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ABSTRACT

This paper proposes measures for estimating the similarity of two

audio signals, the objective being in query-by-example. Both sig-

nals are first represented using a set of features calculated in short

intervals, and then probabilistic models are estimated for the fea-

ture distributions. Gaussian mixture models and hidden Markov

models are tested in this study. The similarity of the signals is

measured by the congruence between the feature distributions or

by a cross-likelihood ratio test. We calculate the Kullback-Leibler

divergence between the distributions by sampling the distributions

at the points of the observations vectors. The cross-likelihood ra-

tio test is evaluated using the likelihood of the first signal being

generated by the model of the second signal, and vice versa. Sim-

ulations were conducted to test the accuracy of the proposed meth-

ods on query-by-example of audio. On a database consisting of of

speech, music, and environmental sounds the proposed methods

enable better retrieval accuracy than the existing methods.

1. INTRODUCTION

Measuring the similarity of two audio signals has several appli-

cations in audio database management tasks. For example, it en-

ables clustering the data into conceptually homogeneous clusters

in an unsupervised manner [1, 2] and making database queries by

an user-provided example [3]. It also forms a basis for supervised

support vector machine classifiers [4, 5]. Similarity measures can

also be used to segment and cluster segments of individual speak-

ers from signals consisting of several speakers [6].

Whereas several efficient perceptual distortion measures be-

tween individual stationary spectra have been proposed, measuring

the similarity of two audio signals consisting of multiple frames is

a significantly more challenging task. There are several “layers”

in a signal in which a human can focus into: for example a hu-

man can judge the similarity of male speech signal by the topic of

the speech, by the speaker identity, or by any sounds on the back-

ground. Therefore, it is unlikely that a single measure could be

used to measure the similarity of long audio signals.

The most commonly used acoustic features for audio classifi-

cation are calculated in short frames. Previous studies have shown

that the similarity of two long audio signals can be efficiently mea-

sured by the difference of their feature distributions – the smaller

the difference, the more similar are signals. For example, Mandel

and Ellis [5] calculated the average feature vector of each signal

and measured their similarity by the Euclidean distance between

the average feature vectors. Many systems use a parametric model

This work was supported by the Academy of Finland, project No. 5213462
(Finnish centre of Excellence program 2006-2011).

such as Gaussian mixture model for the distributions [4,7] and then

measure difference between them.

A commonly used similarity measure in speaker segmentation

and clustering [1, 6] is the likelihood ratio test. It calculates the

likelihood that the signals are generated by the same model and

the likelihood that the signals are generated by individual models,

and then measures their similarity by the ratio of the likelihoods.

In this paper we apply distance measures between feature dis-

tributions and likelihood ratio tests to query-by-example of audio

signals. We propose an accurate measure to approximate the sym-

metric Kullback-Leibler divergence between two distributions, and

show its relationship to the likelihood ratio test. We extend the

likelihood ratio test to hidden Markov models to facilitate the use

of temporal information about the signals. Simulation experiments

show that the proposed methods enable better accuracy in audio

query-by-example than the existing methods.

The paper is organized as follows: Section 2 presents Gaus-

sian mixture model and hidden Markov model used for the feature

distributions, Section 3 presents the measures between feature dis-

tributions, and Section 4 the cross likelihood ratio test. Section 5

presents the simulations.

2. MODELS FOR ACOUSTIC FEATURES

In audio classification, the most commonly used acoustic features

are calculated in short (about 40 ms) frames, and they typically

characterize the shape of the short-time spectrum. Temporal in-

formation about the signal is commonly modeled using temporal

derivatives of the features or by specific models such as the hidden

Markov model. There are also features which carry information

about the whole signal such as the pause rate, but usually these

can be derived from statistical properties of frame-wise features.

At this point we do not commit ourselves to a certain set of fea-

tures, since the methods can be applied to any features which are

calculated in short intervals. Let us denote the set of features cal-

culated in frame t by vector xt, and the feature vector sequence of

a whole signal as matrix X =
ˆ

x1, . . . ,xT

˜

, T being the number

of frames. The distributions of the feature vectors are modeled by

Gaussian mixture models and their temporal evolution by hidden

Markov models. If a model is not too complex, we can estimate its

parameters from an individual audio signal.

The Gaussian mixture model (GMM) models the probability

distribution function of a feature vector as a weighted sum of mul-

tivariate normal distributions. Here λ denotes the whole parameter

set of a particular GMM, and p(x|λ) denotes the distribution pa-

rameterized by the GMM. The distribution of a whole signal is

typically obtained by assuming that the frames are statistically in-

dependent from each other, so that the frame-wise distributions
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can be multiplied. Also other methods for combining the frame-

wise probabilities have been used, but in our studies the statistical

independent assumption produced the best results. Thus, the dis-

tribution of a whole signal X can be written as

p(X; λ) =

T
Y

t=1

p(xt|λ). (1)

By assuming that the individual frames of a signal are indepen-

dent observations, we can train a GMM for a signal by fitting the

parameters to the observations using the expectation maximization

algorithm.

A hidden Markov model (HMM) consists of a set of states,

each of which has an individual probability distribution for pro-

ducing an observation. It enables modeling the temporal evolution

of signals by using a hidden state variable, which evolves over

time by changing from state to another. Here we use HMMs as

an extension to GMMs, and model the state emission probabilities

by GMMs. Provided that the number of states times the number

of Gaussians is significantly less than the number of frames, we

can train a HMM from one signal. For simplicity, we denote the

parameter set of a particular HMM also by λ.

The likelihood of an observation can be estimated by the ex-

pectation value over different state transition paths. In this study

we obtained better results by using the most likely state transition

path estimated by the Viterbi algorithm.

3. DISTRIBUTION DISSIMILARITY MEASURES

Measuring the difference between the feature distributions of two

signals has turned out to be an efficient way for measuring their

similarity. The earlier studies vector quantized the continuous-

valued feature vectors [8], and calculated the feature histograms,

after which any difference measure between the histograms could

be used. Quantizing feature vectors is a source of inaccuracy and

therefore several studies [4, 5, 7] have recently modeled continu-

ous distributions using GMMs and measured the similarity by their

congruence.

Given feature sequence matrices A and B of two signals, we

train their GMMs λa and λb, and denote the probability distribu-

tions as p(x|λa) and p(x|λb), respectively. In audio classification,

difference between the distributions has previously been measured

by the Kullback-Leibler divergence [4, 5] and the Euclidean dis-

tance [7], which are discussed in the following two sections.

3.1. Symmetric Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is an information theoreti-

cally motivated measure between two probability distributions. In

maximum likelihood classification where the task is to classify a

signal into a class, selecting the class which minimizes the KL di-

vergence between the observed feature distribution and the class

feature distribution is the maximum likelihood class estimate [9].

The divergence between distributions p(x|λa) and p(x|λb) is

defined as

D(p(x|λa)||p(x|λb)) =

Z

p(x|λa) log
p(x|λa)

p(x|λb)
dx. (2)

The divergence is not symmetric and it can therefore be symmetrized

by adding the term D(p(x|λb)||p(x|λa)). When p(x|λa) and

p(x|λb) are modeled using a single Gaussian distribution, the sym-

metric divergence can be solved in a closed form. When multiple

Gaussians are used, there are several approximations for the diver-

gence [10].

Monte-Carlo approximation calculates (2) by

D(p(x|λa)||p(x|λb)) ≈
1

R

R
X

r=1

log
p(xr|λa)

p(xr|λb)
, (3)

where the samples xr are drawn from distribution p(x|λa). An

accurate approximation requires a large number of samples and

is therefore computationally inefficient. Here we propose to use

the samples of the observation sequence A that were used to train

the distribution p(x|λa). We observe that the resulting empirical

Kullback-Leibler divergence Dempcan be written as

Demp(p(x|λa)||p(x|λb)) =
1

R
log

p(A|λa)

p(A|λb)
. (4)

Symmetric version of the above is obtained by adding the diver-

gence Demp(p(x|λb)||p(x|λa)). We assume that the lengths of

the signals are equal, so that we obtain a distance measure

E(A,B) =
1

R
log

p(A|λa)

p(A|λb)
+

1

R
log

p(B|λb)

p(B|λa)
. (5)

The lower the above measure, the more similar A and B are.

Reynolds et al. [2] denoted (5) as the symmetric Cross Entropy

distance.

3.2. Euclidean distance

Helén and Virtanen used the Euclidean distance between two dis-

tributions parameterized by diagonal-covariance GMMs to mea-

sure the dissimilarity [7]. Unlike the Kullback-Leibler divergence,

the exact Euclidean distance between GMMs can be calculated

in a closed form. The Euclidean distance between full-covariance

GMMs can be calculated by applying the method presented in [11]

to calculate the correlation between individual Gaussians and com-

bining them using the method presented in [7].

4. CROSS-LIKELIHOOD RATIO TEST

Especially in speech clustering and segmentation (see for exam-

ple [1, 2, 6]) the likelihood ratio test has been used to measure the

likelihood that two segments are spoken by the same speaker. The

test statistic is given as

L(A,B) =
p(A|λa)p(B|λb)

p(A|λab)p(B|λab)
, (6)

where λab is a model trained using both A and B.

Instead of the above measure, we use here a modified likeli-

hood ratio test given as

C(A,B) =
p(A|λa)p(B|λb)

p(A|λb)p(B|λa)
(7)

Here the divisor measures the likelihood that signal A is generated

by model λb and signal B is generated by model λa, whereas the

dividend acts as a normalization term which takes into account the

complexity of both signals.
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The measure (7) is used instead of (6) in our system since it

is is computationally significantly less expensive to calculate be-

cause it does not require training a model for signal combinations,

and it produced better results in the simulations. By taking the log-

arithm of (7) we end up with a measure which is identical, up to

a scalar multiplier R, to the measure (5). Therefore, the lower the

above measure, the more similar are A and B. In (6) and (7) we

can use either GMMs or HMMs to model the signals. Since the

likelihood is derived similarly for both models, we do not differ-

entiate between them but denote the model of signal A by λa and

the model of signal B by λb. The cross-likelihood ratio test (7) has

been previously used with GMMs in [1] and with HMMs in [12].

The measure (7) has a connection to maximum likelihood clas-

sification. If we consider each signal B as an individual class ωb,

the maximum likelihood classification principle classifies an ob-

servation A into the class having the highest conditional proba-

bility p(ωb|A). If we assume that each class has the same prior

probability, the likelihood of a class ωb is p(A|ωb). The likeli-

hood can be divided by a normalization term p(A|ωa) to obtain

p(A|ωb)/p(A|ωa). In similarity measurement we do “two-way”

classification where the likelihood of signal A belonging to class

ωb and the likelihood of signal B belonging to class ωa are mul-

tiplied. When each class ωa is parameterized by a model λa, this

results to the measure (7).

5. SIMULATIONS

We applied the proposed similarity measures in query-by-example,

where the purpose is to retrieve signals from a database which

are similar to a user-provided example. In the simulations two

query methods were tested. The first was k-nearest neighbor (k-

NN) query [13], which sorts the signals in order of similarity and

retrieves a fixed number of most similar signals to the user. The

other method was the ǫ-range query [13], where all signals having

higher similarity than a predetermined threshold ǫ are retrieved.

Simulations were carried out using an audio database of speech,

music, and environmental sounds. The total number of signals was

1332, each having the sampling rate 16 kHz. The signals were

manually annotated into 17 classes. The classes and the number

of signals in each class are listed in Table 1. The database con-

sists of three environmental noise classes (inside car, in restau-

rant, and traffic), one class of drum sequences, three music classes

(acoustic, electroacoustic, and symphony) taken from the RWC

database, three voice classes (humming, singing, and whistling),

and seven speech classes of individual speakers were taken from

the CMU Arctic speech database. The database is explained more

thoroughly in [14]. The classes were not used to train a classifier,

but in the evaluation two signals belonging to the same class were

considered to be similar. All the signals in the database are 10

seconds long random excerpts. Since the length of speech signals

in the CMU Arctic database are 2-4 seconds, the signals of each

speaker were concatenated to result in 10-second signals.

Each signal was divided into 46 ms frames with 50 % overlap

and the following features were extracted within each frame: mel-

frequency cepstral coefficients (three first coefficients, energy co-

efficient excluded), spectral spread, spectral centroid, spectral flux,

harmonic ratio, maximum autocorrelation lag, crest factor, noise-

likeness, total energy, and the variance of instantaneous power.

Each feature was normalized to have zero mean and unity vari-

ance over the whole database. Principal component analysis was

used to decorrelate the features.

Inside car (151) Speaker1 (50)

In restaurant (42) Speaker2 (47)

Traffic (38) Speaker3 (44)

Acoustic music (264) Speaker4 (40)

Drums (56) Speaker5 (47)

Electroacoustic music (249) Speaker6 (38)

Symphony music (51) Speaker7 (50)

Humming (52)

Singing (60)

Whistling (53)

Table 1: Classes and the number of signals in each class.

The methods tested in the simulations include the proposed

GMM and HMM cross-likelihood ratio tests, KL divergence be-

tween Gaussian distributions [5], the Euclidean distance between

GMMs [7], Mahalanobis distance [5], and the distance measure

[14], where perceptual audio coding and lossless compression of

the signals were used to obtain an information-theoretically moti-

vated similarity measure. We used 8 Gaussian components in the

GMMs, and 2 states and 8 Gaussians per each state in HMMs. The

both methods used diagonal covariance matrices.

5.1. Evaluation procedure

One signal at the time was drawn from the database to serve as

an example and the rest were considered as the database. The

similarity measure between the example and each database sig-

nal was calculated. The total number of similarity estimations in

test was therefore S(S−1), where S was the number of signals in

the database. After the similarities between the signals were mea-

sured, the most similar signals were retrieved either by the ǫ-range

query or by the k-NN query. A retrieved signal was considered

correct if it signal was from the same class as the example.

The results are presented here as a recall and precision rates.

Recall means how large portion of similar signals was found from

the database: recall = c/v, c being the number of correctly re-

trieved signals from the database and v the sum of all the signals

that would have been correct. Precision gives the portion of cor-

rect signals in all the retrieved signals: precision = c/r, r being

the total number of signals in the database that are retrieved from

the class when the example is drawn from that particular class.

5.2. Results

Recall and precision for ǫ-range query with different values of ǫ
are illustrated in Figure 1. When a small amount of signals is

retrieved (low recall / high precision) the HMM cross-likelihood

ratio test produces the best accuracy. On the other hand, when a

large amount of signals is retrieved (recall ≈ precision), the GMM

cross-likelihood ratio test provides the highest accuracy. The rea-

son for the difference between HMMs and GMMs might be that

on relatively similar signals HMMs are able to model temporal

similarities and therefore to improve the accuracy, whereas on sig-

nificantly different signals the use of the temporal structure only

disturbs the estimation. At large precision values the compression

based similarity measure works poorly. The results are different

from those presented in [14] since here we used a larger num-

ber of classes and the results are calculated in a slightly different

way. However, compression based method gives the best precision

when the recall is very high.
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Figure 1: Results of the ǫ-range query with varying ǫ.

Table 2 presents k-NN query results when the number of re-

trieved signals is 10. The cross-likelihood ratio tests results in

the highest precisions: 95.2% for HMMs and 94.7% for GMMs.

However, almost equally well performed the Euclidean distance of

GMMs with precision of 94.2%.

Similarity measure Precision %

HMM cross-likelihood ratio 95.2

GMM cross-likelihood ratio 94.7

Euc-GMM 94.2

Mahalanobis 93.2

KL-Gaussian 91.0

Compression 77.1

Table 2: Results of the k-NN query when the number of retrieved

samples was 10.

6. CONCLUSIONS

This paper proposed probabilistic model based measures for esti-

mating the similarity of two audio signals. All the methods pro-

posed in this paper are based on modeling the distributions of

acoustic features using GMMs or HMMs. We estimate the sim-

ilarity of the signals by the Kullback-Leibler divergence between

GMMs, which is approximated by evaluating the distributions at

points of the observed feature vectors. We also apply a cross-

likelihood ratio test which uses the likelihood of the first signal

being generated by the model of the second signal and vice versa.

The performance of the proposed methods in query-by-example

was tested using a database consisting of speech, music, and envi-

ronmental sounds. None of the tested measures is superior in com-

parison to the others, but on average the proposed methods enable

clearly better retrieval accuracy than the reference methods. The

HMM-based likelihood ratio test produces good accuracy espe-

cially when a small number of most similar samples is retrieved,

whereas the GMM-based likelihood ratio produces good results

when a large number of samples is retrieved.
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