation between the predictor and predicted variables.
It also addresses possible collinearity of the data which is impor-
tant in applications with many variables and few observations
such as chemometrics, functional brain imaging and genomic
analysis. For the underlying voice conversion application, the
most important property of PLS is its good performance on new
data with only a small amount of training observations. As we
acknowledge that a single linear transform is not effective for
all the source data, we formulate the use of PLS with a source
GMM in a manner similar to [11], and demonstrate the effec-
tiveness of this approach. The use of PLS can be thought as an
intermediate approach between the diagonal and full covariance
matrix GMM conversion. Alternatively, it can be used instead
of a standard multivariate regression in a codebook based map-
ping, similar as in [26], or for example with fuzzy k-means.

To prevent problems with full-covariance GMMs, we use di-
agonal covariances for a source GMM and derive a mapping
function to model the relationship between the source and the
target. An ideal mapping function would be powerful enough
to represent the underlying relationships of the data, but not so
powerful that it slavishly models the noise associated with the
data. We assume that the underlying relationship between the
source and the target features can be explained by fewer vari-
ables than with full matrix transforms. Full transforms can end
up modeling relationships that are actually noise.

This paper is organized as follows. Section II describes
the conventional GMM-based conversion with either full or
diagonal covariance matrices. In Section III, we describe the
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partial least squares method and extend it to the GMM-based
voice conversion. Section IV describes a method for smoothing
GMM posterior probabilities for improving the subjective
quality of the converted speech. Practical experiments and the
results are described in Section V. Some discussion is provided
in Section VI. Finally, Section VII concludes the paper.

II. GMM-BASED FEATURE MODELING AND TRANSFORMATION

Voice conversion can be defined as mapping the source fea-
ture vector into the target feature vector , at each time .
The conversion function is found by minimizing
the sum of squared conversion errors over all pairs of training
samples , [11], given as

(1)

Linear conversion functions have been found to produce good
results, but using a single global transformation limits the per-
formance significantly. A practical solution is to model the data
using a Gaussian mixture model and to find a local linear trans-
formation for each Gaussian. Two approaches are mainly used:
modeling the source with a GMM [11] or modeling the joint
density between speakers [12], the latter being more popular. In
the joint density model, the conversion function can be obtained
directly from the GMM parameters and in the source density
model, a mapping function using least-squares estimation must
be estimated. The conversion function is actually a weighted
sum of linear regression models. We will briefly review both ap-
proaches in the context of full and diagonal covariance matrices.

A. Source GMM Model

The distribution of the source spectral vectors is modeled with
a GMM as follows:

(2)

where is the prior probability of Gaussian
and is the multivariate normal distribution with
mean vector , and covariance matrix .

The conversion function is typically assumed to be linear for
each Gaussian, i.e., it has the form

(3)

where is the linear transform matrix for samples in cluster
and is a static bias vector. Observation-dependent weights

are the posterior probabilities that the th Gaussian has
produced observation and expressed as

(4)

A least-squares solution for the linear mapping of the form
(3) was proposed by Stylianou et al. in [11]. Given training data

pairs , , the solution for all and
is found by solving a set of normal equations. In the case of
diagonal GMM, the conversion function was defined in each
feature dimension separately in the original work of Stylianou
et al. [11]. However, in our work the conversion function of a
diagonal GMM is trained jointly for all the dimensions to model
the dependencies between all the source and the target features.

B. Joint Density Model

In the joint density model [12], the source vectors are
augmented with the corresponding target features as

and the GMM is estimated for the augmented vectors.
The means and covariances of the GMM of the augmented vec-
tors are given as

(5)

and

(6)

where vectors and denote the mean of the source and
target entries of the augmented vector in Gaussian , respec-
tively, and the superscripts of the covariance matrices denote
their respective covariances and cross-covariances.

In the conversion, the mapped target is formed from the
source vector as

(7)

where is the posterior probability that the th Gaussian has
produced the th observation, calculated similarly as (4) using
the source vector and means and covariances .

The joint density mapping (7) is the maximum-likelihood es-
timate of the target vectors given the source vectors. In prac-
tise the terms can become very small, resulting in
oversmoothed speech as reported in [24]. Furthermore, when
features within a cluster are linearly dependent, the covariance
matrix becomes singular so that the inverse does not exist and
the method cannot be used.

In general, estimating full covariance matrices in a mixture
models is a difficult problem, especially when the amount of
training data is small. Diagonal covariance matrices represent
a commonly used simplified alternative [8]. They lead to trans-
forming each entry of the source vector independently from the
others, which limits the conversion quality. Another solution has
been proposed in [23], where the covariance structure in (6) was
modeled using mixtures of factor analyzers. Factor analysis is
based on the assumption that the data has been generated by
a set of latent variables, and is therefore slightly similar to the
method we propose in Section III. However, in [23] the trans-
forms are determined by the distributions, whereas in our ap-
proach the transforms are independent from the distribution of
the parameters. Furthermore, we take into account the interac-
tion between each local transform by estimating them jointly.
Factor analysis generally searches the informative directions in
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the factor space of the predictor variables (source features) but
may not be highly predictive on the responses (target features).

III. PARTIAL LEAST SQUARES

To overcome the assumption of variable independence in
the diagonal-covariance joint density model or the overfitting
problem in the full least squares solution, we propose to use
partial least squares (PLS) regression [27] in the transforma-
tion. PLS is a technique that combines principles from principal
component analysis and multivariate regression (MVR), and
it is most useful in cases where the feature dimensionality of

is high and the features exhibit multicollinearity. As MVR
directly operates on the relationships in the data, the underlying
assumption of PLS methods is that the observed variable is
generated by a small number of latent variables which explain
most of the variation in the target .

We first formulate the global model as linear transforms for
source and target speaker from speaker-independent latent pa-
rameters, and then extend the model for GMMs and multiple
local transforms.

Global PLS is based on the assumption that the source vector
and the target vector are produced by a linear transforma-

tion of a speaker-independent latent variable vector as

(8)

(9)

where and are speaker-specific transform matrices, and
and are residual terms which cannot be modeled by the linear
model.

Solving and (see Section III-A for description of an
algorithm) leads to the regression model

(10)

where is the regression matrix which depends on and ,
and is the regression residual. PLS differs from the standard
multivariate regression in the sense that also is assumed to
have a stochastic residual term. Furthermore, the rank of the re-
gression matrix is the dimensionality of the latent variable
vector . This dimension is called the number of PLS compo-
nents, and selecting it appropriately prevents overfitting effec-
tively. The PLS model becomes equivalent to the multivariate
regression if has full rank, i.e., the number of latent variables
equals the number of source variables.

Fig. 1 illustrates the cumulative variance of the source vari-
ables (8) and the corresponding target variables (9) with dif-
ferent numbers of PLS components without the residual terms

and . Both the source and target vectors are 24-dimen-
sional MGCs and the amount of data is 200 frames. It can be
seen that increasing the number of PLS components increases
the explained variance of predicted variables, and the source
variables become perfectly explained by the PLS model when
the number of PLS components equals the dimensionality of the
source vector. Not all the variations in the target vectors are ex-
plained by the model even when all the PLS components are
used because the target data cannot be perfectly explained as a
linear combination of source variables.

Fig. 2 illustrates the mean squared prediction error of a
fourfold cross-validation experiment where three fourths of
the above data was used to estimate the transform and the

Fig. 1. Cumulative relative variance of source variables (dashed line with cir-
cles) and target variables (solid line with x-marks) explained by the PLS model
as a function of the number of PLS components.

Fig. 2. Mean squared error of the example test data as the function of PLS
components. See the text for a detailed explanation.

rest were used to measure the error. Increasing the number of
PLS components up to nine reduces the error, after which the
error increases slightly because of overfitting. In Section III-B
we propose a technique where multiple local transforms are
estimated together with PLS to avoid overfitting.

A. Algorithm for PLS

There exists many variants for solving the PLS regression
problem. In this paper, we use the SIMPLS (simple partial least
squares) algorithm proposed by de Jong [27], which has the
advantages of being computationally efficient, its avoidance of
matrix inverses, and operation on the original data instead of its
covariances. Below is a brief description of the processing steps
of the algorithm.

The algorithm operates on zero-mean source and target vec-
tors and , respectively, so the empirical means of the vec-
tors are subtracted prior to the processing, and afterwards added
to the regression results. Let us denote the set of source ob-
servations by matrix , and the set of target
vectors by matrix . In each iteration , the
algorithm estimates score vector which explains most of the
cross-covariance between and . The th entry in vector
corresponds to a coefficient in the latent variable vector in
(8) and (9), whereas the loading vectors and are the cor-
responding rows in matrices and . After each iteration, the
contribution of the estimated PLS component is subtracted from
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the cross-covariance matrix . For details of the algorithm, see
[27].

1) Initialize , , , and to empty matrices.
2) Calculate the cross-covariance matrix between and

as .
3) Calculate the eigenvector corresponding to the largest

eigenvalue of .
4) Set and .
5) Subtract the mean of its entries from .
6) Normalize and by and .
7) Set , , and .
8) Set .
9) If iteration count then orthogonalize the terms by

and .
10) Normalize as .
11) Set .
12) Assign , , and as the columns of matrices ,

, and , respectively.

The processing steps 2–12 are repeated for iterations
up to the number of PLS components. The

number of components can be selected by cross-validation,
bootstrapping or manually by the user. The regression matrix
is obtained as .

B. Combining PLS With GMM

Similarly to the methods described in Section II, it is unlikely
that a single linear transform is effective for all the data. To over-
come this limitation we extend the PLS model for GMMs and
multiple local transforms. A locally weighted PLS (LWPLS) al-
gorithm was proposed in [28], where it was observed that glob-
ally high-dimensional data can be modeled using a low number
of latent variables, and LWPLS can approximate nonlinear func-
tions by building separate locally linear models. In [28], an al-
gorithm was presented for finding locally optimal regression by
applying suitable weighting of the data for each cluster.

For voice conversion, it is important that the conversion func-
tion is continuous. Similarly to GMM-based techniques pre-
sented in Section II, smooth transitions as the function of the
source vector can be accomplished by calculating the posterior
probabilities (4) and setting the global prediction equal to the
weighted sum of local predictions

(11)

With the PLS regression model (10) for each local prediction,
the above leads to the regression model

(12)

where is the transform of cluster .
Minimizing the local errors separately is not guaranteed to

minimize the global error . To overcome this, we propose a
technique where all the local transforms are estimated jointly in

order to minimize the global error. The SIMPLS is applied on
zero-mean variables. The source and target mean vectors are

and

Centered source vectors are defined as , and a
centered source vector where weighted duplicates of the original
source vectors are augmented is defined as

...
(13)

For centered vectors, model (12) can be written as

(14)

where

Since (14) has the same form as the original PLS regression
model (10), can be estimated using the standard PLS algo-
rithms described in Section III-A.

The final prediction is obtained by adding the means of each
cluster as

(15)

Even though the above mixture-regression model does not
have exactly similar speaker-independent latent variable equiv-
alence as in (8) and (9), it effectively prevents overfitting, while
still having the capability of modeling the dependence between
source variables. Furthermore, since the transforms ,

, are estimated simultaneously for all the Gaussians,
the method is able to take into account the interaction between
the clusters. The performance of the method is analyzed in de-
tail in Section V.

IV. POSTERIOR PROBABILITY SMOOTHING

A single GMM component usually dominates each frame in
typical VC data, i.e., for each frame there is only one high pos-
terior probability . This is at least due to the high dimen-
sionality of the data. In this paper, we consider a realistic case
of VC in which only a little training data, ten parallel sentences
are available. For such a small amount of data one can reliably
estimate only a small number of local transforms.

Fig. 3 illustrates the frame-wise maxima of the component
posterior probabilities for 15 000 test data frames, the frames
sorted to ascending posterior probabilities. Different numbers of
Gaussians are illustrated with different line types. It can be seen
that in one third of the frames a single component is dominating,
their posterior probability being close to unity. In almost all the
frames a single component has a posterior probability higher
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Fig. 3. Frame-wise maximum GMM component posterior probabilities in a test
set of source vectors sorted into ascending order. Different line types illustrates
GMMs where different number of components were used (8—dash-dotted line,
16—solid line and 32—dashed line).

Fig. 4. GMM component posterior probabilities for a speech segment, each
component illustrated by a different line type. In most of the frames a single
component is dominating, and the transitions between component are rapid.

than 0.5. For example with 16 Gaussians, about 40% of the data
has a dominant component higher than 0.99. With training data
that is more sparse (about 4200 frames), the percentage is even
higher.

The “clustered” nature of posterior probabilities leads to rapid
temporal changes from one component to another. This is illus-
trated in Fig. 4 where the component posterior probabilities of
a eight-component GMM are plotted with different line types
over time. As can be seen, there is usually one dominant com-
ponent for a short period of time and then it rapidly changes
into another component. The temporal derivatives of the poste-
rior probabilities are illustrated in Fig. 5 with dashed line for
all the components. The derivatives also show rapid temporal
changes in the posterior probabilities.

Rapid changes in the posterior probabilities result in audible
artefacts in the converted speech, since different transforms are
used in each GMM component. This becomes prominent espe-
cially when the amount of training data is limited. To overcome
this problem, the generated parameters were smoothed after
the transforms in [24]. However, this easily produces overly
smoothed features. Moreover, smoothing the features indepen-
dently from each other may change their relationships, which
causes problems when the features actually depend on each

Fig. 5. Temporal derivatives of the GMM component posterior probabilities
in Fig. 4 illustrated with dashed lines. The derivatives of smoothed posterior
probabilities (solid lines) do not have as large changes.

other. Postfiltering [29] is often used to improve the quality but
it works in individual frames. Spectral trajectories [14] have
been proposed to alleviate the problem, but the trajectories are
difficult to estimate from a small amount of data.

To improve the perceptual quality of the converted samples
with a small amount of data, we propose to smooth the com-
ponent posterior probabilities before the transforms. Smoothing
can be accomplished, e.g., by a low-pass finite impulse response
(FIR) filter and then normalizing the smoothed posterior proba-
bilities in a frame so that they sum to unity.

In our system with 5-ms frame shift (200-Hz frame rate)
we used a tenth-order FIR low-pass filter having a cutoff
frequency 10 Hz. The derivatives of the smoothed component
posterior probabilities are illustrated in Fig. 5 using solid lines.
Smoothing does not change the fact that the data is sparse
and clustered, but provides a smoother transition from one
component to another.

V. EXPERIMENTS

Both objective and subjective results were carried out to eval-
uate the performance of the proposed methods. In the experi-
ments, the proposed PLS model with GMM modeling explained
in Section III-B (referred to as ) was evaluated against the
joint-density GMM model explained in Section II-B (referred
to as ).

Full covariance matrices cannot be reliably estimated from a
small amount of data. Therefore, JD system used diagonal co-
variance matrices , , , in the GMM estimation
and feature transformation [(7)]. PLS system used diagonal-co-
variance source GMM [(2)]. Objective results were also calcu-
lated for multivariate regression based on a single transform.

JD was evaluated with 8, 16, and 32 GMM components, and
because the model with 16 components was found to produce
the smallest error, it was chosen as the baseline approach. The
number of components in the source GMM of PLS was 8.

A. Acoustic Data

The publicly available CMU Arctic database [30] sampled at
16 kHz was used for evaluation. We conducted tests for four
speaker pairs: male-to-male (M-M), male-to-female (M-F), fe-
male-to-male (F-M) and female-to-female (F-F). The analysis-
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Fig. 6. Mel-cepstral distortion of male-to-male (top left panel), female-to-female (top right panel), female-to-male (bottom left panel), and male-to-female (bottom
right panel) transformations as a function of number of latent components. The dashed lines represent the error for the baseline JD method, the solid line represents
the error of the proposed PLS method with different amount of latent components. The dotted line represents the error of multivariate regression with a single full
transform matrix.

synthesis system STRAIGHT [31] was used for extracting
and the spectral envelope at 5-ms steps. The spectral envelope
was represented with 24-order MGCs [29] resulting in 25 cep-
stral parameters. The first term describing the energy was not
used and in the sample generation it was copied from the source.
The excitation was formed using either white noise or impulses,
and the voicing decisions were directly copied from the source
to the target. was converted by transforming the mean and
variance in a logarithmic scale. Temporal differences were not
modeled.

For each speaker pair, a source GMM and a JD GMM were
built based on data from ten sentences that were aligned with dy-
namic time warping (DTW). Some parts of the aligned training
data were discarded, which was found to improve the objec-
tive quality in [32]. The training data selection process was au-
tomated so that silent frames were discarded based on an en-
ergy threshold and frames with voiced-unvoiced mismatch were
omitted.

Objective results were calculated for the test data that had
gone through a similar selection process as the training data.
For example, comparing silent frames to silent frames is not
meaningful. The testing data consisted of 35 000 frames and did
not include data from the training sentences.

B. Objective Results

The Mel-cepstral distortion between the converted target and
the original target was calculated as in [14] as

dB (16)

where is the original target and is the converted target of
the th MGC.

Fig. 6 illustrates the average Mel-cepstral distortion for M-M,
F-F, F-M, and M-F conversion, respectively. As can be seen
from the panels, in all speaker pairs except for the female-to-fe-
male conversion, PLS with a suitable number of components
(20–40) can yield a lower error than JD or a single full trans-
form. Using a too low or too large number of components leads
to worse results than the reference methods. The cepstral dis-
tortion between the original source and the target were 8.2, 7.0,
9.9, and 9.3 dB for the M-M, F-F, F-M, and M-F conversions,
respectively.

C. Subjective Results

Preference tests were carried out concerning the speech
quality and identity. Examples of the test samples are avail-
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Fig. 7. The overall results of the preference test with 95% confidence intervals
of the proposed PLS system in terms of (a) speech quality against the smoothed
baseline (JD-S) and (b) speech quality against the non-smoothed baseline (JD-
NS), and (c) speech identity against the smoothed baseline (JD-S).

Fig. 8. Overall results of the quality preference test for each speaker pair when
evaluating the proposed PLS system against the smoothed baseline (JD-S) with
95% of confidence intervals.

able at http://www.cs.tut.fi/sgn/arg/IEEE_VC/pls.html. Ten
naive listeners participated in all the tests. The number of PLS
components was set to 40, which was found to be a suitable
number in the initial experiments with development data. All
the PLS samples also used the proposed posterior probability
smoothing. The samples produced by all the tested methods
were postfiltered (see [29] for detailed description on
postfiltering) and the samples were scaled to the same playback
level.

In the quality test, we conducted two comparisons. In the
first test (Test 1), PLS was tested against JD with posterior
probability smoothing (referred to as JD-S). In the second
test (Test 2), PLS was tested against JD without posterior
probability smoothing (JD-NS). In both cases, 16 test sentence
pairs from all the speaker pairs were evaluated. For each pair of
samples produced by the two tested methods, the listeners were
asked to choose the one with better quality.

Fig. 9. Results of the quality preference test for each speaker pair when evalu-
ating the proposed PLS system against the baseline (JD-NS) with 95% of con-
fidence intervals.

Fig. 10. Results of the identity preference test for each speaker pair when eval-
uating the proposed PLS system against the smoothed baseline (JD-S) with 95%
of confidence intervals.

In the identity test (Test 3), both systems (PLS and JD) used
the proposed posterior probability smoothing. The subjects lis-
tened to the original target and were asked which sample, A
or B, was closer to the target. The target sample was analyzed
and synthesized similarly as the converted samples, i.e., using
simple excitation and spectrum modeling with MGCs. 16 test
sentences were evaluated for each speaker pair.

The average quality and identity preference results with 95%
confidence intervals for all speaker pairs are shown in Fig. 7.
A more detailed information about the votes given for each
speaker pair are shown in Figs. 8, Fig. 9, and Fig. 10 for Test 1
(quality), Test 2 (quality) and Test 3 (identity), respectively.

D. Analysis of the Results

Both the objective analysis and the listening test results
indicate a similar preference order for the compared systems.
According to the preference test, PLS produces better quality
than the smoothed JD-GMM. The only exception is the fe-
male-to-female transformation where the systems were rated
equal within the confidence intervals. This is also depicted in
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the objective results, where female-to-female transformation
with PLS did not reach a lower error with any number of PLS
components compared to JD. In inter-gender transformation,
as well as in male-to-male transformation, PLS is more often
preferred. Compared to the other conversion pairs, the female
speakers sound rather similar, and transforming each feature
independently from each other by the JD method can perform
equally well in comparison with PLS. Posterior probability
smoothing improves the subjective quality of all the speaker
pairs.

In the identity test, PLS was preferred more often in all cases
except for the equal preference in female-to-female transforma-
tion. However, in all the samples, the compared samples were
closer to each other than to the desired target because both of
the methods are based on some type of linear transforms and
similar parameterization.

VI. DISCUSSION AND FUTURE WORK

Modeling the conversion function as a weighted sum of local
linear regression models gives a chance to approximate non-
linear models, but it is likely that the assumption of local linear
dependence between the source and target features also limits
the performance of all the methods discussed in this paper. To
overcome the linearity restriction, nonlinear PLS algorithms
have been proposed, e.g., [33]. Detailed modeling is only
possible when there is a large amount of data available which
is, however, against the ultimate idea of voice conversion.

A source GMM adaptation in cases where a source GMM is
built on a larger amount of data or model adaptation in HMM-
based speech synthesis could also benefit from using PLS, at
least when the source speaker or the master text-to-speech voice
is significantly different from the voice to be adapted. Because
of that, average-voice models perform better in adaptation [7].
When there is only a small amount of data available and no di-
rect or well-established relationship between the source and the
target parameters, simple models may fail and complex models
tend to overtrain, while PLS offers a reasonable choice for bal-
ancing between these.

Even though we have used objective measurements to com-
plement the listening test results, it should be emphasized that
in voice conversion, the quality and identity cannot be reliably
evaluated with objective measures. The objective results are
based on aligned data which may not fully capture the true
relationship between the source and the target. There can also
be audible discontinuities, e.g., clicks, that may not affect the
average objective measurements at all. In addition, the per-
ceptual severity of the errors depend on the type of the sound
(vowel, plosive, etc.), a phenomenon that is hard to model
objectively. Finally, it is possible that objective experiments
could sometimes indicate higher distortion for samples that
actually have better quality in a listening test.

VII. CONCLUSION

We have proposed a voice conversion method which com-
bines PLS with GMMs. The method effectively prevents overfit-
ting, while retaining the ability to model dependencies between

features. We also proposed a method to improve the quality of
GMM-based mapping by low-pass filtering the GMM compo-
nent posterior probabilities.

Experimental results show that the proposed methods enable
a better conversion quality than the baseline methods. In the
cases where the difference between the source and the target
speaker is large the proposed methods achieve a clearly better
quality.
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