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Abstract

Sound source separation refers to the task of estimating the signals produced
by individual sound sources from a complex acoustic mixture. It has several
applications, since monophonic signals can be processed more efficiently and
flexibly than polyphonic mixtures.

This thesis deals with the separation of monaural, or, one-channel music
recordings. We concentrate on separation methods, where the sources to be
separated are not known beforehand. Instead, the separation is enabled by uti-
lizing the common properties of real-world sound sources, which are their con-
tinuity, sparseness, and repetition in time and frequency, and their harmonic
spectral structures. One of the separation approaches taken here use unsuper-
vised learning and the other uses model-based inference based on sinusoidal
modeling.

Most of the existing unsupervised separation algorithms are based on a lin-
ear instantaneous signal model, where each frame of the input mixture signal is
modeled as a weighted sum of basis functions. We review the existing algorithms
which use independent component analysis, sparse coding, and non-negative ma-
trix factorization to estimate the basis functions from an input mixture signal.

Our proposed unsupervised separation algorithm based on the instantaneous
model combines non-negative matrix factorization with sparseness and temporal
continuity objectives. The algorithm is based on minimizing the reconstruction
error between the magnitude spectrogram of the observed signal and the model,
while restricting the basis functions and their gains to non-negative values, and
the gains to be sparse and continuous in time. In the minimization, we consider
iterative algorithms which are initialized with random values and updated so
that the value of the total objective cost function decreases at each iteration.
Both multiplicative update rules and a steepest descent algorithm are proposed
for this task. To improve the convergence of the projected steepest descent
algorithm, we propose an augmented divergence to measure the reconstruction
error. Simulation experiments on generated mixtures of pitched instruments
and drums were run to monitor the behavior of the proposed method. The
proposed method enables average signal-to-distortion ratio (SDR) of 7.3 dB,
which is higher than the SDRs obtained with the other tested methods based
on the instantaneous signal model.

To enable separating entities which correspond better to real-world sound ob-
jects, we propose two convolutive signal models which can be used to represent



time-varying spectra and fundamental frequencies. We propose unsupervised
learning algorithms extended from non-negative matrix factorization for esti-
mating the model parameters from a mixture signal. The objective in them is
to minimize the reconstruction error between the magnitude spectrogram of the
observed signal and the model while restricting the parameters to non-negative
values. Simulation experiments show that time-varying spectra enable better
separation quality of drum sounds, and time-varying frequencies representing
different fundamental frequency values of pitched instruments conveniently.

Another class of studied separation algorithms is based on the sinusoidal
model, where the periodic components of a signal are represented as the sum
of sinusoids with time-varying frequencies, amplitudes, and phases. The model
provides a good representation for pitched instrument sounds, and the robust-
ness of the parameter estimation is here increased by restricting the sinusoids
of each source to harmonic frequency relationships.

Our proposed separation algorithm based on sinusoidal modeling minimizes
the reconstruction error between the observed signal and the model. Since
the rough shape of spectrum of natural sounds is continuous as a function of
frequency, the amplitudes of overlapping overtones can be approximated by
interpolating from adjacent overtones, for which we propose several methods.
Simulation experiments on generated mixtures of pitched musical instruments
show that the proposed methods allow average SDR above 15 dB for two simul-
taneous sources, and the quality decreases gradually as the number of sources
increases.

ii



Preface

This work has been carried out at the Institute of Signal Processing, Tampere
University of Technology, during 2001-2006. I wish to express my deepest grat-
itude to my supervisor Professor Anssi Klapuri for guiding and encouraging me
in my research work. I would like to thank the past and present members of the
Audio Research Group, especially Jouni Paulus, Matti Ryyndnen, and Antti
Eronen, for creating an inspirational and relaxed atmosphere for our work. I
also would like to thank my former supervisor Professor Jaakko Astola and
other staff of the Institute of Signal Processing, whose work has resulted in an
excellent environment for research.

Several people have reviewed parts of this thesis during the writing process,
and their comments have helped me improve the thesis. In addition to my
colleagues, I wish to thank Manuel Davy, Derry FitzGerald, Michael Casey, the
peer reviewers of my journal manuscripts, and the preliminary assessors of the
thesis, Prof. Vesa Véaliméaki and Prof. Dan Ellis.

The financial support provided by Tampere Graduate School in Informa-
tion Science and Engineering, Nokia Foundation, and Academy of Finland is
gratefully acknowledged.

I wish to thank my parents for their support in all my efforts. My warmest
thanks go to my love Virpi, who has helped me carry on the sometimes hard
process of completing this thesis.

iii



Contents

Abstract i
Preface iii
Contents iv
List of Acronyms vii
1 Introduction 1
1.1 Problem Definition . . . . . . ... ... .. oL 2
1.2 Applications . . . . . . .. 3
1.3 Approaches to One-Channel Sound Source Separation . . . . . . 4
1.4 Signal Representations . . . . . . ... ... ... .. ... 6
1.5 Quality Evaluation . . . . . ... ... ... 0oL 10
1.6 Outline and main results of the thesis . . .. ... .. ... ... 12

2 Overview of Unsupervised Learning Methods for Source Sepa-

ration 13
2.1 Linear Signal Model . . . ... ... .. ... ... ... 14
2.1.1 Basis Functions and Gains . . . . . . ... ... ... ... 14
2.1.2 Data Representation . . . . . ... ... ... .. ..... 17
2.2 Independent Component Analysis. . . . . . ... ... ... ... 19
2.2.1 Independent Subspace Analysis . . . . . .. .. ... ... 21
2.2.2 Non-Negativity Restrictions . . . . . ... ... ... ... 22
2.3 Sparse Coding . . . . . . ... 23
2.4 Non-Negative Matrix Factorization . . . . . .. .. ... .. ... 26
2.5 Prior Information about Sources . . . . ... ... ... ... 29
2.6 Further Processing of the Components . . . . . .. .. ... ... 31
2.6.1 Associating Components with Sources . . . . ... .. .. 31
2.6.2 Extraction of Musical Information . . . .. ... ... .. 32
2.6.3 Synthesis . . . ... ... o 33

iv



3 Non-Negative Matrix Factorization with Temporal Continuity

and Sparseness Criteria 34
3.1 Signal Model . . ... ... ... ... 34
3.1.1 Reconstruction Error Function . . ... .. ... .. ... 35
3.1.2 Temporal Continuity Criterion . . . ... ... ... ... 36
3.1.3 Sparseness Objective . . . . . . . . ... ... ... .... 38
3.2 Estimation Algorithm . . . . ... ... .. ... ... ...... 39
3.3 Simulation Experiments . . . . .. ... ... oo 42
3.3.1 Acoustic Material . . ... ... ... ... ... ... .. 42
3.3.2 Tested Algorithms . . . .. ... ... ... ........ 43
3.3.3 Evaluation Procedure . ... ... ... .......... 44
3.34 Results . ... .. ... 45
4 Time-Varying Components 49
4.1 Time-Varying Spectra . . . . . . . . .. . ... .. ... .. ... 49
4.1.1 Estimation Algorithms . . . . . . ... ... ... ..... 53
4.1.2 Simulation Experiments . . . . ... ... ... ... ... 59
4.2 Time-Varying Fundamental Frequencies . . . . .. ... ... .. 57
4.2.1 Estimation Algorithm . . .. ... ... ... ....... 60
4.3 Dualism of the Time-Varying Models . . . . . . . ... ... ... 62
4.4 Combining the Time-Varying Models . . . . . . . ... ... ... 63
5 Overview of Sound Separation Methods Based on Sinusoidal
Modeling 66
5.1 Signal Model . . . .. ... .. ... 66
5.2 Separation Approaches . . . . . . . . .. ... L. 68
5.2.1 Grouping . . . . . ... 68
5.2.2 Joint Estimation . . . . ... ... ... ... ... .. 69
5.2.3 Fundamental Frequency Driven Estimation . . .. .. .. 70
5.2.4 Comb Filtering . . . . . ... ... ... ... ... 70
5.3 Resolving Overlapping Overtones . . . . . . .. . ... ... ... 71
6 Proposed Separation Method Based on Sinusoidal Modeling 73
6.1 Formulation in the Frequency Domain . . . . ... .. ... ... 75
6.2 Phase Estimation . . . . . .. ... ... ... ... ... .. 76
6.3 Amplitude Estimation . . . . ... ... ... ... ........ 78
6.3.1 Least-Squares Solution of Overlapping Components . . . 79
6.4 Frequency Estimation . . . .. ... ... .. ... ... 86
6.5 Combining Separated Sinusoids into Notes . . . . . . . ... . .. 89
6.6 Simulation Experiments . . . . . . ... ... ... ... 90
6.6.1 Acoustic Material . . ... .. ... ... ... ... ... 91
6.6.2 Algorithms . . . . .. ... ... ... ... .. 91
6.6.3 Evaluation of the Separation Quality . . . . . . . ... .. 92
6.6.4 Results . ... ... .. .. 93



7 Conclusions

7.1 Unsupervised Learning Algorithms . . . . ... ... ... .. ..

7.2 Sinusoidal Modeling . . . .
7.3 Discussion and Future Work

A Convergence Proofs of the Update Rules

A.1 Augmented Divergence . . .
A.2 Convolutive Model . . . . .
A.2.1 Event Spectrograms
A.2.2 Time-Varying Gains

B Simulation Results of Sinusoidal Modeling Algorithms

Bibliography

vi

99
99
101
101

103
103
105
105
106

108

110



List of Acronyms

AAC
DFT
ICA
IDFT
ISA
HMM
LPC
MAP
MFCC
MFFE
MIDI
MLE
MPEG
NLS
NMD
NMF
PCA
SDR
STFT
SVD
SVM

Advanced Audio Coding

discrete Fourier transform
independent component analysis
inverse discrete Fourier transform
independent subspace analysis
hidden Markov model

linear prediction coding

maximum a posteriori
Mel-frequency cepstral coefficient
multiple fundamental frequency estimator
Musical Instrument Digital Interface
maximum likelihood estimator
Moving Picture Experts Group
non-negative least squares
non-negative matrix deconvolution
non-negative matrix factorization
principal component analysis
signal-to-distortion ratio
short-time Fourier transform
singular value decomposition
support vector machine

vii



Chapter 1

Introduction

Computational analysis of audio signals where multiple sources are present is a
challenging problem. The acoustic signals of the sources mix, and the estimation
of an individual source is disturbed by other co-occurring sounds. This could be
solved by using methods which separate the signals of individual sources from
each other, which is defined as sound source separation.

There are many signal processing tasks where sound source separation could
be utilized, but the performance of the existing algorithms is quite limited com-
pared to the human auditory system, for example. Human listeners are able
to perceive individual sources in complex mixtures with ease, and several sep-
aration algorithms have been proposed that are based on modeling the source
segregation ability in humans.

A recording done with multiple microphones enables techniques which use
the spatial location of the source in the separation [46,177], which often makes
the separation task easier. However, often only a single-channel recording is
available, and for example music is usually distributed in stereo (two-channel)
format, which is not sufficient for spatial location based separation except only
in few trivial cases.

This thesis deals with the source separation of one-channel music signals.
We concentrate on separation methods which do not use source-specific prior
knowledge, i.e., they are not trained for a specific source. Instead, we try to find
general properties of music signals which enable the separation. Two different
separation strategies are studied. First, the temporal continuity and redundancy
of the musical sources is used to design unsupervised learning algorithms to
learn the sources from a long segment of an audio signal. Second, the harmonic
spectral structure of pitched musical instruments is used to design a parametric
model based on a sinusoidal representation, which enables model-based inference
in the estimation of the sources in short audio segments.



1.1 Problem Definition

When several sound sources are present simultaneously, the acoustic waveform
x(n) of the observed time-domain signal is the superposition of the source signals
Sm(n):

M
z(n) = Zsm(n), n=1,...,N (1.1)

m=1

where s,, is the m!" source signal at time n, and M is the number of sources.

Sound source separation is defined as the task of recovering one or more
source signals s,,(n) from x(n). Some algorithms concentrate on separating only
a single source, whereas some try to separate them all. The term segregation
has also been used as a synonym for separation.

A complication with the above definition is that there does not exist a unique
definition for a sound source. One possibility is to consider each vibrating
physical entity, for example each musical instrument, as a sound source. Another
option is to define this according to what humans tend to perceive as a single
source: for example, if a violin section plays in unison,! the violins are perceived
as a single source, and usually there is no need to separate their signals from
each other. In [93, pp. 302-303], these two alternatives are referred to as
physical sound and perceptual sound, respectively. Here we do not specifically
commit ourselves to either of these. Usually the type of the separated sources
is determined by the properties of the algorithm used, and this can be partly
affected by the designer according to the application at hand.

In some separation applications, prior information about the sources may be
available. For example, the source instruments can be defined manually by the
user, and in this case it is usually advantageous to optimize the algorithm by
using training signals where each instrument is present in isolation.

In general, source separation without prior knowledge of the sources is re-
ferred to as blind source separation [77, pp. 2-4], [86, pp. 3-6]. Since the work
in this thesis uses prior knowledge of the properties of music signals, the term
blind is not used here. In the most difficult blind source separation problems
even the number of sources is unknown.

Since the objective in the separation is to estimate several source signals from
one input signal, the problem is underdetermined if there are no assumptions
made about the signals. When there is no source-specific prior knowledge, the
assumption can be for example that the sources are statistically independent, or
that certain source statistics (for example the power spectra) do not change over
time. It is not not known what are the sufficient requirements and conditions to
enable their estimation; it is likely that in a general case we cannot separate the
exact time-domain signals, but only achieve extraction of some source features.
Part of this process is calculating a representation of the signal, where the
important features for the application at hand are retained, and unnecessary
information is discarded. For example, many of the unsupervised algorithms

1Unison is a musical term which means that instruments play the same pitch.



discussed in Chapter 2 operate on magnitude spectrograms, and are not able to
estimate phases of the signals. The human audio perception can also be modeled
as a process, where features are extracted from each source within a mixture,
or, as “understanding without separation” [153]. Different representations are
discussed in more detail in Section 1.4.

1.2 Applications

In most audio applications, applying some processing only to a certain source
within a polyphonic mixture is virtually impossible. This creates a need for
source separation methods, which first separate the mixture into sources, and
then process the separated sources individually. Separation of sound sources
has suggested to have applications, for example, in audio coding, analysis, and
manipulation of audio signals.

Audio coding General-purpose audio codecs are typically based on percep-
tual audio coding, meaning that the objective is to quantize the signal so that
the quantization errors are inaudible. Contrary to this, source coding aims at
data reduction by utilizing redundancies in the data. Existing perceptual audio
codecs enable a decent quality with all material, but source coding algorithms
(particularly speech codecs) enable this by a much lower bit rate. While ex-
isting methods encode a polyphonic signal with a single stream, separating it
into sources and then encoding each of them with a specific source codec could
enable a higher coding efficiency and flexibility.

MPEG-4 [88,137] is a state-of-the art audio and video coding standard by
Moving Picture Experts Group (MPEG). Earlier MPEG standards are currently
widely used in several consumer formats, for example mp3, DVD, and digital
television. MPEG-4 includes two speech codecs [126,127], both of which use
a source model where the excitation by vocal cords and the filtering by the
vocal track are modeled separately. For general audio coding it uses Advanced
Audio Coding (AAC) [87], which is a perceptual audio codec. For low bit rates
MPEG-4 uses a parametric codec [141], which represents the signal as a sum of
individual sinusoids, harmonic tones, and noise. The representation of harmonic
tones is similar to the representation used in the separation algorithm proposed
in Chapter 6. Since the quality of existing separation algorithms is not sufficient
for separating sources from complex polyphonic signals, material for MPEG-4
has to be produced so that each source is recorded as an individual track, so
that separation is not needed.

Object-based coding refers to a technique where a signal is separated into
sound objects, for example individual tones. This can be accomplished for exam-
ple by grouping the elements of a parametric representation [183]. Object-based
sound source modeling [174] aims at modeling the phenomenon, for example
the musical instrument, that generated each object. This can be utilized in
audio coding by transmitting only the estimated parameters, and synthesizing
the sounds in the decoder. This is implemented in the MPEG-4 standard as



“Structured Audio” component [152], and the standard includes also a format
for coding object-based audio scenes [160].

Analysis The analysis of polyphonic signals is difficult, since co-occurring
sounds disturb the estimation. One approach towards solving this is to apply
separation as a preprocessing step, and then analyze the separated signals. For
example, fundamental frequency estimation of a separated monophonic instru-
ment is a relatively easy task compared to the multiple fundamental frequency
estimation of polyphonic music. Some of the methods presented in this thesis
have already been applied successfully in automatic music transcription [136].

Manipulation Separation enables more efficient manipulation of music sig-
nals. A source can be removed, moved in time, or otherwise edited indepen-
dently of the other sources. For example, material for music rehearsals and
performances or karaoke applications could be produced by removing certain
instruments or vocals from an existing recording. Currently these changes can
be done only in the production stage where the unmixed signals for each sources
are available. Processing of mixed signal with the existing tools enables only
processing where a certain change is applied on all the concurrent sources.

Separation can also be viewed as noise suppression, where unwanted sources
are separated and removed. A potential application of this is audio restora-
tion [50], which aims at enhancing the quality of old recordings.

1.3 Approaches to One-Channel Sound Source
Separation

The first works on one-channel sound source separation concentrated on the
separation of speech signals [112,134,142,202]. In the recent years, the analysis
and processing of music signals has received an increasing amount of atten-
tion, which has also resulted in rapid development in music signal separation
techniques.

Music is in some senses more challenging to separate than speech. Musical
instruments have a wide range of sound production mechanisms, and the result-
ing signals have a wide range of spectral and temporal characteristics. Unlike
speakers, who tend to pause when other speakers talk, sources constituting a
musical piece often play simultaneously, and favor consonant pitch intervals.
This increases the overlap of the sources significantly in a time-frequency do-
main, complicating their separation (see also Sections 1.4 and 5.3). Even though
the acoustic signals are produced independently in each source, it is their con-
sonance and interplay which makes up the music. This results in source signals
which depend on each other, which may cause some separation criteria, such as
statistical independence to fail.

Approaches used in one-channel sound source separation which do not use
source-specific prior knowledge can be roughly divided into three categories,



which are model-based inference, unsupervised learning, and psychoacoustically
motivated methods, which are shortly discussed as follows. In practice, many
algorithms use principles from more than one category.

Model-based inference The methods in this category use a parametric
model of the sources to be separated, and the model parameters are estimated
from the observed mixture signal. Implicit prior information can be used to
design deterministic, rule-based algorithms for the parameter estimation (for
example [53,119,142]), or Bayesian estimation (for example [31,38,55]) can be
used when the prior information is defined explicitly using probability density
functions.

In music applications, the most commonly used parametric model is the
sinusoidal model, which is discussed in more detail in Chapter 5. The model
easily enables the prior information of harmonic spectral structure, which makes
it most suitable for the separation of pitched musical instruments and voiced
speech.

Unsupervised learning Unsupervised learning methods usually apply a sim-
ple non-parametric model, and use less prior information of the sources. Instead,
they aim at learning the source characteristics from the data. The algorithms
can apply information-theoretical principles, such as statistical independence be-
tween sources. Reducing the redundancy in the data has turned out to produce
representations where the sources are present in isolation. Algorithms which
are used to estimate the sources are based on independent component anal-
ysis (ICA), non-negative matrix factorization, and sparse coding. Chapter 2
introduces these algorithms and presents an overview of unsupervised learning
methods in one-channel sound source separation. Our proposed unsupervised
algorithms are described in Chapters 3 and 4.

Psychoacoustically motivated methods The cognitive ability of humans
to perceive and recognize individual sound sources in a mixture referred to as
auditory scene analysis [22]. Computational models of this function typically
consist of two main stages so that an incoming signal is first decomposed into
its elementary time-frequency components and these are then organized to their
respective sound sources. Bregman [22] listed the following association cues in
the organization:
1. Spectral proximity (closeness in time or frequency)
2. Harmonic concordance
3. Synchronous changes of the components: a) common onset, b) common
offset, ¢) common amplitude modulation, d) common frequency modula-
tion, e) equidirectional movement in the spectrum
4. Spatial proximity
These association cues have been used by several researchers [34,47] to develop
sound source separation algorithms. Later there has been criticism that the
grouping rules can only describe the functioning the human hearing in simple



cases [163, p. 17], and robust separation of complex audio signals using them is
difficult.

It is probable that the human auditory system uses both innate and learned
principles in the separation [22, pp. 38-39], and the physiology of human periph-
eral auditory system explains some of the low-level innate mechanisms [204, p.
20], [40]. Even though also many higher-level segregation mechanisms can be
assumed to be innate, the exact effect of learning is not known [22].

Even though our brain does not resynthesize the acoustic waveforms of each
source separately, the human auditory system is a useful reference in the de-
velopment of one-channel sound source separation systems, since it is the only
existing system which can robustly separate sound sources in various circum-
stances.

Multi-channel methods Contrary to one-channel separation, multi-channel
methods use recordings with multiple microphones placed at different positions.
The main advantage of this is the availability of spatial information, which usu-
ally enables better separation quality than one-channel separation algorithms.
When the acoustic sound waves travel from each source to each microphone,
each source is delayed and attenuated, or filtered, differently. This enables re-
covering the sources by acoustic beamforming [46, pp. 293-311], or by blind
separation of convolutive mixtures [177].

Acoustic beamforming attenuates or boosts a source signal depending on
its direction of arrival, and the performance depends directly on the number of
microphones. Blind separation of convolutive mixtures inverses the filtering and
mixing process using algorithms extended from ICA. It enables theoretically
a perfect separation when the number of microphones is equal to or larger
than the number of sources. In practice, however, the movement of sources or
microphones, or additional noise reduce the quality [176].

In the case of music signals, the one-channel separation principles have also
been integrated into the multichannel separation framework, and this often in-
creases the separation quality [59,181,196,197,205]. In the case of produced
music, modeling the contribution of a source signal within a mixture by filter-
ing with a fixed linear filter may not be valid, since at the production stage,
nonlinear effects are often applied on the mixture signal.

1.4 Signal Representations

The most common digital representation of an acoustic signal is the sampled
waveform, where each sample describes the sound pressure level of the signal
at a particular time (see Fig. 1.1). Even though this representation allows
many basic audio signal processing operations, it is not directly suitable for
some more difficult tasks, such as separation. Therefore, the input signal is
often represented using a so-called mid-level representation. As the word “to
represent” suggest, the motivation for this is to bring out more clearly the



important characteristics of the signal for the application in hand. Different
representations are illustrated in Figure 1.1.

Time-frequency representations Most methods use a time-frequency rep-
resentation, where the input signal is divided into short frames (typically 10 -
100 ms in audio applications), windowed, and a frequency transform (typically
the discrete Fourier transform, DFT, [21, pp. 356-384]) of each frame is taken.
The frequency transform of a single frame is denoted by spectrum, and the mag-
nitude of its each coefficient shows the energy at a particular frequency. The
term spectrogram is used to denote the whole time-frequency representation,
where the temporal locations of the frames determine the time axis.

Many perceptually important characteristics of a sound are determined by
its spectrum [72], and also the human auditory system is known to perform
frequency analysis of a certain kind [146, pp. 69-73]. The rough spectral energy
distribution brings out the formant structure of a sound, which is unique for
each instrument, and therefore an important cue in its identification. Spectral
fine structure, on the other hand, reveals the vibration modes of the sound,
which are often in harmonic relationships. This results in a clearly perceived
pitch, which is a basis for tonal music. Most sounds contain also time-varying
characteristics, which are represented by the time-varying spectrum.

Adaptive bases The short-time Fourier transform (STFT) represents each
frame of an input signal as weighted sum of fixed basis functions, which are
sinusoids and cosines of different frequencies. The basis functions can be as
well estimated from the data. Ideally, the basis functions capture redundant
characteristics of the data and therefore reduce the number of required basis
functions. Algorithms that have been used to estimate the basis functions in-
clude, for example, independent component analysis [1] and various matching
pursuit methods [35].

We can also first apply STFT and discard phases to obtain a phase-invariant
representation. This can be further analyzed to obtain phase-invariant basis
functions, each of which typically corresponds to a musically meaningful entity,
for example an individual tone. These methods are discussed in more detail in
Chapters 2 and 3.

Sparse representations Time-frequency representations of natural sounds
typically have sparse distributions [10], meaning that most of the coefficients
are approximately zero. Also the term compact has been used as a synonym for
sparse [66, pp. 6-9]. The sparseness provides a good basis for separation: since
only a few coefficients are non-zero, it is unlikely that two or more independent
sources have a large coefficient in the same time-frequency point. Thus, estimat-
ing the most dominant source in each time-frequency point and then assigning
all the energy at that point to the source often produces tolerable results. This
separation method can be viewed as multiplication of the mixture spectrogram
by a binary mask for each source. The binary masks can be estimated using all
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Figure 1.1: Representations of an acoustic signal of piano tone F5. On the left-
hand column, the upper panel (a) shows the time-domain signal, the middle
panel (b) a short excerpt of the same signal, so that individual samples can
be seen, and (c) the amplitude spectrum of the signal. The right-hand column
illustrates the spectrogram of the signal by different representations. The grey-
scale spectrogram (d) illustrates the magnitude at each time-frequency point.
The middle panel (e) shows the frequencies of a sinusoidal representation, where
each partial is modeled using a sinusoidal trajectory. The bottom panel (f) shows
active time-frequency points of a sparse representation, where only 2% of the
original coefficients are active.



the principles described above, i.e., psychoacoustic [83], machine learning [147],
or model-based [52] approaches. The quality can be further improved by using
soft masks [144].

In the case of music signals, however, different instruments are more likely
to have non-zero coefficients in the same time-frequency point. Most musical
styles favor consonant intervals between different instruments, so that the ratio
of their fundamental frequencies is a ratio of small integers, and therefore many
of their vibrating modes have approximately equal frequencies. Furthermore,
rhythmic congruity causes the activities to be temporally aligned. This results
in a spectrum where a relatively large number of coefficients are active simul-
taneously. This makes the separation of music signals more challenging than
speech separation.

Pitched musical instruments (and also speech) have typically either a con-
tinuous periodic excitation or damping of their harmonic modes is relatively
slow, so that the coefficients corresponding to harmonic modes are temporally
continuous. In the framework of sparse representations, the temporal continuity
or harmonic relationships can be used to group the coefficients, which results in
structured sparse representations [168]. These have been used, for example, in
audio coding [36].

Parametric models Sparseness can also be used to develop parametric mod-
els for time-domain signals. The sinusoidal model used in Chapters 5 and
6 groups temporal trajectories of active frequency components into sinusoidal
trajectories, which are parameterized by time-varying frequencies, amplitudes
and phases. A more detailed explanation of the sinusoidal model is given in
Chapter 5. Other parametric models for music signal include, for example, the
transient model proposed by Verma [180, pp. 57-70].

The sinusoidal model, adaptive bases, and structured sparse representations
fulfill most of the desirable properties of a mid-level representation suggested by
Ellis in [49]: the representations are invertible so that an approximation of the
original signals can be regenerated from them, they have a reduced number of
components compared with the number of original samples, and each component
is likely to represent a single sound source, to some degree.

Auditory mid-level representations Auditory mid-level representations,
which model the signal processing of the human auditory system, received a lot
of attention in the early research [49]. Tt can be assumed that by mimicking
the human auditory system one could achieve the sound separation ability of
humans. However, the exact mechanisms of higher-level signal processing which
take place in the brain are not known. Therefore, this approach cannot be used
to design an entire separation algorithm; however, it has been shown that the
lower-level processing already accounts for some separation [40].

The signal processing of the peripheral auditory system can be modeled as
a filter bank [203, pp. 43-44], followed by a cascade of half-wave rectification



and low-pass filtering of the subband signals, which accounts roughly to the
mechanical-neural transduction of hair cell [122]. Later stages often include a
periodicity analysis mechanism such as autocorrelation, but the exact mecha-
nisms of this stage are not known. This processing leads to a three-dimensional
correlogram, which represents the signal intensity as a function of time, fre-
quency (filter bank channel), and autocorrelation lag. Many algorithms sum
the channel-wise autocorrelations to result in a summary autocorrelation func-
tion, which provides a good basis for pitch estimation [122].

1.5 Quality Evaluation

A necessary condition for the development of source separation algorithms is the
ability to measure the goodness of the results. In general, the separation quality
can be measured by comparing separated signals with reference sources, or by
listening to the separated signals. Reliable listening tests require a large number
of listeners, and are therefore slow to conduct and expensive. Therefore, formal
listening test have usually not been used in the quality evaluation of sound
source separation algorithms, but objective computational measures are used.

In practice, quantitative evaluation of the separation quality requires that
reference signals, i.e., the original signals before mixing, are available. Commer-
cial music is usually produced so that instruments are recorded on individual
tracks, which are later mixed. When target sources are individual instruments,
these tracks could be used as references; however, this material is usually not
available. Moreover, the mastering stage in music production often includes
nonlinear effects on the mixture signal, so that the reference signals do not
equal to the signals within the mixture any longer.

Many separation algorithms aim at separating individual tones of each in-
strument. Reference material where the tones are presented in isolation is dif-
ficult to record, and therefore synthesized material is often used. Generating
test signals for this purpose is not a trivial task. For example, material gener-
ated using a software synthesizer may produce misleading results, since many
synthesizers produce tones which are identical at each repetition.

The evaluation of an unsupervised learning based source separation system
is especially difficult. Objective evaluation requires that reference sources are
available, and results obtained with a set of reference signals are often used to
develop the system. In practice this results in optimizing the system to a certain
target material, making the system less “unsupervised”. Furthermore, when it
is not known which separated signal corresponds to which reference source, there
has to be a method to associate the separated signals to their references. This
can be done for example using the similarity between separated signals and
the references, which again makes the the system less “unsupervised”. These
difficulties have also been discussed from a multi-channel blind source separation
point of view in [156].

In the following, we shortly discuss some commonly used objective quality
measures, which are here divided into three categories: low-level, perceptual,
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and application-specific measures.

Low-level measures Low-level measures are simple statistics of the sepa-
rated and reference signals. Many authors have used the signal-to-distortion
ratio (SDR) as a measure to summarize the quality. It is the ratio of the ener-
gies of the reference signal and the error between the separated and reference
signal, defined in decibels as

SDR [dB] = 10108, 3~ 2 5(n)” (1.2)

[5(n) = s(n)]*’

where s(n) is a reference signal of the source before mixing, and §(n) is the
separated signal. In the separation of music signals, Jang and Lee [90] reported
average SDR of 9.6 dB for an algorithm which trains basis functions separately
for each source. Helén and Virtanen [79] reported average SDR of 6.4 dB for
their algorithm in the separation of drums and polyphonic harmonic track. Also
the terms signal-to-noise or signal-to-residual ratio have often been used to refer
to the SDR.

A simple objective measure which is perceptually more plausible is the seg-
mental signal-to-distortion ratio [123], which is calculated as the average of
frame-wise SDR’s. Unlike the normal SDR, it takes into account the fact that
errors in low-intensity segments are usually more easily perceived. The seg-
mental SDR has often been used to measure the subjective quality of speech.
Additional low-level performance measures for audio source separation tasks
have been discussed, e.g., by Vincent et al. in [182]. For example, they mea-
sured the interference from other sources by the correlation of the separated
signal to the other references.

Perceptual measures Perceptual measures in general estimate the audibility
of the separation errors. Typically these process the reference and separated
signal using an auditory model, and the difference between signals is calculated
in the auditory domain [11-13]. Most perceptual measures are developed for
the quality evaluation of coded speech and audio. They have usually been
optimized for signals where the differences between the reference and target are
caused by quantization. Therefore, they may produce misleading results when
applied on separated signals, since typical errors in sound source separation are
deletions, where a segment of a signal is an all-zero signal, and insertions, where
separated signal contains interference from another sources, even though the
reference signal is all-zero.

Application-specific measures In application-specific measures the separa-
tion accuracy is judged by the performance of the final application. For example,
when the separation is used as preprocessing in a speech recognition system, the
performance can be measured by the word-error rate [48], or when separation is
used as preprocessing in automatic music transcription, the performance can be
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measured by the transcription accuracy [136]. Unlike the low-level and percep-
tual measures, application-specific measures do not necessarily require reference
signals.

1.6 Outline and main results of the thesis

The thesis outline is as follows: Chapter 2 gives an overview of unsupervised
learning algorithms for sound source separation, which are a major class of
methods applied in this thesis. Chapters 3 and 4 propose two unsupervised
learning algorithms based on an instantaneous model and a convolutive model,
respectively. Chapter 5 discusses a parametric sinusoidal model, which is used
in the separation algorithm proposed in Chapter 6.

The original contributions of this thesis were published partly previously
in [189-191,193-195].2 The author has also published other results related to
the thesis in [185,186,188,192]. In addition, the research work has resulted in the
collaborative publications [78,79,103,104,135,136,161]. The articles published
in conference proceedings are available at http://www.cs.tut.fi/~tuomasv/
in pdf format.

The main contributions of this thesis are the following:

e A unifying framework for the existing unsupervised learning algorithms
based on the linear instantaneous model.

e A separation algorithm which combines non-negative matrix factorization
with sparse coding and temporal continuity objectives. This includes a
simple and efficient temporal continuity objective which increases the sep-
aration quality, and an augmented divergence objective, which is makes
the optimization feasible with the projected steepest descent algorithm.

e A convolutive signal model which enables representing time-varying spec-
tra and fundamental frequencies, and estimation algorithms which are
based on minimization of the Euclidean distance or divergence with non-
negativity restrictions.

e A separation algorithm based on a sinusoidal model, which includes a
computationally efficient parameter estimation framework. This includes
several methods for estimating overlapping harmonic partials by interpo-
lating from the adjacent partials.

2The material from [193] is adapted to this thesis with kind permission, ©2006 Springer
Science and Business Media LLC.
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Chapter 2

Overview of Unsupervised
Learning Methods for
Source Separation

This chapter gives an overview of the existing unsupervised learning methods
which have proven to produce applicable separation results in the case of music
signals. Instead of sophisticated modeling of the source characteristics or the hu-
man auditory perception, they try to separate and learn source signal structures
in mixed data based on information-theoretical principles, such as statistical in-
dependence between sources. Algorithms which implement the learning are
independent component analysis (ICA), sparse coding, and non-negative matriz
factorization (NMF), which have been recently used in machine learning tasks
in several application areas. Although the motivation of unsupervised learning
algorithms is not in the human auditory perception, they can lead to similar
processing. For example, all the unsupervised learning methods discussed here
lead to reducing redundancy in data, and it has been found that redundancy
reduction takes place in the auditory pathway, too [32].

All the algorithms mentioned above (ICA, sparse coding, and NMF) can
be formulated using a linear signal model which is explained in Section 2.1.
When used for monaural audio source separation, these algorithms usually fac-
torize the spectrogram or other short-time representation of the input signal
into elementary components. Different data representations in this framework
are discussed in Section 2.1.2 and estimation criteria and algorithms are dis-
cussed in Sections 2.2, 2.3, and 2.4. Methods for obtaining and utilizing prior
information are presented in Section 2.5. Once the input signal is factorized into
components, the components can be clustered into sources, analyzed to obtain
musically important information, or synthesized, as discussed in Section 2.6.
The described algorithms are evaluated and compared in Section 3.3.3 in the
next chapter.
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2.1 Linear Signal Model

When several sound sources are present simultaneously, the acoustic waveform
of the mixture signal is a linear superposition of the source waveforms. Many
unsupervised learning algorithms, for example the standard ICA, require that
the number of sensors is larger or equal to the number of sources in order that
the separation be possible. In multichannel sound separation, this means that
there should be at least as many microphones as there are sources. However,
automatic transcription of music usually aims at finding the notes in monaural
(or stereo) signals, for which basic ICA methods cannot be used directly. By
using a suitable signal representation, the methods become applicable with one-
channel data.

The most common representation of monaural signals is based on short-time
signal processing, in which the input signal is divided into (possibly overlapping)
frames. Frame sizes between 20 and 100 ms are typical in systems which aim
at the separation of musical signals. Some systems operate directly on time-
domain signals and some others take a frequency transform, for example the
DFT of each frame.

2.1.1 Basis Functions and Gains

The representation of the input signal within each frame ¢t = 1...T is denoted
by an observation vector x;. The methods discussed in this chapter model x;
as a weighted sum of basis functions b;, 7 = 1...J, so that the signal model %,
can be written as

J
% =Y gib; t=1,...T, (2.1)
j=1

where J is the number of basis functions, and g;; is the gain of the 4t basis
function in the t'* frame. Some methods estimate both the basis functions and
the time-varying gains from a mixed input signal, whereas others use pre-trained
basis functions or some prior information about the gains.

The term component refers to one basis function together with its time-
varying gain. Each sound source is modeled as a sum of one or more components,
so that the model for source m in frame t is written as

Ymi= D gjibj, (2.2)
JESm

where S, is the set of components within source m. The sets are disjoint, i.e.,
each component belongs to one source only.

An observation matriz X = [Xl,XQ, . ,XT] is used to represent the ob-
servations within 7" frames. The model (2.1) can be written in a matrix form
as

X =BG, (2.3)

where B = [bl,bg,...,bj] is the basis matriz, and [Gl;+ = g, is the gain
matriz. The notation [G];; is used to denote the (j,¢)*™® entry of matrix G.
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Figure 2.1: Spectrogram of a signal which consist of a diatonic scale from C5 to
C6, followed by a C major chord (simultaneous tones C5, E4, and G5), played
by an acoustic guitar. The tones are not damped, meaning that consecutive
tones overlap with each other.

The estimation algorithms can be used with several data representations.
Often the absolute values of the DFT are used, which is referred to as mag-
nitude spectrum in the following. In this case, x; is the magnitude spectrum
within frame ¢, and each component j has a fixed magnitude spectrum b; with
a time-varying gain g;,. The observation matrix consisting of frame-wise mag-
nitude spectra is here called a magnitude spectrogram. Other representations
are discussed in Section 2.1.2.

The model (2.1) is flexible in the sense that it is suitable for representing both
harmonic and percussive sounds. It has been successfully used in the transcrip-
tion of drum patterns [58,136], in the pitch estimation of speech signals [159],
and in the analysis of polyphonic music signals [4,18,30,115,166,178,184,189].

Fig. 2.1 shows an example signal which consists of a diatonic scale and a
C major chord played by an acoustic guitar. The signal was separated into
components using the NMF algorithm that will be described in Section 2.4, and
the resulting components are depicted in Fig. 2.2. Each component corresponds
roughly to one fundamental frequency: the basis functions are approximately
harmonic spectra and the time-varying gains follow the amplitude envelopes of
the tones. The separation is not perfect because of estimation inaccuracies. For
example, in some cases the gain of a decaying tone drops to zero when a new
tone begins.

Factorization of the spectrogram into components with a fixed spectrum and
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Figure 2.2: Components estimated from the example signal in Fig. 2.1. Basis
functions are plotted on the right and the corresponding time-varying gains on
the left. Each component except the undermost one corresponds to an indi-
vidual pitch value and the gains follow roughly the amplitude envelope of each
tone. The undermost component models the attack transients of the tones.
The components were estimated using the NMF algorithm [114, 166] and the

W A A M AN A

M A AL

Ml\ﬂ/\A/\J\ NAANN A

LW

M/\MWMAM\N/\MAM

VNN

ot oSy

g\ AN A MR

/\WI\J'\WWWV‘\IW\AHFW\“

0 1000 2000 3000 4000

frequency (Hertz)

divergence objective (explained in Section 2.4).
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a time-varying gain has been adopted as a part of the MPEG-7 pattern recogni-
tion framework [29], where the basis functions and the gains are used as features
for classification. Kim et al. [98] compared these to Mel-frequency cepstral co-
efficients (MFCCs) which are commonly used features in the classification of
audio signals. In this study, MFCCs performed better in the recognition of
sound effects and speech than features based on ICA or NMF. However, final
conclusions about the applicability of these methods to sound source recogni-
tion are yet to be made. The spectral basis decomposition specified in MPEG-7
models the summation of components on a decibel scale, which makes it unlikely
that the separated components correspond to physical sound objects.

2.1.2 Data Representation

The model (2.1) presented in the previous section can be used with time-domain
or frequency-domain observations and basis functions. Time-domain observa-
tion vector x; is the signal within frame ¢ multiplied by the window function w:

x; = [z(ny)w(0), 2(n¢ + Dw(1), ..., x(ny + N — Dw(N — 1)]T , (2.4)

where n; is the index of the first sample of the t*" frame. A frequency-domain
observation vector is obtained by applying a chosen frequency transformation,
such as DFT, on the time-domain vector. The representation of the signal and
the basis functions have to be the same. ICA and sparse coding allow the use of
any short-time signal representation, whereas for NMF, only frequency-domain
representations allowing non-negativity restrictions are appropriate. Naturally,
the representation has a significant effect on performance. The advantages and
disadvantages of different representations are considered in this section. For a
more extensive discussion, see Casey [28] or Smaragdis [163].

Time-domain Representation Time-domain representations are straight-
forward to compute, and all the information is preserved when an input signal
is segmented into frames. However, time-domain basis functions are problem-
atic in the sense that a single basis function alone cannot represent a meaningful
sound source: the phase of the signal within each frame varies depending on the
frame position. In the case of a short-duration percussive source, for example, a
separate basis function is needed for every possible position of the sound event
within the frame. A shift-invariant model which is later discussed in Chapter 4
is one possible approach to overcome this limitation [18].

The time-domain signals of real-world sound sources are generally not iden-
tical at different occurrences since the phases behave very irregularly. For ex-
ample, the overtones of a pitched musical instrument are not necessarily phase-
locked, so that the time-domain waveform varies over time. Therefore, one has
to use multiple components to represent even a single tone of a pitched instru-
ment. In the case of percussive sound sources, this phenomenon is even clearer:
the time-domain waveforms vary a lot at different occurrences even when their
power spectra are quite similar.
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The larger the number of the components, the more uncertain is their esti-
mation and further analysis, and the more observations are needed. If the sound
event represented by a component occurs only once in the input signal, separat-
ing it from co-occurring sources is difficult since there is no information about
the component elsewhere in the signal. Also, clustering the components into
sources becomes more difficult when there are many of them for each source.

Separation algorithms which operate on time-domain signals have been pro-
posed for example by Dubnov [45], Jang and Lee [90], and Blumensath and
Davies [18]. Abdallah and Plumbley [1,2] found that the independent compo-
nents analyzed from time-domain music and speech signals were similar to a
wavelet or short-time DFT basis. They trained the basis functions using several
days of radio output from BBC Radio 3 and 4 stations.

Frequency-domain Representation The phases of a signal can be dis-
carded by taking a frequency transform, such as the DFT, and considering only
the magnitude or power spectrum. Even though some information is lost, this
also eliminates the above-discussed phase-related problems of time-domain rep-
resentations. Also the human auditory perception is quite insensitive to phase.
Contrary to time-domain basis functions, many real-world sounds can be rather
well approximated with a fixed magnitude spectrum and a time-varying gain,
as seen in Figs. 2.1 and 2.2, for example. Sustained instruments in particular
tend to have quite a stationary spectrum after the attack transient.

In most systems aimed at the separation of sound sources, DFT and a fixed
window size is applied, but the estimation algorithms allow the use of any time-
frequency representation. For example, a logarithmic spacing of frequency bins
has been used [25], which is perceptually and musically more plausible than a
constant spectral resolution.

Two time-domain signals of concurrent sounds and their complex-valued
DFTs Yi(k) and Y2(k) sum linearly, X (k) = Y1(k) + Ya(k). This equality does
not apply for their magnitude or power spectra. However, provided that the
phases of Y;(k) and Y3(k) are uniformly distributed and independent of each
other, we can write

B{IX()]*} = [Yi(k)[* + [Ya(k)*, (2.5)

where E{-} denotes expectation. This means that in the expectation sense,
we can approximate time-domain summation in the power spectral domain, a
result which holds for more than two sources as well. Even though magnitude
spectrogram representation has been widely used and it often produces good
results, it does not have a similar theoretical justification.

Since the summation of power or magnitude spectra is not exact, use of
phaseless basis functions causes an additional source of error. The phase spec-
tra of natural sounds are very unpredictable, and therefore the separation is
usually done using a phaseless representation, and if a time-domain signals of
the separated sources are required, the phases are generated afterwards. Meth-
ods for phase generation are discussed in Section 2.6.3.
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The human auditory system has a wide dynamic range: the difference be-
tween the threshold of hearing and the threshold of pain is approximately 100
dB [146]. Unsupervised learning algorithms tend to be more sensitive to high-
energy observations. If sources are estimated from the power spectrum, some
methods fail to separate low-energy sources even though they would be per-
ceptually and musically meaningful. This problem has been noticed, e.g., by
FitzGerald in the case of percussive source separation [56, pp. 93-100]. To
overcome the problem, he used an algorithm which processed separately high-
frequency bands which contain low-energy sources, such as hi-hats and cym-
bals [57]. Also Vincent and Rodet [184] addressed the same problem. They
proposed a model in which the noise was modeled to be additive in the log-
spectral domain. The numerical range of a logarithmic spectrum is compressed,
which increases the sensitivity to low-energy sources. Additive noise in the log-
spectral domain corresponds to multiplicative noise in power spectral domain,
which was also assumed in the system proposed by Abdallah and Plumbley [4].
Virtanen proposed the use of perceptually motivated weights [190]. He used
a weighted cost function, in which the observations were weighted so that the
quantitative significance of the signal within each critical band was equal to its
contribution to the total loudness.

2.2 Independent Component Analysis

ICA has been successfully used in several blind source separation tasks, where
very little or no prior information is available about the source signals. One of
its original target applications was multichannel sound source separation, but it
has also had several other uses. ICA attempts to separate sources by identifying
latent signals that are maximally independent. In practice, this usually leads
to the separation of meaningful sound sources.

Mathematically, statistical independence is defined in terms of probability
densities: random variables x and y are said to be independent if their joint
probability distribution function p(z, y) is a product of the marginal distribution
functions, p(z,y) = p(z)p(y) [80, pp. 23-31, 80-89].

The dependence between two variables can be measured in several ways.
Mutual information is a measure of the information that given random variables
have on some other random variables [86]. The dependence is also closely related
to the Gaussianity of the distribution of the variables. According to the central
limit theorem, the distribution of the sum of independent variables is more
Gaussian than their original distributions, under certain conditions. Therefore,
some ICA algorithms aim at separating output variables whose distributions are
as far from Gaussian as possible.

The signal model in ICA is linear: K observed variables zi,...,xx are
modeled as linear combinations of J source variables ¢1,...,g9s. In a vector-
matrix form, this can be written as

x = Bg, (2.6)
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T, . . ..
where x = [xl,...xK} is an observation vector, [B]y,; = by ; is a mixing

matrix, and g = [gl, . ,gJ}T is a source vector. Both B and g are unknown.

The standard ICA requires that the number of observed variables K (the
number of sensors), is equal to the number of sources J. In practice, the number
of sensors can also be larger than the number of sources, because the variables
are typically decorrelated using principal component analysis (PCA, [33, pp.
183-186]), and if the desired number of sources is less than the number of vari-
ables, only the desired number of principal components with the largest energy
are selected.

As another preprocessing step, the observed variables are usually centered
by subtracting their mean and by normalizing their variance to unity. The
centered and whitened data observation vector x is obtained from the original
observation vector x by

x=V(x—pu), (2.7)

where p is the empirical mean of the observation vector, and V is a whiten-
ing matrix, which is often obtained from the eigenvalue decomposition of the
empirical covariance matrix [80, pp. 408-409] of the observations [86].

To simplify the notation, it is assumed that the data x in (2.6) is already
centered and decorrelated, so that K = J. The core ICA algorithm carries out
the estimation of an unmixing matrix W ~ B™!, assuming that B is invertible.
Independent components are obtained by multiplying the whitened observations
by the estimate of the unmixing matrix, to result in the source vector estimate g

g=Wx. (2.8)

The matrix W is estimated so that the output variables, i.e., the elements of
g, become maximally independent. There are several criteria and algorithms for
achieving this. The criteria, such as nongaussianity and mutual information, are
usually measured using high-order cumulants such as kurtosis, or expectations
of other nonquadratic functions [86]. ICA can be also viewed as an extension of
PCA. The basic PCA decorrelates variables so that they are independent up to
second-order statistics. It can be shown that if the variables are uncorrelated
after taking a suitable non-linear function, the higher-order statistics of the
original variables are independent, too. Thus, ICA can be viewed as a non-
linear decorrelation method.

Compared with the previously presented linear model (2.1), the standard
ICA model (2.6) is exact, i.e., X = x. Some special techniques can be used
in the case of a noisy signal model, but often noise is just considered as an
additional source variable. Because of the dimension reduction with PCA, Bg
gives an exact model for the PCA-transformed observations but not necessarily
for the original ones.

There are several ICA algorithms, and some implementations are freely avail-
able, such as FastICA [54,84] and JADE [27]. Computationally quite efficient
separation algorithms can be implemented based on FastICA, for example.
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2.2.1 Independent Subspace Analysis

The idea of independent subspace analysis (ISA) was originally proposed by
Hyvérinen and Hoyer [85]. It combines the multidimensional ICA with invariant
feature extraction, which are shortly explained later in this section. After the
work of Casey and Westner [30], the term ISA has been commonly used to
denote techniques which apply ICA to factorize the spectrogram of a monaural
audio signal to separate sound sources. ISA provides a theoretical framework for
the whole separation algorithm discussed in this chapter, including spectrogram
representation, decomposition by ICA, and clustering. Some authors use the
term ISA also to refer to methods where some other algorithm than ICA is used
for the factorization [184].
The general ISA procedure consists of the following steps:

1. Calculate the magnitude spectrogram X (or some other representation) of
the input signal

2. Apply PCA! on the matrix X of size (K x T) to estimate the number
of components J and to obtain whitening and dewhitening matrices V
and VT, respectively. Centered, decorrelated and dimensionally-reduced
observation matrix X of size (J x T) is obtained as X = V(X — p17),
where 1 is an all-one vector of length 7.

3. Apply ICA to estimate an unmixing matrix W. The matrices B and G
are obtained as B = W~! and G = WX.

4. Inverse the decorrelation operation in Step 2 in order to get the mixing
matrix B = Y'*‘B and source matrix G = G + WV 1" for the original
observations X.

5. Cluster the components to sources (see Section 2.6.1).

The motivation for above steps is given below. Depending on the application,
all of them are not necessarily needed. For example, prior information can be
used to set the number of components in Step 2.

The basic ICA is not directly suitable for the separation of one-channel
signals, since the number of sensors has to be larger than or equal to the number
of sources. Short-time signal processing can be used in an attempt to overcome
this limitation. Taking a frequency transform such as DFT, each frequency bin
can be considered as a sensor which produces an observation in each frame.
With the standard linear ICA model (2.6), the signal is modeled as a sum of
components, each of which has a static spectrum (or some other basis function)
and a time-varying gain.

The spectrogram factorization has its motivation in invariant feature extrac-
tion, which is a technique proposed by Kohonen [107]. The short-time spectrum
can be viewed as a set of features calculated from the input signal. As discussed
in Section 2.1.2, it is often desirable to have shift-invariant basis functions, such

1 Also singular value decomposition can be used to estimate the number of components [30].
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as the magnitude or power spectrum [85,107]. Multidimensional ICA (explained
below) is used to separate phase-invariant features into invariant feature sub-
spaces, where each source is modeled as the sum of one or more components [85].

Multidimensional ICA [26] is based on the same linear generative model (2.6)
as ICA, but the components are not assumed to be mutually independent. In-
stead, it is assumed that the components can be divided into disjoint sets, so
that the components within each set may be dependent on each other, while
dependencies between sets are not allowed. One approach to estimate multidi-
mensional independent components is to first apply standard ICA to estimate
the components, and then group them into sets by measuring dependencies
between them.?

ICA algorithms aim at maximizing the independence of the elements of the
source vector & = Wx. In ISA, the elements correspond to the time-varying
gains of each component. However, the objective can also be the independence
of the spectra of components, since the roles of the mixing matrix and gain
matrix can be swapped by X = BG < X" = G'BT. The independence of
both the time-varying gains and basis functions can be obtained by using the
spatiotemporal ICA algorithm [172]. There are not exhaustive studies regarding
different independence criteria in monaural audio source separation. Smaragdis
argued that in the separation of complex sources, the criterion of independent
time-varying gains is better, because of the absence of consistent spectral char-
acters [163]. FitzGerald reported that the spatiotemporal ICA did not produce
significantly better results than normal ICA which assumes the independence
of gains or spectra [56].

The number of frequency channels is usually larger than the number of
components to be estimated with ICA. PCA or singular value decomposition
(SVD) of the spectrogram can be used to estimate the number of components
automatically. The components with the largest singular values are chosen so
that the sum of their singular values is larger than or equal to a pre-defined
threshold 0 < 6 <1 [30].

ISA has been used for general audio separation by Casey and Westner [30],
for the analysis of musical trills by Brown and Smaragdis [25], and for percus-
sion transcription by Fitzgerald et al. [57], to mention some examples. Also,
a sound recognition system based on ISA has been adopted in the MPEG-7
standardization framework [29].

2.2.2 Non-Negativity Restrictions

When magnitude or power spectrograms are used, the basis functions are mag-
nitude or power spectra which are non-negative by definition. Therefore, it can
be advantageous to restrict the basis functions to be entry-wise non-negative.
Also, it may be useful not to allow negative gains, but to constrain the com-
ponents to be purely additive. Standard ICA is problematic in the sense that

2ICA aims at maximizing the independence of the output variables, but it cannot guar-
antee their complete independence, as this depends also on the input signal.
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it does not enable these constraints. In practice, ICA algorithms also produce
negative values for the basis functions and gains, and often there is no physical
interpretation for such components.

ICA with non-negativity restrictions has been studied for example by Plumb-
ley and Oja [139], and the topic is currently under active research. Existing
non-negative ICA algorithms can enforce non-negativity for the latent variable
matrix G but not for the mixing matrix B. They also assume that the prob-
ability distribution of the source variables g; is nonzero all the way down to
zero, i.e., the probability g; < ¢ is non-zero for any ¢ > 0. This assumption
may not hold in the case of some sound sources, which prevents the separa-
tion. Furthermore, the algorithms are based on a noise-free mixing model and
in our experiments with audio spectrograms, they tended to be rather sensitive
to noise.

It has turned out that the non-negativity restrictions alone are sufficient for
the separation of the sources, without the explicit assumption of statistical in-
dependence. They can be implemented, for example, using the NMF algorithms
discussed in Section 2.4.

2.3 Sparse Coding

Sparse coding represents a mixture signal in terms of a small number of active
elements chosen out of a larger set [130]. This is an efficient approach for
learning structures and separating sources from mixed data. In the linear signal
model (2.3), the sparseness restriction is usually applied on the gains G, which
means that the probability of an element of G being zero is high. As a result,
only a few components are active at a time and each component is active only
in a small number of frames. In musical signals, a component can represent,
e.g., all the equal-pitched tones of an instrument. It is likely that only a small
number of pitches are played simultaneously, so that the physical system behind
the observations generates sparse components.

In this section, a probabilistic framework is presented, where the source and
mixing matrices are estimated by maximizing their posterior distributions. The
framework is similar to the one presented by Olshausen and Field [130]. Several
assumptions of, e.g., the noise distribution and prior distribution of the gains are
used. Obviously, different results are obtained by using different distributions,
but the basic idea is the same. The method presented here is also closely related
to the algorithms proposed by Abdallah and Plumbley [3] and Virtanen [189],
which were used in the analysis of music signals.

The posterior distribution [80, p. 228] of B and G given an observed spectro-
gram X is denoted by p(B, G|X). Based on Bayes’ formula, the maximization
of this can be formulated as [97, p. 351]

maxp(B, G|X) o maxp(X|B, G)p(B, G), (2.9)

where p(X|B, G) is the probability of observing X given B and G, and p(B, G)
is the joint prior distribution of B and G.
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For mathematical tractability, it is typically assumed that the noise (the
residual X — X) is i.i.d., independent from the model BG, and normally dis-
tributed with variance o2 and zero mean. The likelihood of B and G can then
be written as

1 ([X]k,t — [BGg,1)?
(X|B, G) —_ ex _ > 2 . (210)
P r,! ovor T < )

202

It is further assumed here that B has a uniform prior, so that p(B,G)
p(G). Each time-varying gain [G],; is assumed to have a sparse probability
distribution function of the exponential form

p(1Gl;.) =  exp (~F(Gl;.) (211)
A normalization factor Z has to be used so that the density function sums to
unity. The function f is used to control the shape of the distribution and is
chosen so that the distribution is uni-modal and peaked at zero with heavy
tails. Some examples are given later.
For simplicity, all the entries of G are assumed to be independent from each
other, so that the probability distribution function of G can be written as a
product of the marginal densities:

H — exp (= f([Gl;)) - (2.12)

It is obvious that in practice the gains are not independent of each other, but this
approximation is done to simplify the calculations. From the above definitions
we get

(Xt — [BG]M)2>

max p(B, G|X) x maXH 5 OXP (— 52

<1 e (1(1GL)

By taking a logarithm, the products become summations, and the exp-
operators and scaling terms can be discarded. This can be done since logarithm
is order-preserving and therefore does not affect the maximization. The sign is
changed to obtain a minimization problem

(2.13)

min ([X]k,t - [BG]k,t)z + Z f([G}],f) (214)

B.G 202
tk

which can be written as

min 2|p< BG|% + > f(G (2.15)
It
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Figure 2.3: The cost function f(z) = |z| (left) and the corresponding Laplacian
prior distribution p(x) =  exp(—|z|) (right). Values of G near zero are given a
smaller cost and a higher probability.

where the Frobenius norm of a matrix is defined as

1Yllr = > Y, (2.16)

4,9

In (2.15), the function f is used to penalize “active” (non-zero) entries of
G. For example, Olshausen and Field [130] suggested the functions f(z) =
log(1 + x2), f(x) = |z|, and f(z) = 2%. In audio source separation, Benaroya
et al. [15] and Virtanen [189] have used f(x) = |z|. The prior distribution used
by Abdallah and Plumbley [1, 3] corresponds to the function

flay = {17 e (217)
p(l—a) +alzl, [z <p

where the parameters p and a control the relative mass of the central peak in the
prior, and the term p(1 —«) is used to make the function continuous at © = +p.
All these functions give a smaller cost and a higher prior probability for gains
near zero. The cost function f(z) = |z| and the corresponding Laplacian prior
p(z) = § exp(—|z|) are illustrated in Fig. 2.3.

From (2.15) and the above definitions of f, it can be seen that a sparse
representation is obtained by minimizing a cost function which is the weighted
sum of the reconstruction error term ||X — BG||% and the term which incurs a
penalty on non-zero elements of G. The variance o2 is used to balance between
these two.

Typically, f increases monotonically as a function of the absolute value of
its argument. The presented objective requires that the scale of either the basis
functions or the gains are somehow fixed. Otherwise, the second term in (2.15)
could be minimized without affecting the first term by setting B «— B and
G «— G/0, where the scalar § — oco. The scale of the basis functions can be
fixed for example with an additional constraint ||b,|| = 1 as done by Hoyer [81],
or the variance of the gains can be fixed.
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The minimization problem (2.15) is usually solved using iterative algorithms.
If both B and G are unknown, the cost function may have several local min-
ima, and in practice reaching the global optimum in a limited time cannot be
guaranteed. Standard optimization techniques based on steepest descent, co-
variant gradient, quasi-Newton, and active-set methods can be used. Different
algorithms and objectives are discussed for example by Kreutz-Delgado et al.
in [108]. Our proposed method is presented in Chapter 3. If B is fixed, more
efficient optimization algorithms can be used. This can be the case for exam-
ple when B is learned in advance from a training material where sounds are
presented in isolation. These methods are discussed in Section 2.5.

No methods have been proposed for estimating the number of sparse com-
ponents in a monaural audio signal. Therefore, J has to be set either manually,
using some prior information, or to a value which is clearly larger than the
expected number of sources. It is also possible to try different numbers of com-
ponents and to determine a suitable value of J from the outcome of the trials.

As discussed in the previous section, non-negativity restrictions can be used
for frequency-domain basis functions. With a sparse prior and non-negativity
restrictions, one can use, for example, projected steepest descent algorithms
which are discussed, e.g., by Bertsekas in [16, pp. 203-224]. Hoyer [81, 82]
proposed a non-negative sparse coding algorithm by combining NMF and sparse
coding. His algorithm used a multiplicative rule to update B, and projected
steepest descent to update G.

In musical signal analysis, sparse coding has been used for example by Ab-
dallah and Plumbley [3,4] to produce an approximate piano-roll transcription of
synthesized harpsichord music, by Benaroya, McDonagh, Bimbot, and Gribon-
val to separate two pre-trained sources [15], and by Virtanen [189] to transcribe
drums in polyphonic music signals synthesized from MIDI. Also, Blumensath
and Davies used a sparse prior for the gains, even though their system was based
on a different signal model [18].

2.4 Non-Negative Matrix Factorization

As discussed in Section 2.2.2, it is reasonable to restrict frequency-domain ba-
sis functions and their gains to non-negative values. As noticed by Lee and
Seung [113], the non-negativity restrictions can be efficient in learning represen-
tations where the whole is represented as a combination of parts which have an
intuitive interpretation.

The spectrograms of musical signals often have a unique decomposition
into non-negative components, each of which represents parts of a single sound
source. Therefore, in the signal model X ~ BG the element-wise non-negativity
of B and G alone is a sufficient condition for the separation of sources in many
cases, without an explicit assumption of the independence of the sources.

Paatero and Tatter proposed a NMF algorithm in which the weighted energy
of the residual matrix X — BG was minimized by using a least-squares algo-
rithm where B and G were alternatingly updated under non-negativity restric-
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tions [133]. More recently, Lee and Seung [113,114] proposed NMF algorithms
which have been used in several machine learning tasks since the algorithms are
easy to implement and modify.

Lee and Seung [114] proposed two cost functions and estimation algorithms
to obtain X ~ BG. The cost functions are the square of the Euclidean distance
deue and divergence dgiy which are defined as

dene(B, G) = || X — BG% (2.18)
and
daiv(B,G) =Y D([X]it, [BGli.p), (2.19)
k.t

where the function D is defined as
p
D(p,q) = p log , PTe (2.20)

Both cost functions are lower-bounded by zero, which is obtained only when
X = BG. It can be seen that the Euclidean distance is equal to the first term in
(2.15). Minimization of the Euclidean distance leads to a maximum likelihood
estimator for B and G in the presence of Gaussian noise. Similarly, minimization
of the divergence (2.19) leads to a maximum likelihood estimator when each
observation [X];; is generated by a Poisson process with mean value [BGJy ;.
When ZM[X]W = Zk,t[BG]k,t = 1, the divergence (2.19) is equal to the
Kullback-Leibler divergence, which is widely used as a distance measure between
probability distributions [114].

The estimation algorithms of Lee and Seung minimize the chosen cost func-
tion by initializing the entries of B and G with random positive values, and then
by updating them iteratively using multiplicative rules. Each update decreases
the value of the cost function until the algorithm converges, i.e., reaches a local
minimum. Usually, B and G are updated alternatingly.

The update rules for the Euclidean distance are given by

B — B.x(XG")./(BGG") (2.21)

and
G — G.x(B'X)./(BTBG), (2.22)

where .x and ./ denote the element-wise multiplication and division, respec-
tively. The update rules for the divergence are given by

(X./BG)GT

B<—B.><T (2.23)
and T( / )
B'(X./BG

— G X———————= 2.24

G — G.x BT1 ) (2.24)

where 1 is an all-one K-by-T" matrix, and % denotes the element-wise division
of matrices X and Y.
To summarize, the algorithm for NMF is as follows:
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(1) Initialize each entry of B and G with the absolute values of Gaussian
noise.

(2) Update G using either (2.22) or (2.24) depending on the chosen cost func-
tion.

(3) Update B using either (2.21) or (2.23) depending on the chosen cost func-
tion.

(4) Repeat Steps (2) —(3) until the values converge.

Methods for the estimation of the number of components have not been pro-
posed, but all the methods suggested in Section 2.3 are applicable in NMF,
too. The multiplicative update rules have proven to be more efficient than for
example the projected steepest-descent algorithms [4,81,114].

It has been later noticed (see for example [117]) that minor modifications
are needed to guarantee the converge to a stationary point. In our studies we
found that neglecting the terms which have zero divisor provides a sufficient
convergence, and for simplicity do not present the modifications here.

NMF can be used only for a non-negative observation matrix and therefore
it is not suitable for the separation of time-domain signals. However, when
used with the magnitude or power spectrogram, the basic NMF can be used
to separate components without prior information other than the element-wise
non-negativity. In particular, factorization of the magnitude spectrogram using
the divergence often produces relatively good results.

NMF does not explicitly aim at components which are statistically indepen-
dent from each other. However, it has been proved that under certain conditions,
the non-negativity restrictions are theoretically sufficient for separating statis-
tically independent sources [138]. It has not been investigated whether musical
signals fulfill these conditions, and whether NMF implement a suitable estima-
tion algorithm. Currently, there is no comprehensive theoretical explanation
why NMF works so well in sound source separation. If a mixture spectrogram
is a sum of sources which have a static spectrum with a time-varying gain, and
each of them is active in at least one frame and frequency line in which the other
components are inactive, the objective function of NMF is minimized by a de-
composition in which the sources are separated perfectly. However, real-world
music signals rarely fulfill these conditions. When two or more more sources
are present simultaneously at all times, the algorithm is likely to represent then
with a single component.

One possibility to motivative NMF is the probabilistic interpretation given
by Raj and Smaragdis [143], who considered the gains and basis functions as
probability distributions conditional to each component. This allows deriving
the multiplicative updates (2.23)-(2.24) from the expectation maximization al-
gorithm [76, pp. 236-242]. Similar motivation for updates was also used by
Goto [68, pp. 332-337], who estimated the contribution of pitched sounds of
different fundamental frequencies and their spectra in a single frame.

In the analysis of music signals, the basic NMF has been used by Smaragdis
and Brown [166], and extended versions of the algorithm have been proposed
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for example by Virtanen [189] and Smaragdis [164]. The problem of the large
dynamic range of musical signals has been addressed e.g. by Abdallah and
Plumbley [4]. By assuming multiplicative gamma-distributed noise in the power
spectral domain, they derived the cost function

D(p.g) = |~ 1+log (2.25)

to be used instead of (2.20). Compared to the Euclidean distance (2.18) and
divergence (2.20), this distance measure is more sensitive to low-energy obser-
vations. In our simulations, however, it did not produce as good results as the
Euclidean distance or the divergence (see Section 3.3).

2.5 Prior Information about Sources

The above-described algorithms use some general assumptions about the sources
in the core algorithms, such as independence or non-negativity, but also other
prior information on the sources is often available. For example in the analy-
sis of pitched musical instruments, it is known in advance that the spectra of
instruments are approximately harmonic. However, it is difficult to implement
harmonicity restrictions in the models discussed earlier.

Prior knowledge can also be source-specific. The most common approach to
incorporate prior information about sources in the analysis is to train source-
specific basis functions in advance. Several approaches have been proposed. The
estimation is usually done in two stages, which are

1. Learn source-specific basis functions from training material, such as mono-
timbral and monophonic music. Also the characteristics of time-varying
gains can be stored, for example by modeling their distribution.

2. Represent a polyphonic signal as a weighted sum of the basis functions of
all the instruments. Estimate the gains and keep the basis functions fixed.

Several methods have been proposed for training the basis functions in ad-
vance. The most straightforward choice is to separate also the training signal
using some of the described methods. For example, Jang and Lee [90] used ISA
to train basis functions for two sources separately. Benaroya et al. [15] suggested
the use of non-negative sparse coding, but they also tested using the spectra of
random frames of the training signal as the basis functions or grouping similar
frames to obtain the basis functions. They reported that non-negative sparse
coding and the grouping algorithm produced the best results [15]. Non-negative
sparse coding was also used by Schmidt and Olsson [155] to both train the basis
functions and estimate their gains from a mixture. Gautama and Van Hulle
compared three different self-organizing methods in the training of basis func-
tions [62].

The training can be done in a more supervised manner by using a sepa-
rate set of training samples for each basis function. For example in the drum
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transcription systems proposed by FitzGerald et al. [58] and Paulus and Vir-
tanen [136], the basis function for each drum instrument was calculated from
isolated samples of each drum. It is also possible to generate the basis functions
manually, for example so that each of them corresponds to a single pitch. Lepain
used frequency-domain harmonic combs as the basis functions, and parameter-
ized the rough shape of the spectrum using a slope parameter [115]. Sha and
Saul trained the basis function for each discrete fundamental frequency using a
speech database with annotated pitch [159].

In practice, it is difficult to train basis functions for all the possible sources
beforehand. An alternative option is to use trained or generated basis func-
tions which are then adapted to the observed data. For example, Abdallah and
Plumbley initialized their non-negative sparse coding algorithm with basis func-
tions that consisted of harmonic spectra with a quarter-tone pitch spacing [4].
After the initialization, the algorithm was allowed to adapt these. For the sepa-
ration vocals from background music, Ozerov et al. trained a background model
using music without vocals [132]. They used an algorithm which segmented an
input signal into vocal and non-vocal parts, and then adapted the background
model using the non-vocal parts and vocal model using the vocal parts.

Once the basis functions have been trained, the observed input signal is
represented using them. Sparse coding and non-negative matrix factorization
techniques are feasible also in this task. Usually the reconstruction error between
the input signal and the model is minimized while using a small number of
active basis functions (sparseness constraint). For example, Benaroya et al.
proposed an algorithm which minimizes the energy of the reconstruction error
while restricting the gains to be non-negative and sparse [15].

If the sparseness criterion is not used, a matrix G reaching the global mini-
mum of the reconstruction error can be usually found rather easily. If the gains
are allowed to have negative values and the estimation criterion is the energy of
the residual, the standard least-squares solution

G=(B"B)"!B™X (2.26)

produces the optimal gains (assuming that the priorly-trained basis functions
are linearly independent) [97, pp. 220-226]. If the gains are restricted to non-
negative values, the least-squares solution is obtained using the non-negative
least-squares algorithm [111, p. 161]. When the basis functions, observations,
and gains are restricted to non-negative values, the global minimum of the di-
vergence (2.19) between the observations and the model can be computed by
applying the multiplicative update (2.24) iteratively [136,151]. Lepain mini-
mized the sum of the absolute value of the error between the observations and
the model by using linear programming and the Simplex algorithm [115].

The estimation of the gains can also be done in a framework which increases
the probability of basis functions being non-zero in consecutive frames. For
example, Vincent and Rodet used hidden Markov models (HMMSs) to model the
durations of the tones [184].

It is also possible to train prior distributions for the gains. Jang and Lee used
standard ICA techniques to train time-domain basis functions for each source
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separately, and modeled the probability distribution function of the component
gains with a generalized Gaussian distribution which is a family of density func-
tions of the form p(z) o< exp(—|z|?) [90]. For an observed mixture signal, the
gains were estimated by maximizing their posterior probability.

2.6 Further Processing of the Components

In the processing of music signals the main motivation for separating an input
signal into components is that each component usually represents a musically
meaningful entity, such as a percussive instrument or all the equal-pitched tones
of an instrument. Depending on the application, the separated components can
be associated to sources, synthesized, or analyzed to obtain musical information
about the sources.

2.6.1 Associating Components with Sources

If the basis functions are estimated from a mixture signal, we do not know which
component is produced by which source. Since each source is modeled as a sum
of one or more components, we need to associate the components to sources.
There are basically two ways to do this. In the unsupervised classification
framework, component clusters are formed based on some similarity measure,
and these are interpreted as sources. Alternatively, if prior information about
the sources is available, the components can be classified to sources based on
their distance to source models. Naturally, if pre-trained basis functions are used
for each source, the source of each basis function is known and classification is
not needed.

Pair-wise dependence between the components can be used as a similarity
measure for clustering. Even in the case of ICA which aims at maximizing the
independence of the components, some dependencies may remain because it is
possible that the input signal contains fewer independent components than are
to be separated.

Casey and Westner used the symmetric Kullback-Leibler divergence be-
tween the probability distribution functions of basis functions as a distance
measure, resulting in an independent component cross-entropy matrix (an “ixe-
gram”) [30]. Dubnov proposed a distance measure derived from the higher-order
statistics of the basis functions or the gains [45]. Blumensath and Davies [19]
used the symmetric Kullback-Leibler divergence between the energies measured
within logarithmically spaced frequency bands.

Casey and Westner [30], Dubnov [45], and Blumensath and Davies [19] also
suggested clustering algorithms for grouping the components into sources. These
try to minimize the inter-cluster dependence and maximize the intra-cluster
dependence. However, in our simulations the automatic clustering turned out
to be a difficult task (see Section 3.3.3).

For predefined sound sources, the association can be done using pattern
recognition methods, which has produced better results. Uhle et al. extracted
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acoustic features from each component to classify them either to a drum track or
to a harmonic tracks [178]. The features in their system included, for example,
the percussiveness of the time-varying gain, and the noise-likeness and disso-
nance of the spectrum. Another system for separating drums from polyphonic
music was proposed by Helén and Virtanen. They trained a support vector
machine (SVM) using the components extracted from a set of drum tracks and
polyphonic music signals without drums. Different acoustic features were eval-
uated, including the above-mentioned ones, Mel-frequency cepstral coefficients,
and others [79].

2.6.2 Extraction of Musical Information

The separated components can be analyzed to obtain musically important in-
formation, such as the onset and offset times and fundamental frequency of
each component (assuming that they represent individual tones of a pitched
instrument). Naturally, the components can be synthesized and then analyzed
using established analysis techniques. However, the synthesis stage is usually
not needed, but analysis using the basis functions and gains directly is likely to
be more reliable, since the synthesis stage may cause some artifacts.

The onset and offset times of each component j are measured from the time-
varying gains g;¢, t = 1...7. Ideally, a component is active when its gain is
non-zero. In practice, however, the gain may contain interference from other
sources and the activity detection has to be done with a more robust method.

Paulus and Virtanen [136] proposed an onset detection procedure that was
derived from the psychoacoustically motivated method of Klapuri [99]. The
gains of a component were compressed, differentiated, and low-pass filtered.
In the resulting “accent curve”, all local maxima above a fixed threshold were
considered as sound onsets. For percussive sources or other instruments with
a strong attack transient, the detection can be done simply by locating local
maxima in the gain functions, as done by FitzGerald et al. [58].

The detection of sound offsets is a more difficult problem, since the amplitude
envelope of a tone can be exponentially decaying. Methods to be used in the
presented framework have not been proposed.

There are several different possibilities for the estimation of the fundamen-
tal frequency of a pitched component. For example, prominent peaks can be
located from the spectrum and the two-way mismatch procedure of Maher and
Beauchamp [118] can be used, or the fundamental period can be estimated from
the autocorrelation function which is obtained by inverse Fourier transforming
the power spectrum. In our experiments, the enhanced autocorrelation function
proposed by Tolonen and Karjalainen [175] was found to produce good results.
In practice, a component may represent more than one pitch. This happens
especially when the pitches are always present simultaneously, as is the case
in a chord for example. No methods have been proposed to detect this situa-
tion. Whether a component is pitched or not, can be estimated, e.g., from the
acoustic features of the component [79,178].
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Some systems use fixed basis functions which corresponds to certain funda-
mental frequency values [115,159]. In this case, the fundamental frequency of
each basis function is of course known.

2.6.3 Synthesis

The spectra and gains of the estimated components can be used directly in
some acoustic analysis applications. In order to verify the quality by listening,
however, the components has to be synthesized to obtain time-domain signals
for each source.

Synthesis from time-domain basis functions is straightforward: the signal of
component j in frame ¢ is generated by multiplying the basis function b; by the
corresponding gain g;;, and adjacent frames are combined using the overlap-
add method where frames are multiplied by a suitable window function, delayed,
and summed.

Synthesis from frequency-domain basis functions is not as trivial. The syn-
thesis procedure includes calculation of the magnitude spectrum of a component
in each frame, estimation of the phases to obtain the complex spectrum, and
an inverse discrete Fourier transform (IDFT) to obtain the time-domain sig-
nal. Adjacent frames are then combined using overlap-add. When magnitude
spectra are used as the basis functions, framewise spectra are obtained as the
product of the basis function with its gain. If power spectra are used, a square
root has to be taken, and if the frequency resolution is not linear, additional
processing has to be done to enable synthesis using the IDFT.

A few alternative methods have been proposed for the phase generation. Us-
ing the phases of the original mixture spectrogram produces good synthesis qual-
ity when the components do not overlap significantly in time and frequency [190].
However, applying the original phases and the IDFT may produce signals which
have unrealistic large values at frame boundaries, resulting in perceptually un-
pleasant discontinuities when the frames are combined using overlap-add. Also
the phase generation method proposed by Griffin and Lim [71] has been used in
the synthesis (see for example Casey [28]). The method finds phases so that the
error between the separated magnitude spectrogram and the magnitude spectro-
gram of the resynthesized time-domain signal is minimized in the least-squares
sense. The method can produce good synthesis quality especially for slowly-
varying sources with deterministic phase behavior. The least-squares criterion,
however, gives less importance to low-energy partials and often leads to a de-
graded high-frequency content. Improvements to the above synthesis method
have been proposed by Slaney et al. in [162]. The phase generation problem
has been recently addressed by Achan et al. who proposed a phase generation
method based on a pre-trained autoregressive model [7].

The estimated magnitude spectrograms can be also used to design a Wiener
filter, and the sources can be obtained by filtering the mixture signal [14]. The
resulting signals resemble those obtained using the original phases; the main
difference is that the filtered signals may include parts of the residual of the
mixture, which are not included in the separated spectrograms.
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Chapter 3

Non-Negative Matrix
Factorization with
Temporal Continuity and
Sparseness Criteria

This chapter proposes an unsupervised sound source separation algorithm, which
combines NMF with temporal continuity and sparseness objectives. The al-
gorithm is extended from the work originally published in [189,191]'. The
additional objectives, especially the temporal continuity, are a simple and effi-
cient way to incorporate knowledge of natural sound sources to the linear signal
model. When the additional objectives are introduced, the divergence crite-
rion of NMF may not be minimized with projected steepest descent algorithms.
Therefore, an augmented divergence is proposed which can be minimized more
robustly. Simulation experiments are carried out to evaluate the performance of
the proposed algorithm, which is shown to provide a better separation quality
than existing algorithms.

3.1 Signal Model

The algorithm is based on the signal model presented in the previous chapter,
where the magnitude spectrum vector x; in frame ¢ is modeled as a linear
combination of basis functions b;, which is written as

J
X =) g5bj, (3.1)
j=1

IThe text and figures have been adapted from [191] with permission, (©2006 IEEE.
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where J is the number of basis functions and g;, is the gain of the jth basis
function in frame t. An observed magnitude spectrogram is modeled as a sum
of components j = 1...J, each of which has a fixed spectrum b; and a time-
varying gain g;., t =1...T, T being the number of frames.

The magnitude spectrogram is calculated as follows: first, the time-domain
signal is divided into frames and windowed. In our simulations, a fixed 40
ms frame size, Hamming window, and 50% overlap between frames is used.
The discrete Fourier transform (DFT) is applied on each frame, the length of
the DFT being equal to the frame size. Only positive frequencies are retained
and phases are discarded by taking the absolutive values of the DFT spectra,
resulting in a magnitude spectrogram matrix [X];, where &k = 1... K is the
discrete frequency index and t = 1...7T is the frame index.

As earlier, we write (3.1) using a matrix notation as

X =BG, (3.2)

where X = [5{1 .. .)ET], B= [b1 . bJ] and [G];+ = gj,+. The observed magni-
tude spectrogram X is modeled as a product of the basis matrix B and the gain
matrix G, so that X ~ BG, while restricting B and G to be entry-wise non-
negative. This models the linear summation of the magnitude spectrograms
of the components. As discussed on Page 18, the summation of power spec-
tra is theoretically better justified; however, the power spectrum representation
emphasizes too much high-energy observations. In our simulation experiments
(see Section 3.3) the best results were obtained by assuming linear summation of
the magnitude spectra and therefore the proposed method is formulated using
magnitude spectrograms.

Estimation of B and G is done by minimizing a cost function ¢(B, G),
which is a weighted sum of three terms: a reconstruction error term ¢, (B, G),
a temporal continuity term ¢;(G), and a sparseness term ¢s(G):

c¢(B,G) = (B, G) + ac(G) + Bes(G), (3.3)

where o and 3 are the weights for the temporal continuity term and sparseness
term, respectively.

3.1.1 Reconstruction Error Function

The divergence cost (2.19) of an individual observation [X]j . is linear as a
function of the scale of the input, since D(yp||vq) = vD(pl||q) for any positive
scalar 7, whereas for the Euclidean cost the dependence is quadratic. There-
fore, the divergence is more sensitive to small-energy observations, which makes
it more suitable for the estimation of perceptually meaningful sound sources
(see Page 18). Among the tested reconstruction error measures (including also
those proposed in [4] and [190]), the divergence produced the best results, and
therefore we measure the reconstruction error using the divergence.

The divergence (2.19) approaches infinity as the value of the model [BG]j
approaches zero. The spectrograms of natural audio signals have a large dy-
namic range, and small values of [X]; ; and [BG]y, are therefore probable. The
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divergence

Figure 3.1: Illustration of the divergence (solid line) and augmented divergence
(dashed line), with values [X];; = 1 and ¢ = 1. The normal divergence ap-
proaches infinity as [BG]y,, approaches zero, while the augmented divergence
is finite at [BG]y, = 0.

parameters B and G are estimated by iterative methods, which alternatively
update the gains and the spectra. The projected gradient descent algorithm
updates the parameters into the direction of the negative gradient, and then
projects the parameters to non-negative values. Because of the shape of the
divergence function, the convergence of the projected steepest descent is often
poor, and it tends to stuck easily into a local minimum.

To improve the convergence of the optimization algorithm, we propose an
augmented divergence function D., defined as

(Xt +€

BO e K+ BGLe  (3.4)

D.(X|[BG) =) ([X]y +¢)log
k.t

in which the parameter € is positive. The augmented divergence is finite at
[BGlr,: = 0, as seen in Fig. 3.1. Similarly to the normal divergence, the
augmented divergence between non-negative matrices is always non-negative,
and zero only if X = BG.

Different ways of determining the value € were tested. Setting it equal to
€= 7= S S [X]k.t, which is the average of all the bins of the magnitude
spectrogram, was found to produce good results, when the performance was
measured using the simulations presented in Section 3.3. The performance with
different values of € is evaluated in Section 3.3.

3.1.2 Temporal Continuity Criterion

The separation methods discussed in Chapter 2 considered each frame as an
individual observation. However, real-world sounds usually have a temporal
structure, and their acoustic characteristics vary slowly as a function of time.
Fig. 3.2 shows a simple example where the temporal continuity criterion would
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Figure 3.2: A simple example which illustrates how the temporal continuity of
sources can improve the separation. See text for details.

increase the robustness of the separation. The two sources A and B repre-
sent a typical sustained harmonic sound and a typical short-duration percussive
sound, respectively. The observed mixture spectrogram (illustrated in the mid-
dle panel) is separated into two components both of which have a fixed spec-
trum and time-varying gain. When the separation is done by minimizing the
reconstruction error between the observed spectrogram and the separated spec-
trograms, it is possible to obtain the original spectrograms A and B. However, it
is also possible to represent the mixture spectrogram as a sum of spectrograms
C and D, resulting in error. By favoring temporal continuity, the separation can
be directed towards the spectrograms A and B.

Temporal continuity was aimed at in the system proposed Vincent and Rodet
who modeled the activity of a source by a hidden Markov model [184]. In this
chapter, we apply a simple temporal continuity objective which does not require

training beforehand.
Temporal continuity of the components is measured by assigning a cost to
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large changes between the gains g;; and g;—1 in adjacent frames. We propose
to use the sum of the squared differences between the gains. To prevent the
numerical scale of the gains from affecting the cost, the gains are normalized
by their standard deviation estimates o;, so that the cost function ¢ for the
temporal continuity can be written as:

«(G) = Z .

Jj=1

| =

T
(915 — gt—1,5)* (3.5)
=

<

t

If the normalization was not used, the function ¢;(G) could be minimized with-
out affecting the reconstruction error by scaling the matrices by B « B# and
G — G/, where 0 is a large positive scalar. The standard deviation of each
component j = 1...J is estimated as

(3.6)

In [189], a cost function was used which was the sum of the absolute values
of the difference of gains of adjacent frames. The motivation for using the
absolute value cost was that, e.g., for a gain rising from a level to another, the
cost is equal for all monotonically increasing transitions. However, it was found
that the absolute value of the differences did not increase the performance of
the separation algorithm as much as the squared differences. The reason for
this might be the steepest descent optimization algorithm: the gradient of the
temporal continuity cost depends only on the sign of the difference, not on the
magnitude.

3.1.3 Sparseness Objective

The sparseness of the activities g;+ has been utilized in several blind source sep-
aration algorithms, and there are cases where the sparseness criterion improves
the quality. For example, when the spectrum of one source (e.g. kick drum)
covers partly the spectrum of another (e.g. snare drum), the latter source could
be modeled as a sum of the first sound and a residual. The use of sparse gains
can favor a representation where only a single spectrum is used to model the
latter source.

The sparseness objective, which is derived from the MAP estimation of the
sources can be formulated as as a sum of function f taken of all the elements
of G (see Section 2.3). To prevent the scale of the gains from affecting the
objective, we normalize the gains of a component by its standard deviation, to
result in sparseness objective

(G)=D_> [(954/75); (37)

j=1t=1



where f(-) is a function which penalizes non-zero gains. We used f(z) = |z,
which has been used, for example, by Hoyer [81] in the separation of synthesized
images and by Benaroya et al. [15] in the separation of priorly trained audio
signals. The method allows also other choices for f.

3.2 Estimation Algorithm

In the estimation algorithm, the matrices B and G are first initialized with
random positive values and then alternatively updated. The value of the cost
function decreases at each update, until the algorithm converges. A multiplica-
tive update rule is used to update B, and either a multiplicative update rule or
projected steepest descent is used to update G.

Currently there is no reliable method for the automatic estimation of the
number of components, but it has to be set manually. In practice, a large
number of components can be used, which are then clustered to sound sources.
If there is some prior information of the sources, it can be used to select the
number of components or to initialize the spectra.

The source matrix G is updated either using a multiplicative update rule or
the projected steepest descent method. Both methods require estimating the
gradient of total cost ¢(B, G), which is the weighted sum of the gradients of the
reconstruction error, temporal error, and sparseness error, given by

Ve(B,G) = Ve (B,G) + aVe(G) + Ve (G) (3.8)
The gradients of the terms in (3.8) with respect to G are given by

X +e
BG + ¢

Ve (B,G)=BT(1 - ), (3.9)

where 1 is a all-one matrix of the same size as X,

91— gir1 — g

(Ve (G =2T 9it g%vt 1~ Gjit+1
w1 9
u=1J5,u

(3.10
o 2Tg) Zfzz(gj,u - Qj,u71)2 )
T )
(ZuZI gjz',u)Q
and .
1 Tq; .
[Ves(G)lje = _ YTgie E“:{gj’“, (3.11)
Y g, (Tl
Tzuzl I u=1Jj5,u
respectively.

A multiplicative update is derived as in [151] by first writing the total gradi-
ent (3.8) as a subtraction Ve(B, G) = Ve (B, G) — Ve (B, G) of element-wise

non-negative terms

VI(B,G) =V (B,G)+aVe (G) + Vel (G) (3.12)

39



and
V. (B,G)=Vc, (B,G) +aVe (G) + Ve (G), (3.13)

where the element-wise positive terms of the gradients of reconstruction error
cost, temporal continuity cost, and sparseness cost are given by

Ve (B,G)=B'1, (3.14)

X
Ve (B,G) =BT BGTE, (3.15)

4Ty,
Vel (G)ju = =725 (3.16)
Zu:l gj,u
- gjt—1+g;, 2754 S nes (Gju — Gju—1)’
[Ver (G = 2T = —=2 i 2 ;(ﬂz -~ DN 3ar)
Zu:l gj,u (Zu:l gj,u)

1

Vel (G))jp = ———= (3.18)

)
15T 2
T u=1 gj,u

NTST g
Ve (@) = S0 Zomt
(Zu:lgj,u)/

The terms (3.14)-(3.19) are element-wise non-negative, since the gains, basis
functions, and observations are restricted to non-negative values.
Multiplicative update for G is then given as

and

(3.19)

Ve (B, G)

G(_me

(3.20)

In the cost function (3.3), B affects only the reconstruction error term
(B, G), so that the gradient of the total cost with respect to B is

X +e€ T

Ve(B,G) = (1- g )G

(3.21)

Factoring the gradient into positive and negative terms as in (3.14) and (3.15)
results in a multiplicative update rule

X+e T

B« B.xBGt 3.22
«— X ]_GT ( )

An alternative gain estimation technique is the projected steepest descent
algorithm, which updates the parameters into the direction of the negative gra-
dient, and then projects them into non-negative values. It has been previously
used to estimate non-negative sparse representation, for example, by Hoyer [82]
and Virtanen [189].

The overall iterative algorithm is the following:
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1. Initialize each element of B and G with the absolute value of Gaussian
noise.

2. Update B using the multiplicative update rule (3.22).
3.(a) Update the gains using (3.20), or
3.(b) Update the gains using projected steepest descent:

e Calculate the gradient of ¢(B, G) with respect to G using (3.8).
e Update G — G — uVe¢(B, G). The positive step size p is adaptively
varied using the bold driver algorithm [150] explained below.

e Set negative entries of G to zero.
4. Evaluate the value of the cost function ¢(B, G).

The steps 2...4 are repeated until the value of the cost function converges.
The iteration is stopped when the decrease has been smaller than a predefined
threshold for a certain number of iterations. For a 10-second input signal and
20 components the algorithm takes a couple of hundred iterations to converge, a
couple of minutes of computation on a 1.7 GHz desktop PC when implemented
in Matlab.

In the projected steepest descent, the bold driver algorithm updates the step
size as follows. After iterations where the value of the cost function decreases,
the step size is increased by a small factor (by 5%). When the value of the cost
function increases, the step size is reduced rapidly (by 50%). This procedure was
found to provide faster convergence than a fixed step size. In our simulations it
was also found advantageous to use the moment term [150] of the gradient, so
that the effective gradient used in the updating is the weighted sum of gradients
of current and previous iteration.

The multiplicative update rules are good in the sense in practice that they
do not require additional parameters like the steepest descent algorithms, where
a suitable step size has to be estimated. The multiplicative updates guarantee
the non-negativity of the parameters, since both the numerator and denomi-
nator are always element-wise non-negative. Similarly to gradient algorithms,
the multiplicative update rules will not change the parameter values when a
stationary point is reached, since the multiplier becomes unity at a stationary
point.

When the temporal continuity and sparseness term are not used (o = 0
and 8 = 0), the cost function (3.3) can be shown to be always non-increasing
under the proposed multiplicative update rule (3.22), as shown in Appendix A.1.
Since D.(X||BG) = D(XT||GTBT), the roles of G and B can be swapped to
change (3.22) into (3.20), when o = 0 and § = 0. This shows that the cost
function (3.3) is non-increasing also under the update rule (3.20), when oo = 0
and § = 0. In the case of the multiplicative updates the use of augmented
divergence is not necessary, so that ¢ = 0 can also be used.

When a > 0 or 8 > 0, the multiplicative update (3.20) does not necessarily
decrease the value of the cost function. In the simulation experiments presented
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in Section 3.3, we applied the multiplicative update rules on 300 signals, each of
which was tested with 4 different component counts and several combinations of
a and 3 (see Fig 3.3). We observed a total of 5 cases where the value of the cost
function increased, which took places when « had a large value. Minimizing
the cost function by projected steepest descent led to almost identical results,
with the expense of increased computational complexity. This and the small
amount of cost increases show that also the multiplicative updates are sufficient
for minimizing the cost function.

3.3 Simulation Experiments

3.3.1 Acoustic Material

Test signals were generated by mixing samples of pitched musical instruments
and drums. The pitched sounds were from a database of individual tones which
is a combination of samples from the McGill University Master Samples Collec-
tion [131], the University of Iowa website [89], and samples recorded from the
Roland XP-30 synthesizer. The instruments introduce several sound production
mechanisms, variety of spectra and also modulations, such as vibrato. The total
number of samples available for generating the mixtures was 4128, each hav-
ing the sampling frequency 44100 Hz. The drum samples were from the DFH
Superior commercial sample database [44], which contains individual drum hits
from several drum kits and instruments. Each instrument in the DFT Superior
database is multi-sampled, i.e., the recording is repeated several times for each
instrument.

Mixture signals were generated by choosing a random number of pitched
instrument sources and a random number of drum sources. For each mixture,
the number of sources was chosen randomly from within the limits shown in
Table 3.1. Once the number of sources had been chosen, each source was picked
randomly from the databases. For pitched-instrument sources, a random in-
strument and a random fundamental frequency from the available samples were
allotted and for drum sources, a random drum kit and a random drum instru-
ment were allotted.

Each pitched instrument sample was used only once within a mixture, and
they were truncated to random lengths. We used a random number of repeti-
tions of each drum tone, which were unique samples. The location of each note
was randomized by allotting a random onset time between 0 and 6 seconds. The
length of all source signals was chosen to be 7 seconds. This resulted in material
where 79% of the frames contained more than one source, i.e., the sources here
mainly overlapping.

To simulate the mixing conditions encountered in real-world situations, each
source was scaled to obtain a random total energy between 0 and -20 dB. The ref-
erence source signals before mixing were stored to allow the measurement of the
separation quality. The total number of mixtures was 300. Examples of the mix-
ture signals are available for listening at http://www.cs.tut.fi/~tuomasv/.
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Table 3.1: Parameters used to generate the test signals.

parameter interval
number of pitched instrument sources [0 12]
number of drum sources [0 6]
length of each pitched musical sound (s) [0.15 1]
number of notes per each drum source [2 8]
onset time of each repetition (s) [0 6]
energy of each source (dB) [0 -20]

It should be noted that the acoustic material differs from real-world music in
a sense that it consists of individual notes instead of note sequences. However,
none of the tested methods is able to utilize different pitch values of a source in
the separation, and it is therefore unlikely that the results would be significantly
different if note sequences were present.

3.3.2 Tested Algorithms

Some recently published algorithms were used as a baseline in the evaluation.
All the algorithms apply a 40 ms window length, Hanning window, and short-
time Fourier transform to calculate a spectrogram X of the mixture signal,
as described in the beginning of Section 3.1. Unless otherwise mentioned, the
methods operate on the magnitude spectrogram. The following algorithms were
tested:

e Independent subspace analysis (ISA). Implementation of the algorithm fol-
lows the outline proposed by Casey and Westner [30], but instead of aiming
at statistically independent gains we estimated statistically independent
spectra, since that produced better results. Independent components were
estimated using the FastICA algorithm [54,84].

o NMF was tested with the algorithms proposed in [114]. These minimize
the divergence or the Euclidean distance, and are denoted by NMF-DIV
and NMF-EUC, respectively.

e The non-negative sparse coding algorithm proposed by Abdallah & Plumb-
ley [4] is denoted by NMF-LOG, since the method roughly minimizes the
distance between the logarithm of the spectra. It assumes that the sources
sum in the power spectral domain, so that the observation vector and basis
functions in (3.1) are power spectra.

The proposed algorithm was evaluated by using different configurations. The
weights a and § were not optimized for the test data, but different magnitudes
(1,10,100...) were tried using similar test cases, and the values o = 100 and
8 = 0 which approximately produced the best results were chosen. The effect of
the weights is illustrated in the next section. Both the multiplicative (denoted
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by proposed-NMF,,,11;) and projected steepest descent (denoted by proposed-
NMF,0j) estimation algorithms were tested. For the multiplicative algorithm
the augmented term in the divergence is not required, and therefore it was tested
with € = 0.

3.3.3 Evaluation Procedure

Each mixture signal was separated into components using all the algorithms.
Since there is no reliable method for the estimation of the number of the com-
ponents, all the methods were tested with 5, 10, 15, and 20 components, and
the results were averaged.

Since the tested methods are unsupervised, we do not know which component
belongs to which source, and supervised clustering cannot be used. On the other
hand, manual clustering is too troublesome and unreliable. This enforces us
to automatic clustering, which requires that the original signals before mixing
are used as references for clusters. The signal-to-distortion ratio between the
separated and and an original signal is an obvious choice for determining the
source of the separated signal. To prevent the synthesis procedure from affecting
the quality, the measure was calculated between the magnitude spectrograms
Y,, and Yj of the m" reference and j* separated component, respectively:

2
SDR(m, j) = ok [Ym]’“f 5. (3.23)

Yokt (Yonlke — [Y]k)

A component j is assigned to a source m which produces the maximum SDR.

A large number of components which are clustered using the original signals
as references may produce unrealistically good results, since in practice there
does not exist a clustering algorithm which could produce as good separated sig-
nals. We tested the unsupervised clustering methods proposed in [30] and [45],
trying to create component clusters for each source. However, these deteriorated
the results in all the cases.

To overcome these problems we modeled each source with a single component
for which the SDR was largest. This approach utilizes a minimum amount
of prior information about the reference signals, but still produces applicable
results.

The quality of the separated sources was also measured by calculating the
signal-to-distortion ratio (SDR) between the original magnitude spectrogram Y
and corresponding separated magnitude spectrogram Y, given in dB by

St YT
N 2

Dt (Yt = [Ykt)

The SDR (in dB) was averaged over all the sources and mixtures to get the
total measure of the separation performance. If no components were assigned
to a source, the source was defined to be undetected. The detection error rate

SDR[dB] = 10logy, (3.24)
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Table 3.2: Simulation results of the unsupervised learning algorithms based on
the linear model. The best result in each column is highlighted in bold.

algorithm detection error rate (%) SDR (dB)
all  pitched drums all  pitched drums

ISA 35 34 35 4.6 5.4 2.8
NMF-EUC 28 28 30 6.6 7.9 3.7
NMF-DIV 26 28 23 7.0 8.8 3.5
NMF-LOG 80 90 57 2.3 2.7 2.2
proposed-NMF,.; 23 24 23 7.3 9.1 3.6
proposed-NMF ,,is; 24 25 22 7.3 9.1 3.6

was defined as the ratio of the total number of undetected sources and the total
number of sources. The undetected sources were not used in the calculation of
the average SDR.

3.3.4 Results

The average SDRs and detection rates are shown in Table 3.2. The averages
are shown for all sources and for pitched and drum sounds separately. The 95%
confidence intervals [80, pp. 212-219] for the average detection rate and the
SDR were smaller than +1% and 40.1dB, respectively, for all the algorithms.

Use of the temporal continuity term improves the detection of pitched sounds
significantly. The proposed method also enables a slightly better SDR, of pitched
sources than NMF-DIV. If also undetected sources were included in the com-
puting the SDR, the improvement would be larger. The differences between the
multiplicative and projected steepest descent algorithms is small.

The non-negative matrix factorization algorithms NMF-EUC and NMF-DIV
produce clearly better results than ISA, and the overall performance of NMF-
DIV is better than NMF-EUC. For drum sources the improvement gained by the
proposed methods are small, which is natural since drum sounds are temporally
less continuous than pitched instruments.

The performance of NMF-LOG is poor according to the detection error rate
and SDR. These measures are derived from the energy of the error signal, but
NMF-LOG is much more sensitive to low-energy observations. To investigate
this further, we used also the likelihood proposed in [4] to measure the quality of
the sources. The likelihood is based on a multiplicative noise model, and it re-
sults in a distortion measure Zkt([Y]it/[Y]%t -1 —l—log([Y]iyt/[Y]i’t)) between
the original magnitude spectrogram Y and the separated magnitude spectro-
gram Y (a small positive constant was added to both terms to avoid numerical
problems in the divisions). The measure is more sensitive to low-energy obser-
vations than the SDR. The distortion measures were 0.30 (ISA), 2.38 (NMF-
EUC), 1.94 (NMF-DIV), 5.08 (NMF-LOG), 1.02 (proposed-NMF ,1ti ), and 1.02
(proposed-NMF,.,i), a smaller value indicating a better quality. This shows that
the chosen performance measure has some effect on the results, since accord-
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Figure 3.3: The effect of different temporal continuity weights o and sparseness
weights 3 on the detection error rate and signal-to-distortion ratio of proposed-
NMF 05, when the other parameter was 0.

ing to this measure ISA gives the best quality, although the order of the other
methods remains the same. Unlike ISA, the NMF-based algorithms do not al-
low subtraction of components, and therefore often produce values [?] kit =0,
which results in a large distortion measure. The quality analysis in this paper
is mainly based on SDR, since it is more widely used.

The effect of the weights a and S is illustrated in Fig. 3.3. The use of the
temporal continuity term (« > 0) improves especially the detection of pitched
instrument sources. The sparseness term (8 > 0) was not found to improve the
results. When either value is too large, the quality of the separation degrades
clearly.

The effect of the augmented divergence and the optimization algorithm was
evaluated by testing the proposed method with the multiplicative update rules
and the projected steepest descent, while not using the temporal continuity
or sparseness terms (by setting & = 0 and 8 = 0). The performance of the
algorithms with different values of € is illustrated in Fig. 3.4. Also the normal
divergence was tested. With suitable values of € (scaling factor 1 or 10) the
performance of the augmented divergence is marginally better than with the
normal divergence. When € gets smaller, the performance of the steepest descent
algorithm decreases significantly, while the performance of the multiplicative
update algorithm approaches the performance of the normal divergence. This
illustrates that the projected steepest descent algorithm is not feasible in the
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Figure 3.4: Illustration of the effect of the optimization algorithm and term e on
the augmented divergence. The solid line is the proposed method estimated with
the projected steepest descent algorithm and the dashed line is the proposed
method estimated with the multiplicative update rules with weights a = 0 and
B8 = 0 with different values of e (the scaling factor times the average of X). The
dotted line is the normal divergence, for reference. reference.

minimization of the normal divergence (¢ = 0).

With scaling factor 1 the multiplicative update rules resulted in a 1.1%
lower average value of the cost function than the steepest descent algorithm.
This verifies the earlier implications that from optimization point of view, the
multiplicative updates are more efficient in NMF tasks. However, lower average
value of the cost function did not result to better detection error rate or SDR,
as can be seen in Figure 3.4.

In our implementation the iteration was stopped when the ratio of the cost
function values between two consecutive iterations was smaller than a predefined
threshold (1 + 107°) for a certain number of iterations. The steepest descent
algorithm required approximately twice the number of iterations compared to
the multiplicative updates, which is natural since an optimal step size parameter
in the steepest descent algorithm was not estimated at each iteration.

Figure 3.5 illustrates the performance of proposed-NMF,..;, NMF-DIV, and
ISA as a function of the number of components, separately for the cases where
either a single component or all the components were clustered using the original
signals as references. The latter case was included because the original idea of
ISA is based on the use of multiple components per source. The detection error
rate of both algorithms approaches zero as the number of components increases.
The proposed method enables a better detection error rate with all component
counts. Increasing the number of components increases the average SDR. of the
separated sources up to a certain point, after which it decreases in the cases for
single-component algorithms, and saturates for multiple-component algorithms.
When all the components are used, the asymptotic SDR of NMF-DIV is better
than proposed-NMF,..j. However, the SDR of both algorithms is limited, which
suggests that non-negativity restrictions alone are not sufficient for high-quality
separation, but further assumptions such as harmonicity of the sources or a
more flexible signal model might be needed.

47



— proposed-NMF .,
= 05t — single comp.
2 NMF-DIV,
< 0.4} ~ " single comp.
§ proposed-NMF 5,
) 031 multiple comps.
g o02f ~ NMF-DIV,
;5 multiple comps.
% 0.1F ISA,
< ¥ multiple comps.

0

0

10f ‘ ‘ .
m o8t PROEN 1
el
R - -
= X X XX % x Tt -
a 61 ¢ XXX X X x -

; X X X x
. X n XXX x XX
/
4F 7 ]
/ L L L L L
0 5 10 15 20 25 30

number of components

Figure 3.5: Illustration of the effect of the component count. ’Single comp.’
refers to measures where a single component was used to model each source, and
‘multiple comps.’ refers to measures where all the components were clustered
using the original signals are references. The detection error rate is not affected
by the use of multiple components per source, and hence only three lines can
be seen in the upper panel.
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Chapter 4
Time-Varying Components

The linear instantaneous model (2.1) discussed in two preceding chapters is
efficient in the analysis of music signals since many musically meaningful entities
can be rather well approximated with a fixed spectrum and a time-varying gain.
However, sources with a strongly time-varying spectrum have to be represented
as a sum of multiple components. Furthermore, each fundamental frequency
value produced by a pitched instrument has to be represented with a different
component.

Increasing the number of components makes their estimation more difficult,
and this also requires a clustering algorithm which associates components to
their sources. As discussed in Section 2.6.1, the clustering is a difficult task at
least when the sources are not known beforehand. Instead of using multiple
components per source, more complex models can be used which allow either a
time-varying spectrum or a time-varying fundamental frequency for each com-
ponent. These two models are discussed separately in Sections 4.1 and 4.2. The
first model was originally published in [190].

4.1 Time-Varying Spectra

The signal model presented in this section is based on the assumption that a
sound source generates events so that the spectrogram of each occurrence is
similar. The representation is obtained by extending the model (2.1) so that a
single basis function b; is replaced by L basis functions b; ., 7 =0...L — 1.
In consecutive frames they assemble an event spectrogram, where 7 is the frame
index of the event, and L the duration of the event in frames.

In the signal model (2.1), multiplication is replaced by convolution, resulting

in the model
J L—1

Xt = Z Z bj,ng,t—T- (41)

j=17=0

This can be given the following interpretation: the event spectrogram b; » mod-
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Figure 4.1: An example of the convolutive model (4.1) which allows time-varying
components. The mixture spectrogram (upper left panel) contains the tones
C#6 and F#6 of the acoustic guitar, first played separately and then together.
The upper right panels illustrate the learned tone spectrograms and the lower
panels show their time-varying gains. In the gains, an impulse corresponds to the
onset of a tone. The components were estimated by minimizing the divergence
using the multiplicative updates presented in this chapter.

els the spectrogram of one event of a component j, and non-zero values of g; ;
describe the locations in which the events of component j set on. The values of
the non-zero gains also describe the scale of each repetition. A simple two-tone
example is illustrated in Figure 4.1.

Since the model (4.1) is a convolution between the event spectrogram and
its time-varying gain, it is called a convolutive signal model, and later the term
non-negative matriz deconvolution (NMD) is used to refer to the estimation
algorithm which is extended from NMF. In the analysis of audio signals the
convolutive signal model has previously been used in the NMF framework by
Smaragdis [164] and in non-negative sparse coding framework by Virtanen [190].
Time-varying components have also been used in vision research to analyze time-
varying sparse representations [20], [128], [129]. Also the method proposed by
Blumensath and Davies [18] can be formulated using (4.1). Their objective was
to find sparse and shift-invariant decompositions of a signal in the time domain.
Also in the multichannel separation framework the instantaneous linear model
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has been extended to model convolutive mixtures [177]. In these, the effect of
the transfer path from each source to each sensor is modeled by convolution
with the impulse response of the transfer path.

The convolutive signal model suits well for representing various musical
sound sources. Basically it enables learning any repeating structures from an
input signal. The repetition of a source is a requirement for its separation; if
an event occurs only once, it is unlikely to become separated from the other
co-occurring sounds. Also, if two or more sound sources are always present
simultaneously, the model is likely to represent them with a single component.

By modeling sound sources as a sum of repeating events, we can utilize the
temporal correlation present in natural sound sources. As discussed in Sec-
tion 3.1.2, many estimation algorithms based on the linear model (2.1) consider
each frame as an individual observation. The temporal continuity term in Sec-
tion 3 aimed at slowly-varying gains of components, but the convolutive model
is able to adapt to any repeating spectral structure.

The convolutive signal model is particularly suitable for percussive instru-
ments, the repetitions of which are approximately similar. An example of a
drum loop is illustrated in Figure 4.2. Each impulse in the estimated time-
varying gains corresponds to an onset of a drum hit. Ideally the convolutive
model produces impulses at the locations of the onsets of events, while the time-
varying gains produced by the linear model (2.1) follow the amplitude or energy
envelope of a source. For more complex noisy signals it is difficult to obtain ex-
act impulses, but still the learned components correspond to individual sources,
and can be used in their separation.

As Figure 4.1 illustrates, also harmonic sounds can be represented using
the model. If a note of a pitched musical instrument is played similarly sev-
eral times, its spectrogram can be learned from the mixture signal. However,
pitched instrument tones usually have a longer duration, and arbitrarily long
durations L cannot be used if the basis functions are estimated from a mixture
signal. When JL > T, the input spectrogram can be represented perfectly as
a sum of concatenated event spectrograms (without separation). Meaningful
sources are likely to be separated only when JL < T. In other words, esti-
mation of several components with large L requires long input signals. With
long input signals and event spectrogram durations the proposed algorithm be-
comes computationally slow, and therefore the separation of individual tones of
pitched instruments from polyphonic signals could not be tested systematically.
Naturally, the model can also represent sustained harmonic sounds with approx-
imately fixed spectrum, and also ones with constant-rate vibrato; one period of
the vibrato is represented using the event spectrogram.

By using a slightly modified version of the the notation as suggested by
Smaragdis in [164,165], the model (4.1) can be written in a matrix form as

L-1
X=> B, G (4.2)
7=0 —
where B, = [b17 e ,bJ], [Gl,t = gj+, and G is a shift operator, which moves
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Figure 4.2: An example of the convolutive model for percussive sources. A
spectrogram of a drum pattern consisting of bass drum, snare drum, and hi-
hats is illustrated in the upper plot. The gains of three components separated
from the signal are illustrate in the lower plots. The onset of each drum event
corresponds to an impulse in the gains.
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the columns of G by 7 indices to the right. The shifting does not change the
size of the matrix, but 7 rightmost columns are discarded and 7 columns are
zero-padded to the left. Formally, the shifting can be defined as

[Eﬁ¢={gﬂ“” iz: (4.3)

Similarly, a shift operator to the left is defined as

[G]jt+7’ tST—T
Gl = ’ 4.4
Gl {0 t>T—7 44

where T is the number of columns in G.

4.1.1 Estimation Algorithms

The matrices G, and B in the convolutive model (4.2) can be estimated using
methods extended from NMF and sparse coding. In these, the reconstruction
error between the model and the observations is minimized, while restricting
G, and B to be entry-wise non-negative. Favoring sparse gains can poten-
tially improve results, since real-world sound events set on in a small number of
frames only. In [164] Smaragdis proposed an algorithm which aims at minimiz-
ing the divergence between the observation and the model while constraining
non-negativity, whereas in [190] we proposed an algorithm which is based on
non-negative sparse coding. Also Blumensath and Davies [18] included a sparse
prior for the gains. Their model uses temporal resolution of one sample, which
makes the dimensionality of the optimization problem large.

The estimation algorithms presented here require that an input signal is
represented using either the magnitude or power spectrogram, so that non-
negativity restrictions can be used. We obtained good results using the magni-
tude spectrogram calculated using a fixed 40 ms window length and the DFT.
As earlier, the spectrum vector in frame ¢ = 1...T is denoted by x;, and the
matrix X = [xl .. .XT] is used to denote the observed magnitude spectrogram.

Feasible measures for the reconstruction error ¢, between the observations
X and the model X are at least the earlier presented Euclidean distance (2.18),
divergence (2.19), and augmented divergence (3.4). When sparseness objective
is included, the total cost function c is a sum of reconstruction error term c,
and sparseness term cg:

c¢(G,By,...,Br_1) =c:(G,By,...,Br_1) + Bc(G), (4.5)

where [ is the weight of the sparseness cost. The sparseness term can be defined,
for example, as in (3.7).

The design of multiplicative update rules for the minimization of the ob-
jective requires calculating the gradient of the objective. The gradient of the
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Euclidean distance dey. with respect to G is given by

L-1

VGdeuc(('};]307-~-aBL—1) = ZBI(?S_W)E) (46)
=0

and gradient of the divergence dg;, with respect to G by

L-1
X
Vedaiv(G,Bo,...,Br_1) = Z B; - [1 - (i)]v (4.7)
7=0 T

where 1 is a all-one matrix of the same size as X.
The gradients of the Euclidean distance and the divergence with respect to
B, are given by

VB, dewe(G,By,...,Br_1) = (XfX).TciT (4.8)
and
X T
Ve, daiv(G, By, ...,Br_1) = (1 — §) -G (4.9)

respectively. The gradient of the sparseness cost (3.7) was given in (3.11).

Asin Section 3.2, the terms are factored into the sum of positive and negative
terms. Then, the update rules for the minimization of the weighted sum of the
Euclidean distance and the sparseness cost are given by

(ZF BT X ) + V¢ (G)

T

(SEo BT X ) + Ve (G)

G — G.x (4.10)

and
X GT+pVe (G)
B, « B,.xo= S (4.11)
X G'+8Ve (G)

where X is obtained from (4.2),and the positive and negative gradients Ve
and Ve of the sparseness cost (3.7) were given in (3.18) and (3.19)

The update rules for the minimization of the weighted sum of the divergence
and the sparseness cost are given by

[Zf;é BT - (¥)| + 8V (G)
G — G.x——— = (4.12)
(TP BT 1) +5ve (@)
and
(X)- G +8Ve (G)
B, — B,.x i , (4.13)



When 8 = 0, the update (4.13) reduces to the one proposed by Smaragdis
in [164], but the rule (4.12) is slightly different. Unlike the update rule for G
presented in [164], (4.12) can be shown to converge. The convergence proofs
for the update rules are given in the Appendix A.2. The update rules for the
augmented divergence (3.4) can be obtained from (4.12) and (4.13) by replacing
[X] by [X],

The overall estimation algorithm is similar to the algorithm presented on
page 40: the matrices B and G, are initialized with random positive values,
and they are then updated alternatively until the values converge. Both the
number of components and L, the duration of event spectrograms have to be
set manually. In our simulations, event spectrogram durations between 1 and

25, and number of components between 1 and 35 were tested.

Synthesis In the synthesis, the spectrum of component j = 1...J within
each frame ¢t = 1...T is calculated as Zf;ol gjt—rbjr. A time-domain signal
can be obtained from this by applying the methods described in 2.6.3.

4.1.2 Simulation Experiments

Simulation experiments were conducted using the same material and test pro-
cedure as in Sec. 3.3. The non-negative matrix deconvolution algorithms which
minimize the Euclidean distance and divergence without the sparseness term
(6 = 0) using the update rules (4.10)-(4.13), are denoted by NMD-EUC and
NMD-DIV, respectively. The case 8 > 0 is examined separately. The algorithm
proposed in [164] is denoted by NMD-DIV (*).

Because the computational complexity of these algorithms is larger than
those discussed in Chapter 3, we had to use a slightly more sensitive stopping
criterion. Therefore, the results presented in Section 3.3 are not directly compa-
rable to the ones presented here. However, we tested here the NMD algorithms
also with L = 1, which correspond to basic NMF algorithms, and are here
denoted by NMF-EUC and NMF-DIV, respectively.

In the first experiment we used 10 components, which is approximately equal
to the average number of sources within the mixtures, and L = 5, which was
found to lead to good results on the average. The average SDRs and detection
error rates are shown on Table 4.1. The averages are calculated for all sources,
and also separately for pitched-instrument and drum sources. When the re-
construction error measures are examined separately, the NMD algorithms give
better results than the NMF algorithms, except in the detection of pitched in-
struments, where NMF-DIV performs better than NMD-DIV. The performance
of NMD-DIV is approximately equal to the performance of NMD-DIV(*).

In the second experiment, we tested different values for L while the number
of components was fixed to 10. The performance of NMD-EUC and NMD-DIV
as a function of L is illustrated in Figure 4.3. When L is increased slightly (by
1) from 1, both the detection and SDR improve. Larger L gives diverse results:
it increases the detection error rate of pitched instruments, which indicates that
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Figure 4.3: The average SDR and detection error rate as a function of the event
spectrogram duration L for NMD-EUC (upper plots) and NMD-DIV (lower
plots). The solid line is the average of all sources, the dashed line is the average
of pitched instrument sources, and the dotted line is the average of drum sources.
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Table 4.1: Simulation results of non-negative matrix deconvolution algorithms.
The best result in each column is highlighted in bold.
algorithm SDR (dB) detection error rate (%)
all  pitched drums all pitched drums

NMD-EUC 7.2 8.3 5.1 29 29 30
NMD-DIV 7.1 8.5 4.7 29 33 21
NMD-DIV(*) 7.0 8.3 4.6 28 30 23
NMF-EUC 6.8 8.1 4.0 31 30 34
NMF-DIV 6.7 8.3 3.7 28 30 23

the algorithm does not help in learning individual pitched tones. For NMD-
EUC, increasing L improves the detection of drums significantly, and it also
improves their average SDR. Larger L also increases the SDR of drum sources
for NMD-DIV. For pitched instruments the effect of SDR is smaller, even though
small improvements can be obtained. The best average results were obtained
using L between 5 and 10, which correspond to spectrogram lengths between
100 and 200 ms, respectively. The lengths are sufficient for representing most
drum hits, and the performance measures show that the model is suitable for
representing drum signals.

In the third experiment, the number of components was varied while keep-
ing L = 5 fixed. The average SDR and detection error rate as a function of
the number of components is illustrated in Figure 4.4. Increasing the number
of components naturally increases the detection rate monotonically. However,
larger number of components does not lead to significantly better SDRs: in the
case of pitched sources the quality saturates after approximately 10 components,
and in the case of drum components after 3 components.

The effect of the sparseness term was tested by using different values of 3
together with the divergence. The results are illustrated in Figure 4.5. The use
of sparseness term (5 > 0) does not significantly improve the average results,
and large values of  lead to a clearly degraded performance.

4.2 Time-Varying Fundamental Frequencies

Compared with the earlier presented models which represent each fundamental
frequency value with a different component, a model which can represent differ-
ent fundamental frequencies of an instrument with a single component provides
the advantage that the spectrum of a tone of a certain fundamental frequency
can be predicted using tone of adjacent fundamental frequency values. In the
case where the tones of an instrument are present with co-occurring sources, es-
timating their spectrum and separating them individually is difficult. However,
when tones with adjacent fundamental frequency values are estimated jointly,
the shape of the spectrum can often be deduced, and separation becomes more
reliable. Furthermore, this approach produces representations which are a good

57



detection error rate (%)

SDR in dB

80

60 1
40
20 1

J all sources
- J ~ - pitched
‘ " 7 " instruments
.\_ == _ _| drums
0 5 10 15
0 5 10 15

number of components

Figure 4.4: The average SDR and detection error rate of NMD-DIV as a function
of the number of components, when the duration L was 5. The solid line is the
average of all sources, the dashed line is the average of pitched instrument
sources, and the dotted line is the average of drum sources.

detection error rate (%)

SDR in dB

60

50 1
40
30
201

10

Nox S

all sources
pitched
" 7 " instruments
drums
0 1 10 102 10° 10*
sparseness weight 3
- - T RN
N
N
....... N
AN
L L L L - \ L
0 1 10 102 103 10*

sparseness weight 0

Figure 4.5: The effect of different sparseness weights 5 on the detection error
rate and SDR. The solid line is the average of all sources, the dashed line is the
average of pitched sounds, and the dotted line is the average of drums.

o8



and intuitive basis for automatic transcription of pitched instruments.

Varying fundamental frequencies are difficult to model using time-domain
basis functions or frequency-domain basis functions with linear frequency reso-
lution. This is because changing the fundamental frequency of a basis function
is a non-linear operation which is difficult to implement with these representa-
tions: if the fundamental frequency is multiplied by a factor ~y, the frequencies
of the harmonic components are also multiplied by ~; this can be viewed as a
stretching of the spectrum. For an arbitrary value of -, the stretching is difficult
to perform on a discrete linear frequency resolution, at least using a simple op-
erator which could be used for non-parametric representations. The same holds
as well for time-domain basis functions.

A logarithmic spacing of frequencies bins makes it easier to represent varying
fundamental frequencies. A logarithmic scale consists of discrete frequencies
fresCF~1, where k = 1... K is the discrete frequency index, ¢ > 1 is the ratio
between adjacent frequency bins, and f..¢ is a reference frequency in Hertz which
can be selected arbitrarily. For example, ¢ = ¥/2 produces a frequency scale
where the spacing between the frequencies is one semitone. In practice, a power
spectrum of a logarithmic frequency resolution can be calculated by applying the
FFT to obtain linear-resolution power spectrum, and then calculating the energy
within each log-frequency band by summing power spectrum bins weighted by
the frequency response of the log-frequency band [24].

On the logarithmic scale, the spacing of the partials of a harmonic sound is
independent of its fundamental frequency. For fundamental frequency fy, the
overtone frequencies of a perfectly harmonic sound are are mfy, where m is a
positive integer. On the logarithmic scale, the corresponding frequency indices
are k = log.(m)+log.(fo/frer), and thus the fundamental frequency affects only
the offset log,(fo/fret), not the intervals between the harmonics.

Given the spectrum X (k) of a harmonic sound with fundamental frequency
fo, a fundamental frequency multiplication «y fy can be implemented simply as
a translation X(k’) = X(k — &), where 0 is given by § = log. 7. Compared with
the stretching of the spectrum, this is much easier to implement.

The estimation of harmonic spectra and their translations can be done adap-
tively by fitting a model onto the observations.! However, this is difficult for an
unknown number of sounds and fundamental frequencies, since the reconstruc-
tion error as a function of translation é has several local minima at harmonic
intervals, which makes the optimization procedure likely to stuck into a local
minimum far from the global optimum. A more feasible parameterization allows
each component to have several active fundamental frequencies in each frame,
the amount of which is to be estimated. This means that each time-varying gain
g;.+ is replaced by gains g;+ ., where z = 0... Z is a fundamental frequency shift
index and Z is the maximum allowed shift. The gain g;, . describes the amount
of the j*™ component in frame ¢ at a fundamental frequency which is obtained
by translating the fundamental frequency of basis function b; by z indices.

1This approach is related to the fundamental frequency estimation method of Brown, who
calculated the cross-correlation between an input spectrum and a single harmonic template
on the logarithmic frequency scale [23].
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The size of the shift z depends on the frequency resolution. For example, if
48 frequency lines within each octave are used (( = %/2), z = 4 corresponds to
a shift of one semitone. For simplicity, the model is formulated to allow shifts
only to higher frequencies, but it can be formulated to allow both negative and
positive shifts, too.

A vector g = [gj7t,0, . ,gj,t,Z]T is used to denote the gains of component
j in frame t. The model can be formulated as

J
X =) bjrgy, t=1...T, (4.14)
j=1

where * denotes a convolution operator, defined between vectors as

Z

y:bj * gt = yk:ij,kfzgj,t,z; k=1... K. (415)
z2=0

Fig. 4.6 shows the basis function and gains estimated from the example signal
in Fig. 2.1.

4.2.1 Estimation Algorithm

In general, the parameters can be estimated by fitting the model to observations
with certain restrictions, such as non-negativity or sparseness. Algorithms for
this purpose can be derived by extending those used in NMF and sparse coding.
Here we present an extension of NMF, where the parameters are estimated
by minimizing either the Euclidean distance or the divergence (2.19) between
the observations X and the model (4.14), while restricting the gains and basis
functions to be non-negative. Again, the elements of g;; and b; are initialized
with random values and then updated iteratively until the values converge.

The update rule of gains for the minimization of the Euclidean distance is
given by

bj * X¢

gjﬁ(_gj’t'xb'*fg; j:17...7J7 t:17...7T (416)
J

where *x denotes the correlation of vectors, defined for real-valued vectors b;
and x; by

Z

y:bj *Xt & Yk :ij,kact’;ﬁz, k=1...K. (417)
2=0

The update rule for the basis functions is given by

T
_ =18t * X
b; — b; X == —,

i=1...,J (4.18)
D18t *xX
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Figure 4.6: Illustration of the time-varying gains (left) and the basis function
(right) of a component that was estimated from the example signal in Fig. 2.1
containing a diatonic scale and C major chord. On the left, the intensity of the
image represents the value of the gain at each fundamental frequency shift and
frame index. Here the fundamental frequencies of the tones can be seen more
clearly than from the spectrogram of Fig. 2.1. The parameters were estimated
using the algorithm proposed in this chapter which minimizes the divergence.
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where the correlations are calculated for delays 1... K, to result in a vector of
length K.

Similarly, the update rules for the minimization of the divergence are given
as

g XL(’%) =1 J t=1 T (4.19)
gj.,t g],t~ bj*]. ) J=4...,4J, T Ly ey .
and .
18t x (3 ,
bj&bj.xM j=1,...,J,, (4.20)
D18+l

where 1 is a K-length vector of ones.

Note that it is possible to constrain the basis functions to a harmonic spec-
trum of a predefined fundamental frequency by initializing parts of the spectrum
to zero values, in which case the multiplicative updates cannot change them.

The algorithm produces good results if the number of sources is small, but
for multiple sources and more complex signals, it is difficult to get as good
results as those illustrated in Fig. 4.6. The model allows all the fundamental
frequencies within the range z = 0...Z to be active simultaneously, which
can produce undesirable results: for example, the algorithm may model a non-
harmonic drum spectrum by using a harmonic basis function shifted to multiple
adjacent fundamental frequencies. Ideally, this could be solved by restricting
the gains to be sparse, but the sparseness criterion complicates the optimization.

When shifting the harmonic structure of the spectrum, the formant structure
becomes shifted, too. Therefore, representing time-varying pitch by translating
the basis function is appropriate only for nearby pitch values. It is unlikely that
the whole fundamental frequency range of an instrument could be modeled by
shifting a single basis function. This can be resolved either by using different
components for different fundamental frequency regions, or in a single-source
case by whitening the observed spectrum using an inverse linear prediction filter.

4.3 Dualism of the Time-Varying Models

The models presented in Sections 4.1 and 4.2 are each others duals: by changing
the representation, the update rules and estimation algorithms become exactly
the same. Therefore, it is sufficient to implement only one of the algorithms,
and then change the representation to get the other. Here we shortly describe
how parameters of the time-varying frequency model can be estimated using the
estimation algorithm for time-varying spectra, and vice versa.

Estimating time-varying fundamental frequencies using the algorithm
for time-varying spectra First, the original mixture spectrogram X is calcu-
lated. As explained on Page 59, logarithmic frequency resolution has to be used.
The input observation matrix X for the estimation algorithm is the transpose
X = XT of the spectrogram. Now we can apply the update rules presented in
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Section 4.1. The event spectrogram length L should be set equal to the desired
maximum pitch shift Z plus one.

The outputs of the algorithm are the gain matrix G and spectra B, 7 =
0,...,L — 1. The parameters of the time-varying frequency model can be ob-
tained from these by

b =[Gl  k=t=1...T (4.21)
and
gj,f,z:[BT]k,jv f:k:l,...,K, Z:TZO,...,Z (422)

Thus, the frame index ¢ in the time-varying spectrum model corresponds to the
frequency index k in the time-varying frequency model and vice versa, and the
time shift index 7 corresponds to the pitch shift index z.

Estimating time-varying spectra Time-varying spectra can be estimated
using the algorithm for time-varying frequencies by using the same procedure
as above: first, the original mixture spectrogram X is calculated. The input
observation matrix X for the estimation algorithm is the transpose X = XT of
the spectrogram, and the parameters are estimated using update rules presented
in Section 4.2. The maximum pitch shift Z is set equal to the event spectrogram
length L minus one.

The outputs of the algorithm are the gains g; ;. and basis functions b;. The
parameters of the time-varying spectrum model can be obtained from these by

Gl i =bjk, t=k=1,...,K (4.23)

and

=l
Il
~+
Il
—_

[BT]]:;’]’ =Gj,t,z, T, Z2=T= 0, ceey Z (424)

geeey

4.4 Combining the Time-Varying Models

It is possible to include components with time-varying spectra and time-varying
fundamental frequencies into a same model. Simply put, the combined model
X't the sum of the model X*P¢¢ (4.1) for time-varying spectra and the model
Xfrea (4.14) for time-varying fundamental frequencies:

Xtot — xspec + X freq (4.25)

In the following, we use the superscripts SP°° and ¢ to distinguish between the
matrices G®P°¢ and BP°° of the time-varying spectrum model and the vectors
ggfteq and bg-req of the time-varying fundamental frequency model.

The estimation can done using earlier presented principles, i.e., by minimiz-
ing the reconstruction error while keeping the parameters non-negative. This
can be carried out by applying update rules presented earlier. One possibility

for this is the following algorithm:
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(1) Initialize each entry of the matrices G®P* and BSP*¢ and vectors gﬁffq and

bg.req with the absolute values of Gaussian noise.

(2) Evaluate the combined model X't (4.25).

(3) Update G®°P°° using either (4.10) or (4.12) depending on the chosen cost
function, while replacing the model X in (4.10) and (4.12) by the combined
model Xt

(4) Update gﬁffq using either (4.16) or (4.19) depending on the chosen cost
function. The model X in (4.16) and (4.19) is replaced by X't

(5) Evaluate the combined model X't (4.25).

(6) Update BSPe° using either (4.11) or (4.13) depending on the chosen cost
function. The model X in (4.11) and (4.13) is replaced by X't
(

)
(7) Update b;req using either (4.18) or (4.20) depending on the chosen cost
function. The model X in (4.18) and (4.20) by the combined model Xt

(8) Repeat Steps (2) —(7) until the values converge.

Figure 4.7 illustrates an example signal and components of the combined
model estimated by minimizing the divergence. The complexity of the model
was noticed to cause some difficulties for the parameter estimation: the model
tended to present drum sounds with time-varying frequencies, so that the op-
timization stuck easily into a local minimum far from the optimum. To steer
the algorithm to the correct direction, we allowed the basis functions for time-
varying frequencies to have non-zero values only at locations which correspond
to a perfectly harmonic sound. As the Figure 4.7 illustrates, the estimated gains
are less accurate than those presented earlier for separate models.

The model can also be extended to allow a component to have time-varying
spectrum and frequency simultaneously [154]. This further increases the number
of free parameters so that obtaining good separation results can become more
difficult.
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Figure 4.7: Illustration of the model which allows components time-varying
spectra and frequencies simultaneously. The mixture signal (upper plot) is a
sum of a diatonic scale and C major chord played by guitar (Fig. 2.1) and a
drum loop (Fig. 4.2). The mixture signal was separated into a single component
with time-varying fundamental frequency (middle plot) and two components
with time-varying spectrum (lower plots).
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Chapter 5

Overview of Sound
Separation Methods Based
on Sinusoidal Modeling

An efficient decomposition for the sounds produced by musical instruments is
the sinusoids plus noise model, which represents the signal as a sum of deter-
ministic and stochastic parts, or, as a sum of a set of sinusoids plus a noise
residual [8,158]. Sinusoidal components are produced by a vibrating system,
and are usually harmonic, i.e. the frequencies are integer multiplies of the
fundamental frequency. The residual contains the energy produced by the ex-
citation mechanisms and other components which are not a result of periodic
vibration. The deterministic part of the model, which is called sinusoidal model,
has been used widely in audio signal processing, for example in speech coding
by McAulay and Quatieri [120]. In music signal processing it became known by
the work of Smith and Serra [157,167].

5.1 Signal Model

The sinusoidal model for one frame z(n), n =0,..., N — 1 of a signal can be
written as
H
z(n) =Y ancos2rfun/fo+0n) +r(n), n=0,...,N-1, (5.1)
h=1

where n is the time index, N the frame length, ap, fr, and 0, are the amplitude,
frequency, and initial phase of the h'" sinusoid, respectively, and 7(n) is the
residual. Most methods assume that the parameters within each frame are
fixed, even though time-varying parameters are used in some systems (see for
example [65,125]).

66



amplitude in dB
o
S

0 1000 2000 3000 4000 5000

frequency (Hertz)

Figure 5.1: The amplitude spectrum of a piano tone G#4. The frequencies
(location on the x-axis) and amplitudes (location on the y-axis) of the estimated
sinusoids are illustrated with crosses.

Estimation of the parameters is often done in the frequency domain. Each
sinusoid corresponds to a peak in the amplitude spectrum, and their frequencies
can be estimated by picking the most prominent peaks. Figure 5.1 shows an
example of the spectrum of a harmonic sound, from which the sinusoids are
estimated. Also matching pursuit algorithms [70] have been used, where a
dictionary of time-domain elements is employed to decompose the signal. Basic
algorithms for the estimation of sinusoids from music signals have been reviewed
by several authors, for example Rodet in [145], Serra in [158], and Virtanen
in [187]. A theoretical framework for the estimation is discussed by Kay in [96,
pp. 407-445], and many useful practical details on estimating the peaks are
given in [6].

The sinusoidal model is a powerful tool in the analysis of music signals,
since it can preserve the exact frequencies of the harmonic partials. This en-
ables associating the sinusoids into sound sources and estimating higher-level
information such notes played by each source. This approach has been taken,
for example, in the fundamental frequency estimation method proposed by Ma-
her and Beauchamp [118]. The amplitudes of the sinusoids have been used,
for example, to estimate the parameters for sound synthesis of plucked string
instruments [198]. In addition to analysis, the sinusoidal model has also been
applied in parametric coding [116, 183].

For a harmonic sound source, the frequencies of the sinusoids are approxi-
mately integer multiplies of the fundamental frequency. By taking this into ac-
count in the signal model, and by estimating whole harmonic structures instead
of individual sinusoids, the robustness of partial estimation can be significantly
increased.
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For the sum of M sources the signal model can be reformulated as
xz(n) = A, b COS(2T frn p10 + O ) + 7(1), n=0,...,N—1 (5.2)

where H,, is the number of overtones in source m, and @ n, fm,n, and On, g
are the amplitude, frequency, and phase of its h'" overtone. We assume that
the sources are harmonic, so that fp, n = hfy 1, where fp, 1 is the fundamental
frequency of the source m. For a single monophonic source the signal model
was first proposed by Laroche et al. [110], and several authors have extended it
for multiple polyphonic sources.

5.2 Separation Approaches

Sound source separation algorithms which apply sinusoidal model can be roughly
divided into three categories: 1) methods which first estimate sinusoids and then
group them into sound sources, 2) methods which estimate jointly the number
of sources, their FOs, and parameters of sinusoids, and 3) methods which first
estimate the number of sources, their FOs, and then estimate sinusoids using
partial frequencies predicted by the F0s. In addition, we shortly discuss here
methods which are based on comb filtering, since their performance is often
similar to sinusoidal modeling based methods.

5.2.1 Grouping

The first approach is motivated, for example, by the human auditory system,
which has been suggested to use a slightly similar approach in auditory scene
analysis. The acoustic cues used by the auditory system listed on Page 5 can
be used to design rules for grouping the sinusoids to their sources. Sound
source separation algorithms based on this approach have been proposed by
Kashino [94,95], Abe and Ando [5], Sterian [169], and Virtanen [185].

Most pitched musical instruments are harmonic, and often the harmonicity
assumption alone is sufficient to perform the grouping. The first source separa-
tion algorithms based on the harmonicity limited to two sources. The method
proposed by Parsons [134] first estimated individual sinusoids, then estimated
the pitches of both sound based on these, and finally assigned each sinusoid to
either source by predicting the overtone frequencies using the pitch estimates.
Also the system proposed by Maher first estimated the frequencies of the sinu-
soids and then estimated the pitches based on these [119].!

Separation algorithms based on the grouping approach are likely to produce
good results only in simple mixing cases. When the number of concurrent
sounds is high, a sinusoid may be the result of two or more overlapping sources,

1The mismatch between the estimated sinusoids and the overtones predicted using the
estimated pitches was used in multiple fundamental frequency estimation by Maher and
Beauchamp in [118].
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Figure 5.2: The spectrogram of two tones played by French horn successively
(upper left panel), a polyphonic excerpt of pop music ('Being Boring’ by Pet
Shop Boys, lower left panel), and the frequencies of the sinusoids analyzed from
both signals (upper and lower right panels). The harmonic structure of the up-
per signal is clearly visible and the sinusoids can be estimated reliably, whereas
the polyphonic signal is more difficult to analyze.

and therefore cannot be resolved only by grouping. Figure 5.2 illustrates the
difference between a simple monophonic signal and a polyphonic signal.

5.2.2 Joint Estimation

In practice, estimation of overlapping partials requires that the harmonic struc-
ture is utilized already in the estimation of the sinusoids. This can be accom-
plished by estimating all the parameters in (5.2) jointly, i.e., estimating the
parameters of the sinusoids, while restricting them to harmonic relationships.
The estimation criterion can be the modeling error, for example. Since it
can be minimized by using an indefinite number of sinusoids, their number has
to be limited and parameters restricted so that they are likely to model indi-
vidual sound sources. For example, harmonic structures can be retained by the
constraint fy, , = hfy,1. More flexible algorithms, however, do not use strict
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constraints, but allow some deviation from the ideal harmonic frequencies. One
possibility for formulating flexible restrictions is by a Bayesian framework: prior
information is described using probability density functions, which may allow
slight deviations from ideal harmonicity, and then Bayesian inference is used
to estimate the parameters by maximizing their posterior pdf. Most commonly
used prior probability density functions assume a small number of sources, and
partial frequencies which are approximately integer multiplies of the fundamen-
tal frequency.

The Bayesian approach has been used for example by Goto for the detec-
tion of the melody and bass lines in polyphonic music [67] and by Godsill and
Davy for multiple fundamental frequency estimation [63]. Also the parametric
audio coding algorithm proposed by Vincent and Plumbley [183] used Bayesian
inference to estimate the signal model parameters.

In the Bayesian framework the posterior pdf is irregular and sharply peaked
as a function of fundamental frequencies. Therefore, lot of work is required
to explore the parameter space efficiently so as to find the maximum of the
posterior pdf [38]. There are several studies which concentrate only on designing
a suitable optimization algorithm, see for example [200] and [9]. In practice, a
good performance is obtained by initializing the optimization algorithm by an
estimate of the fundamental frequencies, which results in fundamental frequency
driven estimation.

5.2.3 Fundamental Frequency Driven Estimation

Fundamental frequency estimation has been one of the most studied audio anal-
ysis topics, and recently also several multiple fundamental frequency estimation
algorithms have been proposed (see [105] for a review). Compared with the
source separation, it can usually been performed more robustly, since unlike
source signals, pitch is a one-dimensional feature.

The third class of separation algorithms first applies a multiple fundamen-
tal frequency estimation algorithm to estimate the number of sounds and their
fundamental frequencies, and then estimates the sinusoids by assuming that
their frequencies are approximately integer multiplies of the fundamental fre-
quencies. Compared with joint estimation of the parameters, these lose some
flexibility, but are usually easier to implement and are typically faster and more
robust. Methods based on this approach have been proposed by Quatieri and
Danisewicz [142], and Virtanen and Klapuri [194,195], who estimated the param-
eters by minimizing the energy of the residual. Every and Szymanski separated
the sources using a time-varying filter for each source, which were designed using
an algorithm initialized by multiple fundamental frequency estimation [52].

5.2.4 Comb Filtering

In addition to sinusoidal modeling, relatively similar results can be obtained by
comb filtering, where delayed versions of the input (feedforward filter) or out-
put (feedback filter) signal are summed to the output signal [75, pp. 361-376].
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The frequency response of a comb filter has peaks at integer multiplies of the
frequency corresponding to the period of the delay. When the delay is tuned ac-
cording to the fundamental frequency, subtracting delayed versions of the input
signal results in canceling the fundamental frequency and its overtones [39].

A normal discrete-time implementation of the delay restricts the fundamen-
tal frequencies to quantized values. This problem has been addressed for ex-
ample by Valiméaki et al., who used a fractional-delay allpass filter to achieve
arbitrary fundamental frequencies [199]. The method proposed by Wang over-
comes the quantization by modulating the signal around the frequency of each
sinusoid to the baseband [201]. Furthermore, the algorithm is able to follow
the temporal evaluation of the strongest harmonic structure by adaptively up-
dating the modulation frequencies. The fundamental frequency and amplitude
envelopes are restricted to be slowly-varying, so that the resulting signals are
similar to those obtained using frame-by-frame sinusoidal modeling. In our
simulations, it produced good results when a single source was dominating.

5.3 Resolving Overlapping Overtones

Source signals which overlap each other in time and frequency are difficult to
resolve with any separation algorithm. In the case of sinusoidal modeling, har-
monic fundamental frequency relationships are particularly difficult. When two
or more sources are in a harmonic relationship, some of the overtones have ap-
proximately the same frequency and these partials are said to collide, or, overlap.
The phenomenon is common in musical signals, since in music the fundamen-
tal frequencies are often in a harmonic relationship. The exact amplitudes and
phases of colliding partials cannot be solved based on the acoustic information,
but they can be only approximated.

The rough shape of the amplitude spectrum of natural sounds is usually
slowly-varying as a function of time and frequency.? It has also been observed
that this spectral smoothness principle is an important cue in fusing spectral
components into sound sources [22, p. 232]. A possible reason for this is that we
do not perceive individual partials, but harmonic structures within frequency
bands. For example, it has been observed by Klapuri that for harmonic sounds
where the overtones have uniform amplitudes within a frequency band the au-
ditory model [121] produces representations with a large energy at the funda-
mental frequency [101, pp. 238-241]. Because of the above-mentioned acoustic
properties and human sound perception, the amplitudes of overlapping partials
can be rather well approximated by interpolating from adjacent frames or par-
tials.

For some musical instruments the overtones are phase-locked [61, pp. 143-
144], so that interpolation could also be used to solve the phases of overlapping
partials. However, phase locking cannot be assumed in general, since there are
also musical instruments where this does not hold [61, pp. 144]. Since the
phases are perceptually less important, a careful estimation of the phases is

2Klapuri calls this “spectral smoothness”, see [106, pp. 54-55].

71



usually not necessary. Either the phase of the mixture signal can be assigned
for all the overlapping harmonics, or their phases can be generated to produce
smooth transitions between frames.

The most commonly used method to approximate the amplitude a,, , of the
ht? partial of source m is by linear interpolation of two adjacent partials h — 1
and h + 1, so that

R 1
G, = §(Gm7h71 + A ht1)- (5.3)

This method has been used, for example, by Parsons [134] and Maher [119].
Even though other partials could be used too, the adjacent ones usually produce
the best results, since their amplitudes correlate the most with the amplitude
of the overlapping partial. Interpolation from adjacent frames has been used in
speech separation by Quatieri and Danisewicz [142]. For musical signals their
method is not as useful since in music, partials usually collide for a relatively
long duration.

By regarding a group of colliding sinusoids as an individual sinusoid, we can
measure its amplitude anix, frequency, and phase. The interpolated amplitudes
of each source can be further processed so that the processed sinusoids result in
a mixture sinusoid with amplitude a,;x. This can be obtained by normalization

a;

a; = Omix —5——> (5.4)
Zj:l aj
where a;, j = 1,...,J are the amplitudes of the interpolated sinusoids. The

spectral filtering method proposed by Every and Szymanski [52] implements
this principle.

The accuracy of the interpolation depends notably on the accuracy of the
fundamental frequency estimation, since that is used to determine which par-
tials are interpolated. Because multiple fundamental frequency estimation is
a difficult task, the detection or fundamental frequency estimation of a har-
monic sound may fail. As a results of this, the signal z(n) contains harmonic
components for which no sinusoids has been assigned in the model (5.2), and
some overlap estimations are incorrect. Errors in the fundamental frequency
estimation cause large errors in the estimation of partials, for example because
interpolating amplitudes from partials which are overlapping. As the number of
concurrent sources increases, the number of overlapping partials increases, and
there may be situations where most of them overlap. Therefore, there should be
a method to utilize also the amplitudes measured for the overlapping component
groups. The methods proposed in the next chapter provides one alternative for
this.

A high-energy noise residual will also affect the estimation. Non-harmonic
musical sources, such as drums, are usually short in duration, so that the energy
is high in a few frames only. Non-harmonic noise can be suppressed by using
standard noise reduction techniques such as the spectral subtraction [179, pp.
333-354]. It is also possible to suppress noise at a post-processing stage, as
proposed by Jensen and Hansen [91]. However, noise reduction is not discussed
in this thesis.
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Chapter 6

Proposed Separation
Method Based on
Sinusoidal Modeling

This chapter proposes a separation algorithm based on the sinusoidal model
presented in the previous chapter. To achieve computational efficiency and easy
implementation, we propose a two-stage method, where first the number of
sounds and their rough fundamental frequencies are estimated, after which we
estimate their time-varying parameters and perform the actual separation. For
resolving overlapping overtones we propose and test several methods, which all
are based on the spectral continuity assumption discussed in Section 5.3.

In the first stage we apply the multiple fundamental frequency estima-
tor [105] which has been shown to produce good results in this task. The
separation and estimation of more accurate sinusoidal modeling parameters is
done by minimizing the least-squares error between the mixture signal and the
model, while using restrictions which accomplish the separation. Even though
the Bayesian approach would provide a greater flexibility than the proposed
deterministic algorithm, there are no extensive statistical measurements for
the prior distributions functions of the parameters which are required in the
Bayesian approach.

Using the same notation for the variables as in the previous chapter, the
model Z(n) for M sources is written as

M Hp
Z(n) = Z Zamyh cos(27 frn n1 + Om.n), n=0,...,N—1, (6.1)

m=1 h=1

When multiple sources (M > 1) are present, each of them is modeled with
a separate part of the signal model. Minimization of the reconstruction er-
ror between the observed signal z(n) and the model Z(n) does not in general
guarantee that each source signal would be represented separately with its own
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part of the model. For example, if two overtones have the same frequency, ei-
ther of them can represent the signal energy at that frequency. Therefore, we
place restrictions for the model parameters so that it becomes unlikely that a
source is represented with another source’s part. In practice, the amplitudes
of overlapping partials are restricted so that the large changes between adja-
cent overtones of a sound are not allowed, resulting in continuous spectrum of
separated sounds.

If the residual in (6.1) is assumed to be normally distributed white noise,
least-squares estimation is the maximum likelihood estimator for individual si-
nusoids. Nonlinear least-squares (NLS) algorithm can be used to estimate their
frequencies, amplitudes, and phases [170]. Stoica and Nehorai found out, that
in colored noise, frequency estimates of NLS are the same as in the case of white
noise [171]. In colored noise, the amplitudes have to be adjusted by bandwise
noise subtraction. In the estimation of closely spaced sinusoids the NLS has
been used by Tolonen in [173] and by Virtanen in [187], and in the estimation
of perfectly harmonic sounds by Karjalainen and Tolonen [92,174].

Since the NLS method itself does not provide a measure for determining
the number of sounds, we estimate it by the multiple fundamental frequency
estimator (MFFE) proposed by Klapuri in [105]. The MFFE produces also
rough estimates of the overtone frequencies which can be used to initialize the
NLS algorithm. The estimated FOs are used to generate rough predictions of the
partial frequencies, which are then improved iteratively. We use an extended
version of the method proposed by Depalle and Tromp [43] to estimate the
sinusoids. Overlapping components are resolved using linear models for the
overtone series or by nonlinear smoothing, as described in Section 6.3.

The overall separation procedure consists of the following steps:

Detect onset times.
Estimate multiple fundamental frequencies between adjacent onsets.
Select a linear model based on the fundamental frequency estimates.

Estimate phases, keeping the frequencies fixed (Section 6.2).

Update frequencies, keeping the amplitudes and phases fixed (Section 6.4).

)
)
)
)
5) Estimate amplitudes, keeping the phases and frequencies fixed (Sect. 6.3).
)
) Iterate steps 4 - 6.
)

Combine the estimated fundamental frequencies in successive frames to
form entire notes (Section 6.5).

The steps 4 - 6 are our main contribution in this separation algorithm, so they
are covered in more detail in the following sections. The steps 1 and 2 are
shortly described here.

The onset detection (Step 1) estimates the temporal locations of sound on-
sets. We use the algorithm of Klapuri [99], which measures the amplitude enve-
lope of the signal within 21 non-overlapping frequency bands, estimates onsets
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within each band by locating large relative increases in the amplitude envelope,
and then combines the onsets from all the bands.

We assume that sounds set on and off exactly at the estimated onset loca-
tions, so that between two onsets the number of sounds and their fundamental
frequencies do not change (more accurate onset and offset locations can be
estimated from the sinusoids). In Step 2 we estimate the number of sounds
and their fundamental frequencies by the MFFE estimator proposed by Klapuri
in [105]. In addition to the fundamental frequency estimates, the algorithm
produces rough estimates of the overtones frequencies. Because the algorithm
uses a relatively long window size (90-200 ms), it can estimate the number of
sounds and their fundamental frequencies quite robustly.

Since onsets of other instruments can occur during a musical note, a note
can be divided into several adjacent MFFE frames. Once the time-varying
sinusoidal modeling parameters have been estimated (Steps 4 - 6), parameters
estimated in successive frames are combined to form notes (Step 8), which is
shortly described in Section 6.5.

6.1 Formulation in the Frequency Domain

The proposed method can be formulated both in time and frequency domains.
Here we present the frequency-domain formulation, since it allows a computa-
tionally efficient estimation of the phases by processing the real and imaginary
parts of the spectrum separately. Furthermore, each sinusoid is localized in the
frequency domain, and therefore a narrow frequency band is sufficient for the
estimation of its parameters. This leads to an approximation which reduces the
computational complexity significantly.

This section presents how the parameters of (6.1) are estimated within each
short sinusoidal modeling frame, given the rough frequency estimates fmh
Frame sizes between 15 and 100 ms were tested in our simulations, but a frame
size 40 ms was used in the final system, since it provides a good tradeoff between
time and frequency resolutions. A 50% overlap between adjacent frames was
used. We used the Hamming [17, pp. 95-98] window. The sidelobeless window
functions proposed by Depalle and Hélie [42] could ideally provide better re-
sults if the initial frequency estimates are far from the correct ones, since their
responses are monotonically decreasing. However, here the initial frequency es-
timates are rather close to the correct values, and therefore the mainlobe’s width
is more important, and the results were better with the Hamming window (see
Sec. 6.6).

To enable phase estimation, the model is rewritten as

M H.,,
z(n) = O b, COS(2T fr k1) + B 1 SIN(27 fr n10), (6.2)
m=1h=1
where @, = G, p €0S(0m 1) and B p, = —am, b SO 1)
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The frequency transform of the model is developed so that the spectrum of
the cosine terms is real and the spectrum of the sine terms is imaginary. In
practice this requires changing the phase basis of the Fourier transform. The
main benefits of the operation are lower memory consumption (the terms are
either real or imaginary), and lower computational complexity (the parameters
can be solved separately for the real and imaginary parts).

The Fourier transform of a real-valued signal which is symmetric with respect
to the origin is also real [21, pp. 14-15]. As suggested by Harris [74], the
frequency transforms are here calculated so that the time index n = N/2 (T
being the frame length in samples) is regarded as the origin. As a result of this,
the window function and the cosine terms become even. This technique is often
referred as “zero-phase windowing”, and in practise it can be implemented by
using the normal FFT and subtracting a linear phase term 7 Nk/K from the
resulting phase spectrum. Thus, the zero-phase DFT is otherwise equal to the
normal DFT but the phase of the basis is changed.

After this processing, the DFT of each cosine term multiplied by the window
function is real, and the DFT of a sine term (odd function) multiplied by w(n)
is imaginary. Particularly, according to the modulation theorem [21, p. 108],
the Fourier transform of w(n) cos(fon) equals $[W (f — fo) + W(f + fo)], and
the Fourier transform of w(n) sin(fon) equals (W (f — fo) = W(f + fo)], where
i is the imaginary unit and W(f) is the Fourier transform of w(n).

By applying the above result on (6.2), we obtain the frequency-domain model
for X (f), the Fourier transform of windowed frame z(n). The real and imagi-
nary parts, ®{X(f)} and S{X(f)}, can be written separately as

M H,,
REX (N =D camnHy 1 (f)
m=1h=1 (63)
M H,,
S{X (N} = Z Zﬂm thsq n(f)s
m=1h=1
where the scalars a,y, ;, and 3, are real,
HE = S W0~ fo) + W+ f)] (6.0
is real, and _
on = 5 W = fn) = WS + fn)] (6.5)

is imaginary, forallm=1,...,M,and h=1,..., Hy,.

6.2 Phase Estimation

On the first iteration the phases are estimated by using the frequency estimates
fm.,n given by the MFFE, but on later iterations the refined (see Sec. 6.4)
overtone frequencies are used.
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As discussed earlier (see Section 5.3), there is no general method for the
estimation of the phases of overlapping components. Since the phases are not
perceptually as important as the amplitudes and frequencies, we simply set the
same phase for all the overlapping components.

Firstly, overlapping components are detected by finding groups of sinusoids,
the frequencies of which are within a predefined threshold. In our system, the
threshold 0.5f5 /N was found to be good (the natural resolution of the spectrum
is fs/N, but the least-squares method utilizes also adjacent frequency lines,
which increases its accuracy). In the phase estimation, each group is regarded
as a single sinusoid, the frequency of which is the mean of the overlapping
frequencies. Let us denote the total number of sinusoids (non-overlapping ones
plus each group) by J.

Let us write the basis functions in (6.4) and (6.5) by two K-by-J matrices
Hgy, and Hg, which contain the real part and the imaginary part of the sinusoids’
spectra, respectively. Each column of the matrices is the DFT of an individual
sinusoid evaluated at discrete frequencies k = 1,..., K. The window length 40
ms with sampling frequency 44100 Hertz corresponds to N = 1764. We used
zero-padding and FFT length of 8192 but the sinusoids were estimated and FFT
bins used only up to 5000 Hz, which is the first K = 929 FFT bins. We imple-
mented the evaluation of the DFTs by calculating W (k) using a high frequency
resolution, and then choosing the indices corresponding to each sinusoid.

The model for the spectrum vector x = [X(1),..., X(K)]T can be written
separately for its real part xp and imaginary part xg as

Xp = Hgﬁa

Ha 3, (6.6)

X

&

where o and B3 are vectors, the j*™ element of which is related to the amplitude
and phase of the j* sinusoid as a; = a; cos(6;) and 3; = —aj sin(6;).

Because the real and imaginary parts are orthogonal, least-squares solution
for their parameters can be solved separately. The least squares solution [97]
for (6.6) is

. 1
&= (HyHy) H'xy
. -1
B = (HIHs) H'xg.
The rows of Hy and Hg are linearly independent if two or more sinusoids do not
have equal frequencies. Since such cases were detected and grouped previously,
the matrices have full rank, and the inverses in (6.7) exist.
From the above solution, the phase §; of the 4 sinusoid is obtained as the
phase of the complex variable (a;+40;). If components are not overlapping, also

the least squares solution for the amplitudes can be obtained as G; = , /a? + ﬁ?
The above solution for K-by-J Hgy and Hg requires (K + J/3).J? floating

point operations (flops) for both é& and 3 [64, pp. 236-247], making 2(K +.J/3).J>
flops in total.

(6.7)
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In the estimation of sinusoidal parameters, previous methods (for example
[97, pp. 255-257], [42]) solve the real and imaginary parts (or the in-phase and
quadrature-phase parts [170]) simultaneously, requiring 4(K + 2.J/3).J? flops.
Thus, solving the real and imaginary parts separately reduces the computational
complexity by factor 2...4, depending on ratio of K and J. Furthermore,
matrices in the proposed method are either real or imaginary, requiring a smaller
number of additions and multiplications compared to methods which operate
on complex variables [140, pp. 176-178].

The computational complexity of the least-squares solutions (6.7) can be
further reduced considerably by an approximation where the basis functions
are grouped into subsets according to their frequencies, and the parameters are
solved separately for each subset. In practice the approximation produces accu-
rate results, since each basis function is localized in the frequency, so that basis
functions with significantly different frequencies are approximately orthogonal.

6.3 Amplitude Estimation

This section presents two alternative methods for the amplitude estimation of
overlapping components, both of which are based on the spectral continuity
assumption. The first one, which uses linear models for the overtone series was
originally proposed in [195], and is here presented with some extensions. The
second one which uses nonlinear smoothing was originally proposed by Kla-
puri in [100] and incorporated to sinusoidal modeling by Virtanen and Klapuri
in [194].

The linear model for the overtone series includes the spectral smoothness
principle in the core signal model, and it guarantees that the sum of the ampli-
tudes of overlapping sinusoids equals the amplitude measured for the group of
sinusoids. Ideally, this makes it more robust than methods which post-process
the estimated amplitudes.

The overtone amplitudes of a sound are modeled as a weighted sum of fixed
basis functions. Let us denote the overtone amplitudes of a source m by a
vector a,, = [am,l, e am,Hm]T. For source m, the linear basis is written using
a H-by-L matrix G,,, where H > L. Each column of the matrix is one basis
function. The I'® entry of vector u,, is the weight of the I*" basis function, so
that the model for the amplitudes is written as

ay, = Gmum (68)

The model can also be viewed so that the amplitudes are estimated in a sub-
space which does not allow large changes between the amplitudes of adjacent
overtones.

First we present how the amplitudes can be solved given a certain G,,, and
then discuss different model types.

78



1000 6

[}
E
= 500 5
3,
g 4
« 0
0 3
1000 9
2000
3000
4000 basis function index

5000 0
frequency (Hertz)

Figure 6.1: A linear frequency-band model for the spectrum of a harmonic
sound, where the basis function (columns of Y,,) are harmonic combs .

6.3.1 Least-Squares Solution of Overlapping Components

Based on the modulation theorem and Euler formula, the Fourier transform of
the windowed cosine w(n) cos(27 fy, pn + O 1) in (6.1) can be written by

Hy () = e W = fru) + W+ )] (69)

Using the current frequency and phase estimates, these are written into a K-
by-H,, matrix H,,, for each source m. The At" column of H,, is the spectrum
of the A" sinusoid of source m evaluated at discrete frequencies k =1,..., K.
The model for the spectrum of source m is then H,,a,,, and when we apply
the linear model from (6.8), the model can be written as H,,G,,u,,. Let us
denote Y,, = H,,G,,, so that the model equals Y,,u,,. Now the spectrum
of source m is modeled as a weighted sum of the columns of Y,,. With a
suitable linear model Y, the columns can be, for example, harmonic combs, as
illustrated in Figure 6.1. A linear model consisting of harmonic combs within
frequency bands implements an estimation principle which corresponds roughly
to the human perception of harmonic sounds, as discussed in Section 5.3.

For M sources the matrices are combined as Y = [Yl, o ,YM}. Let us
denote the gains of all the sources using vector u' = [uI7 . ,uJTW], so that the
model for the spectrum x equals x = Yu. Depending on the linear model, the
gains are restricted to either real or non-negative values. The restrictions can

be implemented by rewriting the model as xpg = Yggu, where xgg = [Xng;i] ’
S

79



and Y%g = [g\g;l

respectively. Now the least-squares solution for real-valued gains is obtained as

], Yy and Yg being the real and imaginary parts of Y,

a= (Y%gY%g)_lYégX%g. (610)
When the gains are restricted to non-negative values, the least-squares solution
to Xpg = Ypgu is obtained using the non-negative least-squares algorithm [111,
p. 161].

With all the models, the amplitudes are solved from the resulting 1,, by
a,, = G,,0,,. To reduce the computational complexity, some models (e.g. the
frequency-band model) allow an approximation where the gains are solved for a
subset of basis functions at a time, as done in the phase estimation at the end
of Sect. 6.2.

Fixed polynomial model A simple example of a linear model is the Van-

dermonde matrix [G,]n; = ffn_ }L, which models the amplitudes of the overtone

series as a (L — 1)*-order polynomial. The results obtained with this model
were not particularly good. The main reason for this is that polynomial basis
functions have most of their energy at high frequencies, whereas audio spectra
typically have a low-pass structure. Another drawback of the polynomial model
is that each basis function covers the whole frequency range, while it would be
advantageous to use only the adjacent harmonics in the interpolation since they
correlate the most with the overlapping ones.

The low-pass characteristics can be better modeled using (G, |n; = fn;,l;:l,
which models the amplitudes as a polynomial with negative powers. With this
model we obtained good results by using L = [logy(H,,)]. In the case of the
polynomial model it is natural to allow the gains to have also negative values.

Fixed frequency-band model In comparison to the polynomial model, bet-
ter results were obtained using a frequency-band model, where each basis func-
tion is zero outside a frequency band. We use triangular frequency bands, which
are determined by a set of center frequencies f;, [ = 1,..., L. For a particular
overtone with frequency f, 5, the the h'" row of the linear model matrix is
given by

(fmpn — fi1)/(fe = fio1), fon 2 fica A fon < o
(Glni = (fi = fn)/(f1 = fig1)s Jmh > fiN fon < figqr (6.11)

0, otherwise.

Figure 6.2 illustrates the basis functions obtained using center frequencies f; =
100 x 2t=Y Hz, 1 = 1,...,5, which result in octave bands.

Triangular basis functions result in an amplitude spectrum, which is piece-
wise linearly interpolated, as illustrated in the left panel in Figure 6.3. As the
rough spectral shape of natural sounds often decreases as a function of frequency,
a small improvement can be obtained by applying 1/f scaling on the elements
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Figure 6.2: The basis functions of a perfectly harmonic sound of 100 Hz fun-
damental frequency obtained using center frequencies f; = 100 x 2!~! Hz,
l=1,...,5. Each basis function is plotted with a different line style.
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Figure 6.3: Triangular frequency-band model results in a piecewise linear am-
plitude spectrum (left panel). The basis functions can also be weighted by 1/ f
rough spectral shape (right panel), which corresponds better to natural sounds.
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Figure 6.4: The amplitude spectrum of simultaneous tones D3 and A4 played
by French horns. The amplitudes of both the partials were estimated using
the fixed linear model depicted in Figure 6.3. The estimated amplitudes are
plotted with filled circles and boxes, and the correct amplitudes estimated from
original unmixed signals with empty circles and boxes, respectively. The third
harmonic of the higher sound at about 1750 Hz is missing because the separation
algorithm assigned it a zero amplitude.

of G,,, resulting in an interpolated amplitude spectrum depicted in the right
panel of Figure 6.3. In the case of frequency-band model, negative gains of the
basis functions do not have a meaningful physical interpretation, and therefore
they can be restricted to non-negative values.

Figure 6.4 shows a separation example of two sources. The tones are in a
harmonic relation, so that every third overtone of the lower sound overlaps with
the higher tone. By using the frequency-band model, the overlapping overtones
can be quite well approximated.

We tested several different ways to select the center frequencies. It was
noticed that it is advantageous that each of them equals the frequency of an
overtone. For completely harmonic sounds, good results were obtained by set-
ting the I*" center frequency equal to the frequency of the [1.51_1]“1 harmonic.

Fixed frequency-warped cosine basis model Representing the shape of
spectrum using Mel-frequency cepstral coefficients (MFCCs, [37]) is widely used
in the classification of audio signals. MFCCs are computed by taking the cosine
transform of the log-amplitude spectrum calculated at a Mel-frequency scale.
A linear model can approximate the amount of contribution of each MFCC to
the amplitude to each sinusoid. The basis functions of the cosine transform
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Figure 6.5: Each basis functions of the frequency-warped cosine basis model
approximate the amount of contribution of each Mel-frequency cepstral coeffi-
cient. The basis functions are cosines, the frequencies of which decrease as a
function of the partial index.

are cosines, and the mel-frequency scale can be implemented by warping their
frequencies. In the computation of MFCCs the non-linear logarithm operator
is applied on the mixture signal, and therefore its contribution to a single basis
function cannot be implemented in this framework, and is therefore left out.

The basis functions of the resulting frequency-warped cosine basis model are
given as

[Ginln = cos(LfpPed), (6.12)
where fnvf,rlped is the warped frequency of the (m,h)™ cosine. We used the
warping f:nvla,fbped =log(1 + 10fp,.1/fm.1). More accurate warpings according to

the frequency scales of human hearing are discussed by Harmé et al. in [73].

The resulting basis functions which are illustrated in Figure 6.5 are cosines,
the frequencies of which decrease as a function of the partial index. Also with
this model we set the number of basis functions to [logy(H;,)], and their gains
were allowed to have negative values.

Adaptive frequency-band model A fixed model restricts the amplitudes
to a subspace of parameters, which may not be able to model a given spectrum
exactly. If an overtone is not overlapping, it is not necessary to use the adja-
cent partials in estimating its amplitude. Non-overlapping components can be
more accurately estimated by an adaptive model which interpolates only those
components which are overlapping. Moreover, when a group of V' overtones is
overlapping, and the first V' — 1 of them are approximated by interpolation, the
V*h overtone can be estimated by using the V' — 1 approximated overtones and
the amplitude of the mixture.
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We tested several adaptive models, and on the average, the best results were
obtained using the following principles to design the model: 1) When a group
of V' overtones is overlapping, the V — 1 overtones which are likely to have
the lowest amplitudes are interpolated. The amplitudes are predicted based on
their harmonic indices: since the energy of the spectrum of natural sounds is dis-
tributed approximately according to 1/ f, the overtone with the lowest harmonic
index is assumed to have the largest amplitude. From now on, the overtone with
the highest predicted amplitude is regarded as a non-overlapping overtone. 2)
Each overtone which is not overlapping, is assigned an own basis function, which
includes only that particular overtone. 3) Each overtone which is overlapping,
is interpolated from the next higher overtone of that sound by including them
into the same basis function. If the higher overtone is not overlapping, then
the basis includes these two overtones, but if also the higher overtone overlaps,
higher overtones are included until one of them is not overlapping. Because of
the 1/f rough spectral distribution, interpolation from higher overtones is likely
to underestimate the amplitude, whereas interpolation from lower overtones is
likely to overestimate it. In our simulations, interpolation from higher overtones
produced better SDR than interpolation from lower or both adjacent overtones.

A procedure for calculating the basis functions based on the above princi-
ples is given as follows: first, we assign an individual basis function for all the
sinusoids ([G,,] is an identity matrix). Then we find a basis function, which
fulfills the following two conditions: 1) The highest partial included in the basis
function is overlapping and 2) the highest partial does not have the lowest par-
tial index among all the partials within the overlapping group. Once such basis
function is found, we sum it to the basis function which contains the immedi-
ately higher harmonic of the same sound, and delete the original basis function.
Then we find the next basis function which fulfills the above conditions, and
repeat until none of the basis functions fulfills them.

Figure 6.6 illustrates the basis functions of the adaptive frequency-band
model obtained for the signal in Fig. 6.4. Only those overtones of the lower
sound which are overlapping with the higher sound are interpolated. Figure 6.7
illustrates the amplitudes for the two-note signal in Fig. 6.4 estimated using
the adaptive frequency-band model. Compared with the fixed frequency-band
model in Fig. 6.7, the estimates of non-overlapping components are more accu-
rate.

It is possible to make different variations of the linear models: for example
to initialize the adaptive frequency-band model with something else than an
identity matrix, or use some other principles in the adaptation. However, in our
simulations the above described approach produced the best results among the
tested methods. The gains of the frequency-band basis functions were restricted
to non-negative values, since there is no meaningful interpretation for negative
gains when the basis functions are positive.

Nonlinear smoothing The effect of the overlapping partials, or, harmonic
interference, can be decreased by post-processing the estimated amplitudes us-
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Figure 6.7: Amplitudes of the two-note signal in Fig. 6.4 estimated by the
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85



ing perceptually motivated spectral smoothing method proposed by Klapuri
in [105]. It calculates a smoothed version of the amplitude spectrum for each
source, and if the resulting amplitude of an overtone is below the original ampli-
tude, the amplitude is replaced by the new one. Unlike the other interpolation
methods, it does not require knowing the overlapping overtones. It processes all
the overtones to obtain better robustness by reducing the accuracy of all the am-
plitude estimates. A separation algorithm based on the smoothing mechanism
was originally proposed by Virtanen and Klapuri in [194].

6.4 Frequency Estimation

On each iteration of the the iterative frequency estimation procedure, we use the
current amplitude and phase estimates to linearize the frequency dependence
in the vicinity of the current estimates, and then minimize the reconstruction
error of the linearized model.

The ratio of each overtone frequency fy, , to the fundamental frequency fy, 1
is kept fixed, so that the harmonic structure is retained. Thus, we do not update
the frequencies of the partials individually, but the whole harmonic structure.
In general, the overtone frequency ratios at different fundamental frequencies
are not the same [60], but for small frequency deviations within a MFFE frame
the approximation is accurate enough.

Presentation here is an extension of [43] and [194]. For each partial, let us
write the error between the correct frequency f,,  and the current estimate
fm,h as App = fmh — fm,n- Since the frequency ratios are fixed, the error of
each overtone is linearly dependent on the error of the fundamental frequency:
Am,h = ArrL,lfm,h/fm,l-

The model for the spectrum is

M H
X(H) =D amnHumn(f) (6.13)

m=1h=1

where
L —i
Hyp () = 5[ W(f = fop) + 7" W(f + fonn)]- (6.14)
The Taylor series of W at each f + fmyh is

W(f £ fun) =W £ frn £ Amn)

6.15
= W(f + fm,h) + WT/YL,h(f + an,h)Am,h + O(Afn,h)7 ( )

where W' denotes the derivative of W, and O(Ag,b’ ») includes the terms of second
and higher order, which are small in the vicinity of the correct frequency. By
discarding O(A?n’ ), we obtain the linear approximation

W(f + fm,h) ~ W(f + fm,h) + Wr/n,h(f + fm,h)Am,ha (6~16)
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By substituting (6.16) to (6.14), we get

Hy () &~ Ho o (f) + Hyp (/) A (6.17)
where
By (F) = 5P MW( = frug) + @ W(E 4+ fup)] (618)
and
ﬂ%ﬁﬁ):%Wﬂwwﬂf—ﬁmM—e%%ww%f+ﬁmmy (6.19)

Let us denote the current spectrum estimate by

E:athmh (6.20)

By substituting (6.17) and (6.20) to (6.13), the approximation for the spectrum
becomes

M H
X(f)=X(f)+ Z Z am,hﬁr/n,h(f)Am,h (6.21)
m=1h=1

Now we can write the error of the spectrum estimate as a function of the fun-
damental frequency error as

X(f) - X(f) ~ am,hﬁ;mh(f)@

m,1

Apa (6.22)

The modeling error for the discrete spectra can be thus written as
x —x~ QA (6.23)

where x and X are the observed and modeled spectrum, respectively, and the

mt column of the matrix € is Zh | G, hf"‘ hH’ 1(f) evaluated at discrete

frequencies k = 1,..., K, and the m!" element of A contains the corresponding
error A, ;1 of the fundamental frequency, which is unknown.

The derivatives W’(f) in the definition (6.19) of the terms H’, ,(f) are
calculated as follows: the Fourier transform of a signal nw(n) equals ZW ( £)[109,
p. 277], so get W' as the DFT of signal —inw(n).

The least-squares solution for real-valued fundamental frequency error vector
A is obtained as

A = (Do) Qe (xns — Xno), (6.24)

S S

where Qgpg = [Q i

$ }, Qg and Qg being the real and imaginary parts of €2,

respectively, and Xpg = LA(XS}Z} , Xp and Xg being the real and imaginary parts
S
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Figure 6.8: The estimated fundamental frequency of an excerpt of a flute signal
with different number of iterations Z. The dashed line Z = 0 indicates the
estimate given by the MFFE. The SDRs for Z = 0, 1, 4, 10, and 30 for this
signal were 20.1, 22.4, 26.7, 28.3, and 28.4 dB, respectively.

of the spectrum model, respectively. New frequency estimates for each partial
are given as fm,h = fm,h + Am,lfm,h/fm,L

In general, a suitable number of frequency estimation iterations depends on
the signal. As Fig. 6.8 shows, increasing the number of iterations can increase
the quality monotonically when only one source is present. However, when
multiple sounds are present, nearby harmonics of other sources can disturb the
fundamental frequency estimation of a source. In this case a large number
of frequency estimation iterations can cause the fundamental frequency of a
source to become adjusted to a wrong source. Therefore, we found it useful not
to allow the fundamental frequencies to change more than 10% from the original
multiple fundamental frequency estimates. The effect of frequency updating on
the average SDR was found to be rather small, as the simulation experiments
in Section 6.6 show.

Estimating the frequencies of partials which cross each other in the time-
frequency place is a difficult task which can be solved only in limited cases
using special methods, for example as proposed in [41]. Since here the overtone
frequencies are tied to the fundamental frequency, the method is able to solve
crossing partials (see Fig. 6.9), as long as the fundamental frequencies do not
cross each other.
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Figure 6.9: Estimated overtone frequencies of a mixture signal consisting of
two simultaneous flutes with vibrato. The frequency estimation uses all the
overtones of the sounds, and is therefore able to solve also crossing partials in
some cases.

6.5 Combining Separated Sinusoids into Notes

The previous sections explained the parameter estimation in a single MFFE
frame. Since onsets of other instruments can occur during a musical note, a note
can be divided into several adjacent MFFE frames. Our target is to combine
the signals separated within each MFFE frame to get entire musical notes.

Since the fundamental frequency variation within a note is often relatively
small, a simple approach is to combine closely spaced fundamental frequency
values in adjacent frames into notes. Sharp increases in the overtone amplitudes
can be interpreted as new note onsets.

More robust results were obtained by using the method proposed by Ryyné-
nen and Klapuri [149], which estimates the notes by modeling the MFFE fea-
tures using hidden Markov models. The algorithm estimates a set of notes,
each of which has a fundamental frequency, onset time, and offset time. Instead
of the raw fundamental frequency estimates, we use the fundamental frequen-
cies of the entire note events to initialize the nonlinear least-squares algorithm.
Since the note estimation algorithm does not produce estimates of overtones
frequencies, we have to assume perfect harmonicity.

To enable flexible testing of the algorithms we implemented a pianoroll-type
graphical interface, where each note is drawn with a filled patch (see Fig. 6.10).
The location on the x-axis indicates the note timing, and the location on the
y-axis shows its fundamental frequency. Variance in the vertical location is used
to illustrate time-varying fundamental frequency, and the thickness of each note
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Figure 6.10: A pianoroll-type representation of the notes separated from an
excerpt of polyphonic music (Piece 18 from the RWC Jazz Music Database [69]).

illustrates the approximated loudness of the note. The interface allows editing
the signal by moving individual notes in time and pitch, and deleting, and
copying notes. A Matlab implementation of the interface and example signals
are available at http://www.cs.tut.fi/~tuomasv/.

The separated notes can be further grouped into sound sources. Since the
separation performance of existing algorithms is quite limited, there are no stud-
ies where the separation and grouping was done completely automatically using
only acoustic signals. Every [51] used pattern recognition and clustering ap-
proach on a material where the separation was guided by a MIDI reference. He
tested numerous features and model-based clustering, which models the prob-
ability of a note belonging to a source by a normal distribution centered on a
source cluster center.

6.6 Simulation Experiments
Since the main scientific contribution in this chapter is the parameter estima-

tion of overlapping sources, the simulation concentrate only on the proposed
nonlinear least-squares algorithm within one MFFE frame.
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6.6.1 Acoustic Material

The performance of the proposed methods was evaluated using generated mix-
tures of harmonic sounds. Test material consisted of a database of 26 different
musical instruments comprising plucked and bowed string instruments, flutes,
brass, and reed instruments. These introduce several different sound production
mechanisms and a variety of spectra. The database was a combination of sam-
ples from the McGill University Master Samples Collection [131], the University
of Towa website [89], and samples recorded from the Roland XP-30 synthesizer.
The total number of samples available for generating the mixtures was 4128.

Random sound mixtures of one to six simultaneous samples were generated
by selecting one to six samples randomly from the database. Each sample was
selected by first allotting an instrument and then a random note from its whole
playing range, however, restricting the fundamental frequency over five octaves
between 65 Hz and 2100 Hz. To model the dynamic differences between sounds
in real recordings, each sample was scaled to have a random power between 0
and 10 dB. The selected samples were summed to obtain a mixture signal. For
each polyphony we generated 100 mixtures.

6.6.2 Algorithms

The discussed separation algorithms enable a large number of variations and
different implementations. All the methods tested here were based on the same
implementation and the explained iterative parameter estimation procedure.
The main differences between the algorithms are in the estimation of overlapping
partials. Some parameter values such as the window size were varied to study
their effect. Unless otherwise stated, a single frequency estimation iteration and
a 40 ms window with 50% overlap between the frames was used, and overtones
were considered to be colliding if they were not more than 0.5f;/N Hertz apart
from each other.
The evaluated algorithms were the following;:

e Comb filtering. In this method the amplitude of a sinusoid is determined
directly from the amplitude spectrum of the mixture at the partial fre-
quency. Thus, the method does not include a mechanism for resolving
overlapping harmonics. The implementation of the method is based on
the sinusoidal model.

e Linear interpolation and normalization. Linear interpolation according to
(5.3) is the most commonly used method, and here it is followed by the
normalization (5.4) since it provides a small improvement.

e Nonlinear smoothing. This applies the nonlinear filter of Klapuri [105] on
the amplitude spectrum of each sound to reduce the effect of overlapping
components, as done in [194].

e Fixed frequency-band model proposed on Page 80. For source m, the cen-

ter frequency of the I*" band is set equal to the frequency of the [1.51_1]th
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overtone.
e Adaptive frequency-band model proposed on Page 83.

The results for methods using linear interpolation without normalization, the
polynomial model, and the Mel-frequency cosine basis model are presented in
Appendix B.

6.6.3 Evaluation of the Separation Quality

Acoustic input was fed to the separation algorithm and the frequencies, ampli-
tudes and phases of each sound were estimated. Separated sounds were synthe-
sized by interpolating the parameters from frame to frame, as in [120]. Each
separated signal was matched to an original signal based on its fundamental fre-
quency. When the MFFE estimated the number of sounds and their fundamen-
tal frequencies correctly, there was a one-to-one match between the separated
signals and the original ones. In the case of erroneous fundamental frequency
estimates, for each original signal we sought for a separated signal which has an
equal fundamental frequency, and matched them. Remaining separated signals
were discarded, and original signals which did not have a separated signal of
equal fundamental frequency were set to match to a separated signal of all zeros.

Since the separation algorithms preserve the phase of the signal, an error
between the original and synthesized signal could be obtained simply by sub-
tracting the synthesized signal from the original ones in the time domain.

The mean-square level of the error signal was computed over the whole signal
and compared to the original to obtain signal-to-distortion ratio (SDR, (1.2))
of the separated signal. The separation system limits the frequencies of the
sinusoids below 5kHz, thus the comparisons were limited to the frequency band
0-5kHz by low-pass filtering the signals. To enable more accurate measurement
of the harmonic segments, we did not use the first 30 ms segments of the signals,
which were assumed to contain nonharmonic attack transients.

The SDRs in dB were averaged over all the signals. Since the accuracy of
the MFFE affects the separation performance significantly, we considered sepa-
rately cases where the MFFE estimates were correct and erroneous. A mixture
was regarded as erroneous, if the MFFE estimated at least one fundamental
frequency in the mixture incorrectly. The error rates for the multiple pitch es-
timator for mixtures ranging from one to six simultaneous sounds were 4.8%,
48.5%, 66.1%, 86.4%, 93.8%, and 100%, respectively. The accuracies are worse
than those in [105] because of level differences between the samples.

Also the segmental SDRs, were calculated. Before averaging the frame-wise
SDRs were limited between 0 and 30 dB, since in a few frames the original signal
or the residual can be vanishing, which would result in very large positive or
negative SDRs, thus dominating the average.
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Figure 6.11: The average signal-to-distortion ratios of different algorithms in
different polyphonies in the case of correct (upper plot) and erroneous (lower
plot) MFFE.

6.6.4 Results

Figure 6.11 shows the average SDRs for each algorithm at each polyphony in the
case of correct and erroneous MFFE. The most significant tendency in the results
is the gradual reduction in quality when the polyphony increases. Compared
with the effect of the polyphony, the average differences between algorithms
are small, except in the polyphony one, which shows the modeling error caused
by the sinusoidal representation. The best methods achieve SDRs of about 30
dB, which can be considered to be sufficient for most applications. Smoothing
and fixed frequency-band model place limitations for the sound spectra, and
therefore cause additional modeling error and lower SDR for a single source.
However, more strict limitations of smooth spectrum enable better results at
higher polyphonies.

At low polyphonies, the best results on average are obtained with the adap-
tive frequency-band model, whereas on higher polyphonies the best results are
obtained with the fixed frequency band model and smoothing. The results for
correct MFFE are on average 0-2 dB better that the results with erroneous
MFFE. The difference is surprisingly small, but this is partly because a mix-
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Figure 6.12: The signal-to-distortion ratios for adaptive frequency-band model
at different window sizes for correct (upper panel) and erroneous (lower panel)
MFFE.

ture was considered erroneous even when a single fundamental frequency was
incorrectly estimated.

Figure 6.12 shows the results of the adaptive frequency-band model for dif-
ferent window sizes. For a single source, smaller window lengths enable a smaller
modeling error. This is natural since a small window can enable more accurate
time-varying parameters. For multiple sources, the use of a too short or too long
window reduces the quality. In the case of a short window, the resolution of the
spectrum is not sufficient for resolving closely spaced overtones. In the case of
a long window, the temporal resolution becomes worse. A good selection of the
window length depends on the polyphony and accuracy of the MFFE. For cor-
rect MFFE and more than one source, approximately 40 ms window produced
the best results. For erroneous MFFE a slightly longer, approximately 60 ms
window produced the best results.

Figure 6.13 illustrates the performance of the adaptive frequency-band model
for different numbers of iterations. For a single source the quality increases
monotonically as the number of iterations increases. This is natural since the
estimation algorithm obtains a better fit for the model at each iteration, and
overlapping sources do not affect the procedure. For multiple sources the average
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shows the results for correct MFFE and the lower panel for erroneous MFFE.

effect of frequency estimation iterations is small. For correct MFFE a small
improvement is obtained, whereas for erroneous MFFE the quality is slightly
decreased.

Figure 6.14 shows the average SDRs when the frequency threshold for deter-
mining colliding overtones was varied. In the case of a single sound the threshold
does not affect the performance, since there are no overlapping or nearby over-
tones. In the case of multiple sources, the threshold of 0.5f;/N produces good
results on the average. The parameters of closely spaced partials can be esti-
mated as long as the frequency difference is large enough. When too closely
spaced partials are tried to estimate, this may cause large estimation errors. On
the other hand, interpolating partials is always likely to cause some errors.

Figure 6.15 shows the measured segmental SDRs for the same task as those
shown in Figure 6.11. On the average, the results are approximately equal to
the normal SDRs presented in Figure 6.11. For polyphony one the segmental
SDRs are slightly lower, since the frame-wise SDRs were limited below 30 dB
before averaging. For higher polyphonies the segmental SDRs are higher than
normal SDRs. Larger errors are more likely in frames where the energies are
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Figure 6.15: The average segmental signal-to-distortion ratios for different algo-
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large, which results in a higher average segmental SDR. The most significant
difference in the segmental SDR to the normal SDR between different algorithms
is the good performance of comb filtering. Even though the comb filtering does
not have a mechanism for resolving overlapping harmonics, other methods did
not produce significantly better average segmental SDRs. The reason for this is
partly in the evaluation procedure: because the comb filter sets the amplitude
of a sinusoid equal to the amplitude of the mixture at the sinusoid’s frequency,
it is likely to produce a large relative errors in frames where a source has a small
energy compared with other sources. Since the frame-wise SDRs were limited
to between 0 and 30 before averaging these frames do not have as significant
effect on the segmental SDR as on the normal SDR.
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Chapter 7

Conclusions

Blind separation of one-channel signals from a polyphonic mixture is an under-
determined problem, since there are more unknown variables to be estimated
than there are known mixture samples. However, signals produced by music
instruments have properties which make the separation feasible. The properties
utilized in this thesis are redundancy and repetition in time, sparseness of their
time-frequency representations, continuity in time and frequency, and harmonic
spectral structure. These properties, in addition to other prior knowledge, en-
able estimating source signals which are close to the original ones before mixing.
Much of the engineering work in the development of one-channel sound source
separation algorithms is seeking for efficient algorithms which can utilize these
properties.

7.1 Unsupervised Learning Algorithms

In Chapter 3, we proposed an unsupervised learning algorithm for monaural
sound source separation which is based on non-negative matrix factorization of
the magnitude spectrogram with temporal continuity and sparseness objectives.
Since many musical sounds can be approximated as a sum of components which
have a fixed spectrum and time-varying gain, relatively simple and efficient al-
gorithms like PCA can be used to estimate the sources in the unsupervised
learning framework. However, only relative new algorithms such as ICA and
NMF enable a quality which is sufficient for practical applications. In many
separation and analysis problems the best results are currently obtained with
the non-negativity restrictions, originally proposed for this framework simulta-
neously by Smaragdis and Brown in [166] and Virtanen in [189].

Most of the existing algorithms that are based on the linear instantaneous
model for a spectrogram are limited in a sense that they consider each frame as
an individual observation, even though natural sounds are often slowly-varying
in time. The proposed cost function which is the sum of the squared differences
between the gains of adjacent frames is a simple and efficient way of adding
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the temporal continuity objective to this separation framework. The simulation
experiments show that the temporal continuity criterion improves the detection
accuracy and SDRs of pitched instrument sounds. The sparseness assumptions,
in turn, did not lead to significantly better results. The non-negative matrix
factorization algorithms were shown to produce significantly better separation
results than independent component analysis.

The optimization algorithm has a significant effect on the separation results.
The convergence of the projected steepest descent algorithm is poor in the
minimization of the normal divergence, which often produces the best results.
Possibilities to overcome this are the proposed multiplicative update rules or
the modified divergence measure.

Since most natural sounds have time-varying spectra, approximating them
using components with a fixed spectrum sets a limit for the separation qual-
ity. In Chapter 4 we proposed two convolutive signal models which extend
the instantaneous model to allow either time-varying spectra or frequencies. In
addition to our original work in [190], similar extensions were simultaneously
published by Smaragdis [164, 165]. Estimation algorithms for the convolutive
model were proposed which are based on the minimization of the reconstruc-
tion error between the observed magnitude spectrogram and the model while
restricting the parameters to non-negative values.

Simulation experiments show that the model which allows time-varying spec-
tra can be used to estimate and represent components which correspond to real-
world sound objects. On generated test signals the model was shown to enable
higher quality of separated drum signals than the existing algorithms which
are based on the instantaneous model. The computational complexity of the
proposed algorithm is quite high, limiting the length of target signals, so that
improvements in the separation of longer entities such as pitched notes could
not be obtained.

The model which allows time-varying frequencies was not evaluated system-
atically; however, the experiments indicate that the model can be used to rep-
resent pitched notes with different fundamental frequency values. This enables
separation and estimation of harmonic partials which overlap with other sounds
by utilizing the spectra of notes with adjacent fundamental frequency values.
The model produces representations which are a good basis for the automatic
transcription of pitched instruments in music.

Compared to other approaches towards monaural sound source separation,
the proposed unsupervised learning methods enable a relatively good separa-
tion quality — although it should be noted that the performance in general is
still very limited. A strength of the presented methods is their scalability: the
methods can be used for arbitrarily complex material. In the case of simple
monophonic signals, they can be used to separate individual notes, and in com-
plex polyphonic material, the algorithms can extract larger repeating entities,
such as chords.

As discussed in Section 1.5, virtually all evaluations of unsupervised or blind
source separation systems can be claimed to be somewhat limited. This thesis
is not an exception: even though we try to obtain statistical reliability by using
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a large number of test signals which are generated using recorded samples of
real-world instruments, we restrict ourselves to rather simple mixing cases, and
separated signals are assigned to references by comparing them with the orig-
inal signals. Since the algorithms proposed in this thesis were not developed
for a specific application, we use mainly a single low-level objective measure.
Naturally, optimizing an algorithm for a specific measure does not guarantee
that the performance improves according to some other measure — especially
when the obtained improvements were still relatively small.

7.2 Sinusoidal Modeling

The sinusoidal model discussed in Chapter 5 provides a good basis for the sepa-
ration of pitched sounds. Each harmonic partial can be represented with a single
sinusoid, and they can be robustly estimated by minimizing the error between
the model and the observed signal, while restricting the overtones to harmonic
frequency relationships. Because the rough spectral shape of natural sounds is
continuous as a function of frequency, the amplitudes of overlapping partials can
be approximated by interpolation, for which we proposed and tested numerous
interpolation methods in Chapter 6.

To estimate the sinusoids we proposed a computationally efficient nonlinear
least-squares algorithm which first initialized the frequencies with a multiple
fundamental frequency estimator, and then iteratively estimates the amplitudes
and phases and improves the frequency estimates. For the frequency estimation
we proposed a method which linearizes the error with respect to fundamental fre-
quencies and enables updating the fundamental frequency estimates efficiently
while retaining the harmonic spectral structure.

The simulation experiments show that the quality of the separation is good
for low polyphonies, and it decreases gradually as the number of simultaneous
sounds increases. Approximating overlapping partials with any tested inter-
polation method produces reasonable results and none of the tested methods
performed clearly better than the others.

7.3 Discussion and Future Work

The most significant tendency in monaural separation algorithms is the develop-
ment of unsupervised learning methods: about 5-10 years ago their performance
was not sufficient for separating real-world acoustic signals. Increased computa-
tional power, storage capacity, and development of machine learning algorithms
have enabled approaches where the characteristics of signals are learned from
data. This reduces the need for incorporating information about the data into
the algorithms manually.

Despite the proposed and discussed improvements, monaural sound source
separation is still largely an unsolved problem, and there are some clear short-
comings in the existing algorithms. For example, a challenge with the presented
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unsupervised learning based separation algorithms is that it is difficult to re-
strict the sources to be harmonic: the existing methods can implement the
restriction only by fixing the fundamental frequency of a component and allow-
ing non-zero energy only at predicted overtone frequencies. Other future work
includes development of methods for estimating the number of components and
automatic clustering. Future work in the separation algorithms based on sinu-
soidal modeling includes the use of temporal continuity and other notes of the
same instrument in more accurate estimation of overlapping partials.
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Appendix A

Convergence Proofs of the
Update Rules

A.1 Augmented Divergence

In this section we show that the augmented divergence

(Xt +€

Bal, 1o Xer+BGle (A1)

D(X|IBG) => ([Xx.c +€) log
k.t

is non-increasing under the update rule

X+e T
BG+e
Let us write the augmented divergence as a function of B as
F =D.(X|BG) (A.3)

The proof is based on forming an auziliary function [114] for F, given as

GB,B) = (X]ps +€)log([Xs + €) — Xt + [BGlis

k.t
J
(G;,:[B']x, (G;,+[B']x,
- (X 72::1 BGl,, e (log([G]j’t[B]k’j )~ los m)
(Xes + 0 log(|B G]k’t +e¢) 7

[B'G, +e¢

where the argument B’ is a non-negative matrix of the same size as B. An
auxiliary function fulfills two properties: G(B,B) = F(B) and G(B,B’) >
F(B). This results in update rule

B” « arg Irgn G(B,B'). (A.4)
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The divergence is non-increasing under update rule (A.4), since F(B") <
G(B",B') < G(B',B’') = F(B').

First, we prove that G is an auxiliary function of F. The first condition
G(B,B) = F(B) is straightforward to verify. The second condition G(B,B’) >
F(B) is verified as follows. First, logarithm is a concave function, so that by
Jensen’s inequality [148, pp. 62-63] we can write

J J
> ajlog(r;) <log(>  a;ry) (A.5)
§=0 =0

for any non-negative «; for which Z}]:O o = 1. Let us set y; = 7;a;, so that
the above equals

J J
> ajlog(y;/a;) <log(d_y;). (A.6)
§=0 §=0
Let us set yg = ¢, so that we get
J J
—log(e+ Y ;) <= a;log(y;/a;) — aglog(e/a) (A7)
j=1 j=1
Let us set a; = %, yj = [Gl;¢Blg,; for j = 1,...,J, and o =
Wl,ﬁék,t’ for any k and ¢, so that we get
J
(G;.4[B']k.s (G;.[B]k
—log(e+ [BGlr) < — ) i |10g([Gl;4[Blr,;) — log(1r 57—
; [B'Gl,, +e€ ’ ! [B'Gl,, +e€
€
— 1 B'G], .).
[B/G}k,t T Og(e + [ ]k,t)

By multiplying both sides by ([X]x: + €) > 0 and adding terms ([X]p. +
€)log([X]k,e +€) — [X]g,t + [BGli,e, we get

(Xlus-+ 0Bl G g=5) = (Xl + [BGl, <
J
(G;.t[B]xs (Gt [B']k,;
— ([X]k,t +¢€) 7:21 [B/G,, +c log([G];+[Blx.;) — IOg(W
elog([B'G €
— ([X]g,e +€) Eg];[’G]k}tki: ) _ log([X]x,e +€)| — [X]r,t + [BGy.s

The above holds for all k,¢. By summing both sides over k,t, the left-hand side
equals F(B), and the right-hand side G(B,B’). Therefore, F(B) < G(B,B’),
and G is an auxiliary function of F'.
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Let us solve (A.4) by setting the gradient of G with respect to B equal to
zero. The partial derivative of G' with respect to By ;- is given as
VG.(B,B’)
VBy j

G][Blxr 1

- ;[Gb‘,t = (X]ee +€) BGl,, ¢ By 0, (A8)

from which we solve [B]; ;/ as

X k.t TE
SilGl et
Zt[G]j7t

For each k’,j’ this equals the update rule (A.2). Since the above is solution
to (A.4), under which the augmented divergence which was shown to be non-
increasing, the divergence is non-increasing under update rule (A.2).

Blirjr = Bl 5 - (A.9)

A.2 Convolutive Model

This section proves that the Euclidean distance (2.18) and divergence (2.19)
between the observation matrix X and model

L—-1
X=) B, G, (A.10)

7=0

where the operator () is defined as in (4.3), is non-increasing under update

rules (4.10) - (4.13).

Lee and Seung [114] showed that for non-negative matrices the Euclidean
distance and divergence between observation matrix X and model X = BG
is non-increasing under update rules (2.21) - (2.24). The update rules (4.10) -
(4.13) can be derived from these update rules.

A.2.1 Event Spectrograms

The convolutive signal model (A.10) can be written in the form X = BG' by
using

B=[By...B_1] (A.11)
and -
T T T
G = [G el 8. } (A.12)
By substituting the above into (2.21), we get
JcT GcT... T
N
[BO~-~BL—1] — [Bo...BL_l}.X = T T T (A13)
X- [G G'... }
1— (L*l)a
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and by substituting them into (2.23), we get

[é}.[GT 1(?.T...L1 T}
[Bo...BLfl] — [Bo...BLfl] X X T T (£= )_'I)' (A14)
1- [G G ... ]
1— (L—-1)—

For each B, these equal the update rules given in Equations (4.11) and (4.13).
Therefore, the Euclidean distance is non-increasing under update rule (4.11)
and the divergence is non-increasing under update rule (4.13).

A.2.2 Time-Varying Gains

The convolutive signal model (A.10) can be written in a linear form x = Bg by
representing matrices X and X as vectors

x=|:| x=]|"1]. (A.15)

The time-varying gains are represented using

g1
g=|: (A.16)
T

in which g; = [Ql,t .. .gJAT, and matrix B is defined to be

B, B, --- By, 0 0 0
0 By B, Br. : :
0 By B, 0 0
0 B,
B = : :
B, B, B,., 0
0 0 By Br2 Br
: By B,
) 0 ... o - 0 B, |
(A17)

in which 0 is all-zero matrix of the same size as B.
The update rules (2.22) and (2.24) for the model X = Bg can be written as

BTx
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and T[ |
B%
— g. x Al
88X T (A.19)

where 1 is an all-one vector of the same size as x.
For clarity, we write BT as

'B;)l' oT ... 0of o’ R | L
B, B!
Bl Bl B; 07
o' Bl , --- Bl B! o
57— : .
B] or
o’ - o’ e BI BOT o’
Bl , Bl Bj o0F
L o7 o : o B!, ... B] B! |
(A.20)

By substituting it and (A.15) and (A.16) to Equations (A.18) and (A.19),
we get

iju(;(Lfl,Tft) BIXt+T
gt — 8t. X = — — (A21)
) D : 16
and
ma)O((L—LT—t) T[Xetr]
gt — g X —— ——— T Xtr (A.22)
St BIL

forall ¢t =1...T. For each g; these equal the update rules (4.11) and (4.13),
thus completing the proof.

Since the update rules for the time-varying frequency model (Section 4.2)
can be proved similarly by reformulating the model to a linear model. Because
of the dualism of the models, the update rules are actually identical when the
variables are changed according to Section 4.3. Therefore, we omit the converge
proof of the time-varying frequency model here.
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Appendix B

Simulation Results of
Sinusoidal Modeling
Algorithms

Figure B.1 shows the average SDRs for separation methods based on sinusoidal
modeling, which were not included in the results illustrated in Chapter 5. The
methods based on interpolation and normalization and linear-frequency band
model are included to enable comparison with results in Chapter 5.

The average performance of the interpolation without normalization is in
most cases equal or slightly better than the performance of the interpolation
with normalization. The performance of the polynomial model and the mel-
frequency cosine basis model is approximately equal to the fixed frequency-band
model: the models restrict the parameter values, and therefore their modeling
error (polyphony 1) is large, but they enable a better quality on higher poly-
phonies.
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Figure B.1: The average SDRs for the rest sinusoidal modeling algorithms at
different polyphonies. The upper panel shows the results for correct MFFE and
the lower panel for erroneous MFFE.
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