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ABSTRACT

This paper targets on a generalized vocal mode classifier
(speech/singing) that works on audio data from an arbitrary data
source. Previous studies on sound classification are commonly
based on cross-validation using a single dataset, without consider-
ing training-recognition mismatch. In our study, two experimen-
tal setups are used: matched training-recognition condition and
mismatched training-recognition condition. In the matched condi-
tion setup, the classification performance is evaluated using cross-
validation on TUT-vocal-2016. In the mismatched setup, the perfor-
mance is evaluated using seven other datasets for training and TUT-
vocal-2016 for testing. The experimental results demonstrate that
the classification accuracy is much lower in mismatched condition
(69.6%), compared to that in matched condition (95.5%). Various
feature normalization methods were tested to improve the perfor-
mance in the setup of mismatched training-recognition condition.
The best performance (96.8%) was obtained using the proposed
subdataset-wise normalization.
Index Terms: sound classification, vocal mode, heterogeneous data
sources, feature normalization

1. INTRODUCTION

In this study, we aim at a generalized vocal mode (speech/singing)
classifier, working on audio data from arbitrary sources. A gener-
alized vocal mode classifier can potentially save a lot of time when
finding interesting parts in a video, along with established vocal ac-
tivity detection techniques [1, 2]. As an example, the singing part
from a talent show episode can be easily found on YouTube.

The captured audio is affected by the recording device, acoustic
space and background noises. The acoustic space and the recording
device are collectively defined as transmission channel. In practice,
the training-recognition mismatch is a significant problem: a clas-
sifier often fails when working on audio data captured using a dif-
ferent recording setup. However, majority of previous sound classi-
fication studies are based on a single dataset using cross-validation
[3, 4, 5], without considering the cases of training-recognition mis-
match. We call it a homogeneous recognition scenario, when train-
ing and testing data are from the same recording setup. We call it a
heterogeneous recognition scenario, when recognition data is from
different recording setups compared to the training data.

In previous studies, feature normalization has been shown ef-
fective to cope with training-recognition mismatch in robust speech
recognition [6, 7, 8]. Mean-variance normalization (MVN) [9]
scales features in each data source to have zero-mean and unit-
variance. Histogram equalization (HE) [7, 8] aims at a more so-
phisticated matching over the histogram from a distribution basis

Figure 1: An example of a homogeneous recognition scenario and
a heterogeneous recognition scenario.

to a distribution target. Notably, there is a significant difference
between our study and robust speech recognition. Taking the ex-
perimental framework Aurora [10] used in [7, 8] as an example,
a single clean speech dataset is used for training. The background
noises of different environment are added to clean data to be used as
testing material, thus the main mismatch is the background noises.
In our study, the training material is from a few different datasets
instead of one to cover various speech and singing styles. The main
mismatch between the datasets is in channel effect instead of back-
ground noise, since all the datasets are recorded in relatively silent
environment.

This study deals with the training-recognition mismatch when
learning vocal mode classifiers from heterogeneous data sources.
Firstly, we investigate the difference in performance between homo-
geneous recognition scenario and heterogeneous recognition sce-
nario. Secondly, we evaluate various feature normalization methods
to improve the classification performance in heterogeneous recog-
nition scenario. The main focus is the data scope to perform fea-
ture normalization, which is seldom investigated in previous stud-
ies. Besides the obvious recording-wise and dataset-wise normal-
ization, subdataset-wise normalization is proposed. The normaliza-
tion data scopes are evaluated along with MVN and HE. A new
dataset TUT-vocal-2016 is introduced to evaluate the classification
performance.

The organization of this paper is as follows. The method is
described in Section 2. The used datasets are discussed in Section
3 and the experimental results for evaluation are given in Section 4.
The conclusions are drawn in Section 5.
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Figure 2: Feature distribution in CHiME2010 and Arctic dataset,
illustrated in green and blue lines, respectively. The visualized fea-
tures are log Mel-band energies from nine different bands.

2. METHOD

A vocal mode classifier takes an audio recording as input and the
output is the predicted vocal mode corresponding to every second
in the recording. The vocal mode classifier follows an established
setup in the domain of sound classification: log-mel band energies
as features and a multilayer perceptron as the classifier [11, 12]. In
addition to the established setup, feature normalization is performed
on the log-mel band energies.

2.1. Acoustic Features

The acoustic features are calculated as follows. The audio ampli-
tude is normalized, scaling the maximum amplitude of a recording
to one. The audio signal is divided into frames with length of 30 ms
and 50% overlap. The number of Mel filter banks is 30, ranging
from 25 Hz to 8000 Hz.

In order to investigate the difference in transmission channel be-
tween different data sources, the feature distributions of two speech
datasets, CHiME2010 [13] and Arctic [14], are visualized in Fig-
ure 2. The histogram plots are obtained by dividing the interval [-
4σ, 4σ] of each feature coefficient into 50 bins. Only features from
non-silent frames are taken into account. As is shown in Figure 2,
each feature coefficient in the CHiME2010 dataset is distributed
around a single peak, similar to the normal distribution. In contrast,
most coefficients in Arctic dataset are distributed around two peaks.
Both CHiME2010 and Arctic are speech datasets containing bal-
anced English utterances recorded in relatively silent environment,
however the feature distributions are largely different, which reveals
the the difference between the two datasets in terms of channel ef-
fect.

2.2. Feature normalization

A transmission channel introduces a time-invariant distortion to the
original signal, under the assumption of linear system. It is assumed
that there exists an invariant global distribution for voice signal, be-
fore transmitting through a channel [6]. If different recording setup
is used, the global distribution becomes transformed. The global

distribution using a recording setup can be estimated using avail-
able data from the source. Feature normalization aims at removing
the noise and channel effect by matching the overall feature distri-
butions of different data sources.

Two types of feature normalization techniques are considered:
mean-variance normalization (MVN) [9] and quantile equalization
(QE) [15]. They are simple and require not too much data from a
data source to estimate the feature distribution, compared to more
complicated and elaborated methods such as full histogram equal-
ization [7], feature space rotation [16] and vocal tract length nor-
malization [17].

In practice, it is quite often unknown what recordings are from
the same recording setup. The audio data inside a recording is
surely homogeneous, however the amount of data in a single piece
of recording may not be sufficient to estimate the feature distri-
bution of the source. Another solution is dataset-wise normaliza-
tion, based on the assumption that the audio in the same dataset is
recorded under very similar condition. However, this is not always
a valid assumption. As an example, some audio datasets are col-
lected in parallel using different recording devices in different envi-
ronment. We use a term data scope, within which the feature distri-
bution is estimated and feature normalization is performed. Global
normalization, as a reference, scales all the data the same way, based
on the statistics of the whole training material.

In addition, we propose another approach, where datasets are
decomposed into sub-datasets based on K-means clustering on
recordings. The number of clusters is defined proportionally to the
data amount, with two hours of non-silent material in the dataset
corresponding to one cluster.

Overall, we consider two feature normalization techniques and
three normalization data scopes. In mean-variance normalization, a
feature vector x in a data scope X is normalized as

xnorm =
x− µ
σ

, (1)

where µ and σ is the mean and standard deviation within the data
scope X.

Quantile equalization estimates a transformation function for
each feature coefficient based on the quantile statistics of the data
scope as basis and the whole training set as target. Five critical val-
ues: minimum, 25th-percentile, median, 75-percentile and the max-
imum are used to divide the range of a feature coefficient into four
bins. The value of kth critical value for ith coefficient is denoted
as Qi

k and Q̂i
k, respectively for the basis and target distribution. A

feature coefficient xi is normalized as

xinorm = Q̂i
k + (xi −Qi

k)
Q̂i

k+1 − Q̂i
k

Qi
k+1 −Qi

k

∀xi ∈ Qi
k < x < Qi

k+1.

(2)

2.3. Supervised learning

Multilayer perceptron (MLP) [18] is a basic type of artificial neural
network, consisting of layers of nodes with each layer fully con-
nected to the next one. Feature vectors are given to the network as
input and the output corresponds to target classes. The implemen-
tation is based on Keras [19] using Theano [20] as backend.

Let us denote the node values of input layer as h1 = x and the
node values of kth layer as hk. Given the node values of k − 1th
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Name Class Duration Ref
CHiME Speech 7h 06m [13]
Arctic Speech 6h 27m [14]
CHAINS Speech 2h 19m [21]
Multitrack2013 Sing 17h 10m [22]
Marl Sing 1h 51m [23]
Tonas Flamenco Sing 0h 13m [24]
TUT-VOX Sing 0h 48m -
TUT-vocal-2016 Both 3h 15m -

Table 1: Datasets used in our experiments. Used length is the non-
silent part of used recordings in a dataset. The duration is reported
excluding silence.

layer, the node values of kth layer are calculated as

gk−1 = Wkhk−1 + bk, 2 ≤ k < M (3)

hk = F(gk−1). (4)

Eq. (3) shows the linear transformation operation on k − 1th layer
of the neural network, where Wk ∈ RSk−1×Sk is a weight matrix
between layer k − 1 and layer k. Sk is number of neurons in layer
k. A bias vector is denoted as bk. A non-linear activation function
F is applied element-wise on the linear transformation outputs. The
total number of hidden layers is two. Sigmoid function is used as
activation function for hidden layers and the output layer (h4 = y).

Context windowing is used for the neural network input: the
consecutive feature frames [x[t − R], ...,x[t], ...,x[t + R]] are
stacked together to form a single feature vector xc[t] to repre-
sent temporal dynamics, where R is number of the past and future
frames. We use Ncw = 2R + 1 = 25 to denote the total number
of frames used in a context window. In order to smooth the neu-
ral network output, mean filter is used for neural network output
as [y[t − L], ...,y[t], ...,y[t + L]]. The size of the mean filter is
Nmf = 2L+ 1 = 35.

3. DATASETS

There is not any public dataset designed for speech/singing clas-
sification. However, there are many speech datasets designed for
speech recognition and several singing datasets designed for music
research. Three speech datasets and four singing datasets are se-
lected as training material based on the variability and accessibility.
The list of used datasets is shown in Table 1. In addition, we col-
lected a new dataset TUT-vocal-2016 that contains both speech and
singing to evaluate trained classifiers.

3.1. Datasets for training

All the speech datasets contain English speech from both male and
female. CHiME dataset [13] contains speech utterances from 34
speakers with reverberation. Arctic dataset [14] is a clean speech
dataset designed for speech synthesis and speech recognition, con-
tributed by 7 speakers. CHAINS dataset is contributed by 36 speak-
ers, including normal, fast and whispered speech. Only the normal
speech and whispered speech utterances are used in this study.

Four singing databases are used. Multitrack2013 covers singing
styles of pop and pop rock [22]. Tonas Flamenco [24] contains
only Flamenco singing. The Marl dataset [23] contains pop singing

and rap. Recordings containing rapping have been excluded in our
experiments, since it is ambiguous if rapping belongs to speech or
singing. TUT-VOX is a proprietary dataset containing acappella
singing in English and Finnish.

3.2. TUT-vocal-2016

In order to make a proper evaluation for vocal mode classification,
we introduce a new dataset TUT-vocal-2016. The core idea is to
have audio where the same person is speaking and singing, prefer-
ably the same language content. The dataset is contributed by 20
volunteers, 10 females and 10 males. Each volunteer is required to
choose four songs. The volunteer is required to sing from one to one
half minutes of each song, thus all recordings weigh similarly in the
evaluation. There are 80 pieces of singing collected, from a set of
21 different songs. The lyric of the songs is read out by each volun-
teer in three types: normal speech, whispered speech and shouted
speech. The shouted speech is not used in this study since we have
found very little shouted speech as training material.

3.3. Annotation

We use frame-level voice activity annotation, by which the silent
parts in recordings are excluded for both training and testing. The
frame-level activity annotation was obtained using two automatic
approaches. The principle is to exclude all the silent frames in the
evaluation and a small part of voices annotated as silence is toler-
ated.

Speech utterances were mostly short and contained usually only
silence at the beginning and at the end of the signal. A simple
energy-based scheme was chosen for this type of signals. In the
scheme, 10% of the average RMS-energy was used as threshold to
detected non-silence (active) segments. This scheme worked best
with signals having mostly active segments and most of the energy
is also concentrated in these vocal segments.

The acappella singing contains longer silent segments and in
some cases added effects like reverberation making it hard to use
such a simple threshold. For these type of signals, a binary classifier
based approach was used [25]. In this approach, 10% of lowest en-
ergy frames within a recordings are used to train Off-class and 10%
of highest energy frames is used to train On-class. The classifier
was used to get probability of frame belonging to the On-class (ac-
tive). Classification was done by defining the probability threshold
as weighted mean between top 10% and bottom 10% of collected
probabilities. After the binary classification, short segments under
200 ms were omitted from output.

4. EVALUATION

Firstly, we evaluate the difference in classification performance
between homoogeneous recognition scenario and heterogeneous
recognition scenario. Secondly, we try to find the best feature nor-
malization method and data scope in heterogeneous recognition sce-
nario.

4.1. Setup

To evaluate the classification performances in the homogeneous
recognition scenario, we perform a 4-fold cross validation on the
TUT-vocal-2016 dataset. The evaluation results are reported aver-
aging the four folds.
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Scenario Normalization data scope MVN QETraining Testing
Heterogeneous Global Global 69.6
Homogeneous Global Global 95.5

Heterogeneous

Recording Recording 72.7 76.2
Dataset Dataset 88.1 91.6

Subdataset Subdataset 96.8 93.9
Subdataset Dataset 90.7 90.4

Dataset Recording 81.1 78.3
Subdataset Recording 81.2 81.1

Table 2: Evaluation on different data scopes using mean-variance
feature normalization (MVN) and quantile equalization (QE).

In the evaluation of the heterogeneous recognition scenario,
TUT-vocal-2016 dataset is used for testing, while the rest of the
datasets are used for training. The baseline is global feature nor-
malization, where all the feature vectors in training and testing ma-
terial are operated with the same linear transformation based on the
statistics of training material alone. Two feature normalization tech-
niques, MVN and QE are evaluated, along with three feature nor-
malization data scopes, recording-wise, dataset-wise, subdataset-
wise. Particularly, we evaluate recording-wise normalization for the
testing data, while using all the three normalization data scopes for
training data. In many practical cases, the data source is unknown
at the recognition stage, or the statistics of the whole recognition
dataset are not available.

4.2. Results

The experimental results are reported in unweighted accuracy (av-
erage recall), of the two classes. The experimental results are shown
in Table 2. MVN and QE give similar performance through all the
experiments. In contrast, the feature normalization data scope sig-
nificantly affects the classification performances. Based on that, we
can simply use the results from MVN to discuss different normal-
ization data scopes.

The obtained accuracy using subdataset-wise normalzation was
remarkably high. We investigated the clustering results of the TUT-
vocal-2016 dataset and found that the speech and singing record-
ings were clustered to different subdatasets. All of our training
datasets consist either speech or singing. The condition is more
matched, when training and testing data scope contains only just
one class, which leads to a big improvement when the testing
dataset is normalized subdataset-wise. When online application is
considered (normalization scope is recording-wise at recognition),
there is no major difference in performance between dataset-wise
and subdataset-wise normalization.

In most robust speech recognition studies [6, 8], QE gives
clearly better performance than MVN. However, this conclusion
does not hold in our study. In the robust speech recognition stud-
ies, the purpose of feature normalization is to improve the noise
robustness. In comparison, all the datasets used in our study are
recorded in close microphone scenario, thus relatively clean from
interfering sounds. Our experimental results suggests that it has no
benefit using QE compared to MVN, when the mismatch is mainly
on channel effect.

5. CONCLUSION

This paper targets on a generalized vocal mode classifier, which is
able to perform classification on signals from arbitrary data sources.
A new dataset TUT-vocal-2016, containing both speech and singing
from 20 volunteers, was collected for evaluation.

In a homogeneous recognition scenario, a four fold cross-
validation is made on TUT-vocal-2016 alone. In a heterogeneous
recognition scenario, four speech datasets and three singing datasets
are used as training material, and TUT-vocal-2016 is used for test-
ing. In the experiments, the vocal mode classifiers were based on
log-Mel band energies as features and multi-layer perceptrons as
models. The experimental results showed that the classifier gave
clearly higher accuracy 95.5% in the homogeneous recognition sce-
nario compared to heterogeneous recognition scenario (69.6%).

This result shows that the classification performance is severely
degraded by training-recognition mismatch. However, we found no
public evaluation setup for sound classification targeting on hetero-
geneous recognition scenario. A new evaluation setup should be
established to test the capability of classifiers to work on heteroge-
neous data sources.

Various feature normalization methods were tested to improve
the classification performances in the heterogeneous recognition
scenario. Subdataset-wise mean-variance normalization was found
to gave the best performance, which achieved a classification accu-
racy of 96.8%. However, the subdataset-wise normalization relies
on the knowledge of recognition data source and a sufficient amount
of data from the source is needed to estimate the feature distribution.
In case that the feature distribution can only be estimated based on
the current signal to be recognized, the best achieved accuracy was
81.2 %.

This suggested that an online application would be much more
challenging than an offline application for a heterogeneous recog-
nition scenario. In the future, studies should be made on normal-
ization methods that requires less data to improve on heterogeneous
recognition scenario.
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