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Abstract—We propose a nonparametric framework for voice
conversion, that is, exemplar-based sparse representation with
residual compensation. In this framework, a spectrogram is re-
constructed as a weighted linear combination of speech segments,
called exemplars, which span multiple consecutive frames. The
linear combination weights are constrained to be sparse to avoid
over-smoothing, and high-resolution spectra are employed in the
exemplars directly without dimensionality reduction to maintain
spectral details. In addition, a spectral compression factor and a
residual compensation technique are included in the framework
to enhance the conversion performances. We conducted experi-
ments on the VOICES database to compare the proposed method
with a large set of state-of-the-art baseline methods, including the
maximum likelihood Gaussian mixture model (ML-GMM) with
dynamic feature constraint and the partial least squares (PLS)
regression based methods. The experimental results show that the
objective spectral distortion of ML-GMM is reduced from 5.19
dB to 4.92 dB, and both the subjective mean opinion score and
the speaker identification rate are increased from 2.49 and 73.50
% to 3.15 and 79.50 %, respectively, by the proposed method.
The results also show the superiority of our method over PLS-
based methods. In addition, the subjective listening tests indicate
that the naturalness of the converted speech by our proposed
method is comparable with that by the ML-GMM method with
global variance constraint.

Index Terms—Voice conversion, exemplar, sparse representa-
tion, nonnegative matrix factorization, residual compensation

I. INTRODUCTION

Generally speaking, a speech signal carries threefold infor-
mation: voice timbre, prosody, and language content. Voice
conversion is a technique to manipulate one speaker’s (source)
voice timbre and/or prosody to impersonate another speaker
(target) without changing the language content. As spectral
attributes, which relate to voice timbre, play an important role
in characterizing speaker individuality [1], spectral mapping
has been intensively studied as an acoustic feature mapping
problem, which is also the focus of this work.

Spectral mapping has many practical uses. The most popular
one would be in speech synthesis, where voice conversion
techniques are used to create a personalized text-to-speech
(TTS) system with a small amount of speech samples from a
specific speaker [2]. Such mapping techniques are also handy
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in many other applications, such as narrowband-to-wideband
conversion [3], single-channel speech enhancement [4], noise
robust feature compensation [5], [6], acoustic-to-articulatory
inversion mapping [7], and body-transmitted speech enhance-
ment [8].

A large number of statistical parametric approaches have at-
tempted to achieve a robust spectral mapping. It was proposed
that source-target feature mapping can be established through
vector quantization (VQ) [9], where the source-target feature
pairs are used to estimate a mapping codebook during training.
At runtime, the codebook is used to select a sequence of target
centroid features to generate converted feature trajectories.
The discrete nature of VQ inevitably leads to glitches in the
converted voices that sound unnatural. To alleviate such an
incoherence, fuzzy VQ was proposed in [10] using continuous-
values weight vectors to interpolate the centroid vectors in
the codebook for generation. Gaussian mixture model (GMM)
based approaches were also proposed in [2], [11], [12], [13]
to implement a weighted local linear conversion function for
continuous spectral mapping. At the same time, other methods
based on linear transformation, such as perceptually weighted
linear transformation [14], maximum likelihood linear trans-
formation [15], partial least squares (PLS) regression [16]
and local linear transformation [17], have also been proposed
assuming that the source and target features are linearly
correlated. Alternatively, nonlinear methods have also been
proposed assuming a nonlinear relationship between the source
and target features. Such methods include artificial neural
network [18], [19], support vector regression [20], kernel PLS
regression [21] and restricted Boltzmann machine [22], just to
name a few.

While the above statistical parametric approaches convert
speaker identity well, they are often at the cost of degraded
speech quality. As an alternative to statistical approaches
which typically shift source spectra to match those of the target
through mapping functions, vocal tract length normalization
(VTLN) techniques were proposed in [23], [24] to warp the
frequency axis of a source spectrum to match that of the
target. Similar ideas, such as weighted frequency warping
[25], dynamic frequency warping [26] and bilinear frequency
warping [27], were also proposed. As these frequency warping
approaches are able to keep the spectral details, they produce
converted speech of perceptually higher quality than statistical
parametric approaches. However, there is a trade-off between
speech quality and identity conversion performance. It is re-
ported that frequency warping techniques offer inferior speaker
identity conversion quality to that of statistical approaches
[25], [27].
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While balancing speech quality and speaker individuality
of converted speech, the robustness of statistical parametric
approaches is limited by the fact that they attempt to predict
speech trajectories from model parameters. Robustness refers
to the ability that a system is capable to handle new training
data without much tuning. In the parametric approaches,
when new training data arrives, the model parameters for
prediction are required to be re-optimized to reduce the
mismatch between the ’old’ model and new data. It also
refers to the ability that a method is reliable to handle various
training scenarios, such as limited training samples and high-
dimensional features. When there are too many parameters
and too few training samples, over-fitting occurs [16]. Over-
fitted model usually has poor predictive performance. It is
because the model parameters are estimated by maximizing
the performance on the training data.

In [28], we proposed a nonparametric spectral mapping
framework, namely exemplar-based sparse representation, for
voice conversion. In this framework, each speech segment
is reconstructed as a weighted linear combination of a set
of basis exemplars. An exemplar is defined as a speech
segment spanning multiple frames extracted from the training
data, while the set of linear combination weights compose an
activation vector, which is constrained to be sparse. In the
work, we assumed that a collection of acoustically aligned
source and target exemplars, called coupled dictionary could
share the same activation vector to generate the converted
spectrograms. Due to the nonnegative nature of a spectrogram,
in practice, both nonnegative matrix factorization (NMF) [29]
with sparsity constraint [30] and nonnegative matrix deconvo-
lution (NMD) [31] were examined to estimate the activations.
Similar work based on sparse representation was conducted
in [32] for noise-robust voice conversion, where NMF with
sparsity constraint was employed to find the activations.

The exemplar-based sparse representation framework de-
scribes speech observations by a dictionary. There are three
advantages of using this framework for voice conversion:
a) it is straightforward to construct the dictionary by using
speech segments directly from the training data; b) it allows
us to model high-dimensional spectra directly to maintain the
spectral details; and c) the generation of converted spectrogram
is as simple as combining a set of basis speech segments
without mapping or modification. In addition, by constraining
the activation vector to be sparse, we avoid the over-smoothing
problem during the linear combination of exemplars. It has
been confirmed that the exemplar-based sparse representation
framework offers high quality voice conversion [28].

In this work, we extend the exemplar-based sparse represen-
tation framework [28] through residual compensation. First,
we examine the temporal constraint for both low-resolution
and high-resolution features. High-resolution features usually
produce accurate activation weights but at a high computa-
tional cost, while low-resolution features are computational
efficient in capturing the temporal structure of speech signals.
We present a detailed comparison between low-resolution and
high-resolution features for voice conversion performance.

Second, inspired by the work in source separation [33], the
dynamic range of the spectrogram amplitude affects the per-

formance considerably. We know that, in the original spectro-
gram, high-frequency bands have low-intensity observations,
while low-frequency bands have high-intensity observations.
As a result, some important but low-intensity observations
are not given adequate attention. Addressing this problem, we
introduce a spectral compression factor to balance the intensity
between high- and low-frequency bands.

Last, during the estimation of activations there exists in-
evitably some modelling error between the source spectrogram
and the modeled spectrogram. Such residuals usually contain
spectral details which may affect the converted speech quality.
We hence propose a residual compensation technique to reim-
burse the source model residual for the converted spectrogram
to enhance the speech quality.

The main contributions of this work are threefold:

• An exemplar-based sparse representation with residual
compensation framework for voice conversion is pro-
posed, allowing us to model high-resolution spectra di-
rectly.

• A spectral compression method is investigated to empha-
size important but low-intensity observations.

• A residual compensation technique is introduced to en-
hance the converted speech quality.

II. PROBLEM STATEMENT

A. General voice conversion framework

The goal in spectral mapping for voice conversion is to map
source speaker’s features to match those of the target speaker.
Mathematically, spectral mapping is written as

y = F(x), (1)

where x ∈ Rd×1 and y ∈ Rd×1 are the source and target
features, respectively, d is the dimensionality of features, and
F(·) is the conversion function to map the features.

A typical voice conversion system consists of two stages:
offline training and runtime conversion. During the offline
training, parallel utterances from a source speaker X and a
target speaker Y are first aligned using dynamic time warping
(DTW) algorithm as

X = [x1,x2, . . . ,xn, . . . ,xN ] (2)

Y = [y1,y2, . . . ,yn, . . . ,yN ], (3)

where X ∈ Rd×N and Y ∈ Rd×N are the paired source and
target data, respectively, N is the number of frames in training,
and xn and yn are the paired source and target features,
respectively. If a parallel dataset is not available, nonparallel
alignment techniques [34] can be applied to find the frame
alignment. The parallel data Z = [X;Y], where each column
zn = [xn;yn] is a joint vector, is employed to estimate the
conversion function F(·).

At runtime, given a source feature x or a sequence of source
features X, the conversion function F(·) is adopted to predict
a target feature ŷ = F(x).
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B. Limitations

Aside from the issue of robustness, the performance of sta-
tistical parametric approaches is also limited by the statistical
average nature and the use of low-resolution features. We
discuss the two limitations in this section.

1) Statistical average: In the statistical parametric meth-
ods, conversion functions are optimized by minimizing mean
square error of between reference target and converted speech
[11], or maximizing joint likelihood between source and target
speech in the training stage [12]. This inevitably leads to
conversion functions that model the average properties of
spectra, but discard spectral details.

We take the joint-density Gaussian mixture model (JD-
GMM) method as a case study to show the averaging effect.
During the parameter estimation process of JD-GMM, the joint
mean vector is calculated as a weighted linear combination
of all the training samples, which is the so called statistical
average. The averaging process will remove some spectral
details which cannot be recovered during synthesis.

Moreover, if the correlation between source and target
features is low, the value of the cross covariance elements
will be extremely small. As a result, only the mean vector
will contribute to the converted speech [35]. At the same
time, during conversion, the mean vectors are fixed for every
input feature, thus the variation of the generated parameter
trajectories will be low.

2) Low-resolution features: In conventional statistical para-
metric approaches, low-resolution features such as mel-
cepstral coefficients (MCCs) [36] and line spectrum pair
(LSP) [37] are commonly used to represent high-resolution
spectra, which are the spectra/spectral envelopes extracted
from the discrete Fourier transform or linear predictive coding.
The use of low-resolution features is to reduce the feature
dimensionality for computational efficiency. We argue that
the use of such low-resolution features loses spectral details
and results in converted spectrum that is smoothed. Fig. 1
shows a comparison of an original spectral envelope and a
reconstructed spectral envelope from 24-order MCCs. It is
observed that after reconstruction from low-resolution features,
the spectral details are lost, especially in high-frequency
bands. There are partial evidences showing that high-resolution
feature representations produce synthetic speech with better
quality than low-resolution features [38], [39].

In general, due to the statistical average and the use of
low-resolution feature representations, conventional statistical
parametric approaches such as JD-GMM suffer from the over-
smoothing problem, and generate muffled-sounding speech.

III. EXEMPLAR-BASED SPARSE REPRESENTATION WITH
RESIDUAL COMPENSATION

To overcome the limitations of statistical parametric ap-
proaches, we propose an alternative nonparametric framework,
specifically, an exemplar-based sparse representation with
residual compensation method, where high-resolution spectra
are directly used to synthesize the converted speech. The
proposed framework is described in this section.
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Fig. 1: Illustration of the smoothing effect of low-resolution
features. The dashed line is reconstructed from 24-order
MCCs, which are computed from the solid line.

A. Basic exemplar-based sparse representation

The idea of exemplar-based sparse representation is to
describe a magnitude spectrum as a linear combination of a
set of basis spectra, namely, exemplars. Mathematically, it is
written as

x(DFT) ≈
N∑
n=1

a(DFT)
n · hn = A(DFT)h subject to h ≥ 0,

(4)
where x(DFT) ∈ RF×1 represents the high-resolution spec-
trum of one speech frame, F is the dimensionality of high-
resolution spectra, N is the number of exemplars in a dic-
tionary, A(DFT) = [a

(DFT)
1 ,a

(DFT)
2 , · · · ,a(DFT)

N ] ∈ RF×N is
the fixed dictionary of exemplars built from the source training
set, a

(DFT)
n is the nth source exemplar which has the same

dimensionality as x(DFT), h = [h1, h2, · · · , hN ] ∈ RN×1
is the activation vector and hn is the nonnegative weight, or
activation, of the nth exemplar.

Each observation is modeled independently, and a spectro-
gram of each source utterance can therefore be represented
as

X(DFT) ≈ A(DFT)H, (5)

where X(DFT) ∈ RF×M is the source spectrogram, M is the
number of frames in a source utterance and H ∈ RN×M is the
activation matrix, each column vector of which is an activation
vector in Eq. (4).

To generate a converted spectrogram, we assume that paired
source-target dictionaries A(DFT) and B(DFT) with acousti-
cally aligned exemplars can share the same activation matrix
H. Note that each column vector in B(DFT) corresponds to
a column vector in A(DFT), and they are obtained from the
aligned data in the way described in Eqs. (2) and (3). Thus,
the converted spectrogram can be generated as

Ŷ(DFT) = B(DFT)H, (6)

where Ŷ(DFT) ∈ RF×M is the converted spectrogram,
B(DFT) ∈ RF×N is the fixed target dictionary of exemplars
from target training data, and H is as found in Eq. (5).

Due to the nonnegative nature of source spectrogram
X(DFT) and source dictionary A(DFT), the nonnegative matrix
factorization (NMF) technique [29], [30] is employed to esti-
mate the activation matrix H, which is found by minimizing
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the objective function

H = arg min
H≥0

d(X(DFT),A(DFT)H) + λ‖H‖1, (7)

where λ is the sparsity penalty factor. Here, only the activation
matrix H is estimated and the dictionary A(DFT) is fixed. In
practice, the generalised Kullback-Leibler (KL) divergence is
used for d(X(DFT),A(DFT)H). Similar to [30], we minimize
the objective function in Eq. (7) by iteratively applying the
following multiplicative updating rule:

H← H⊗
A(DFT)> X(DFT)

A(DFT)H

A(DFT)> + λ
, (8)

where ⊗ represents element-wise multiplication and divisions
are also element-wise. The convergence of Eq. (7) using this
update rule is proven in [30]. In our study with real speech
data, it is observed that this update rule converges robustly.

In the following, we make several modifications to the basic
setup described above.

B. Spectrum compression

The relative range between high- and low-intensity obser-
vations is an important factor which affects the activation
matrix estimation, as well as spectrogram generation. In the
context of source separation, changing the dynamic range
of spectrograms by exponentiating them has been found to
affect the performance significantly [33]. In a similar way,
we introduce a spectral compression parameter ρ into the
computation of the activation matrix, as follows:

(X(DFT))ρ ≈ (A(DFT))ρH, (9)

Ŷ(DFT) = ((B(DFT))ρH)1/ρ. (10)

We conducted an analysis of the spectral shapes varying the
compression factor from 0.2 to 1.0 as presented in Fig. 2. It
shows that a smaller compression factor implies more empha-
sis on higher frequency bands that have low intensity. Note
that the spectral compression will not change the nonnegative
nature of a spectrogram.
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Fig. 2: Illustration of spectral shapes with corresponding
compression factors (ρ).

Values ρ < 1 compress the spectrum, making its values
closer to each other. The KL divergence is linear in terms

of the scale of its arguments [40], and compression/expansion
affects the relative weight of small/large intensity observations
in the estimation. Note that ρ can be applied to the source
spectrogram and dictionaries in advance before estimating the
activation matrix. This allows us to use the same objective
function and updating rule as in Eqs. (7) and (8), to find
the activation matrix H. When ρ = 1, Eqs. (9) and (10) are
reduced to Eqs. (5) and (6), respectively.

C. Contextual information

So far, as shown in Eqs. (5) and (9), no contextual informa-
tion is taken into consideration when estimating the activation
matrix, in other words, each frame is modeled independently. It
is easy to understand that contextual information is important
in modeling a speech signal. To benefit from the context, we
suggest using a speech segment that spans multiple consec-
utive frames as an exemplar in the source dictionary. The
column vectors in each exemplar are stacked into a single
vector to simplify the notation. In this way, an exemplar from
the dictionary in Eqs. (4), (5) and (9) can be defined as

a(DFT)
n =

[
a
(DFT)
n,−q ; · · · ;a(DFT)

n,−1 ;a
(DFT)
n,0 ;a

(DFT)
n,+1 ; · · · ;a(DFT)

n,+q

]
,

(11)
where L = 2×q+1 is the window size of an exemplar, a

(DFT)
n,0

is exactly the same as a
(DFT)
n in Eq. (5), a

(DFT)
n,−q and a

(DFT)
n,+q

are the qth frames preceding and following frame a
(DFT)
n,0 in

the original time sequence, respectively. Thus, the stacking
vector a

(DFT)
n ∈ R(L×F )×1 is able to represent an exemplar

spanning L frames.

D. Using low-resolution features for faster computation

As shown in Eqs. (5), (6), (9) and (10), the size of the
activation matrix H is independent of the feature dimension-
ality of the source dictionary A(DFT). On the other hand, the
feature dimensionality of A(DFT) will affect the computation
and memory usage considerably, especially when a relatively
large context is used. To overcome this, we propose a new
implementation of NMF using low-resolution features in the
source dictionary. This kind of coupled dictionaries has previ-
ously been applied e.g. to combine good time and frequencies
resolutions [41], to expand the bandwidth of speech [42] and
to do robust automatic speech recognition [30].

We consider an exemplar without contextual information
first and define the low-resolution implementation as

W(X(DFT))ρ ≈W(A(DFT))ρH, (12)

where W ∈ RU×F is the matrix to perform dimensionality
reduction, and U is the dimensionality of the low-resolution
feature with U ≤ F constraint.

In practice, the low-resolution used here corresponds to
the Mel-scale, so that each column of W is the triangu-
lar magnitude response of a filter, and thus, for simplicity,
we use X(MEL) ∈ RU×M for W(X(DFT))ρ, and denote
W(A(DFT))ρ = A(MEL) ∈ RU×N . In this way, Eq. (12)
becomes:

X(MEL) ≈ A(MEL)H. (13)
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Fig. 3: Illustration of the exemplar-based sparse representation with residual compensation framework, which consists of
four processes: (1) estimating the activation matrix H using low-resolution features; (2) calculating the source residuals
R(X) following Eq. (14); (3) mapping source residuals to target residuals following Eq. (16); and (4) generating converted
spectrograms Ŷ(DFT) following Eq. (17). In the diagram, U and F are the feature dimensionalities of low-resolution and
high-resolution features, respectively, 3×U means an exemplar spanning three frames, M is the number of frames in a source
utterance, and N is the number of exemplars in a dictionary. As discussed in Section III-F, U is set to 50, and F is set to 513.

Note that Eq. (13) is similar to Eq. (5), this allows us to
use the same estimation method. To benefit from multiple-
frame exemplars, we follow the same stacking as in Eq. (11)
to establish a context-dependent source dictionary by simply
replacing (a

(DFT)
n,+q )ρ with a

(MEL)
n,+q = W(a

(DFT)
n,+q )ρ.

The advantage of using low-resolution features rather than
high-resolution features to estimate the activation matrix is
that the computational complexity can be reduced greatly.
Even though low-resolution features are used to estimate the
activation matrix as Eq. (13), the activations are applied on the
high-resolution dictionary B(DFT) to generate the converted
spectrogram as Eq. (10). Note that the low-resolution source
dictionary A(MEL) is acoustically aligned with the high-
resolution dictionary B(DFT), we hence assume that B(DFT)

can also share the activation matrix H with A(MEL).

E. Compensating model residual

The modeling error between the observed source spectro-
gram X(DFT) and the modeled spectrogram ((A(DFT))ρH)1/ρ

is also called residual. We propose a residual compensation
technique to enhance the spectral mapping performance.

To perform residual compensation, during offline training,
we use a development set in the following four steps to
calculate source and target spectrogram residuals:
(a) Estimate the activation matrix H using low-resolution

features as that in Eq. (13).
(b) Apply H to the source and target spectral dictionaries to

reconstruct source and target spectrograms, respectively.
(c) Calculate source residuals R(X) by subtracting the magni-

tude of the modeled spectrograms with the corresponding
reference source spectrograms as

R(X) = log(X(DFT))− log(((A(DFT))ρH)1/ρ). (14)

(d) Calculate target residuals R(Y) by subtracting the magni-
tude of the converted spectrograms with the corresponding

reference target spectrograms as

R(Y) = log(Y(DFT))− log(((B(DFT))ρH)1/ρ). (15)

We obtain the source-target residual pairs by using the corre-
sponding reference source-target frame alignment information.
With the paired source-target residuals, a mapping can be
established as

R(Y) ≈ F(R(X)). (16)

In practice, the mapping is implemented by partial least
squares (PLS) regression, which is able to handle high-
resolution features. The details of PLS regression can be found
in [16].

The runtime conversion process is illustrated in Fig. 3.
Similar to that in training, the activation matrix H is first
estimated using low-resolution features as that in Eq. (13).
Next, H is applied to the source and target spectral dictio-
naries to generate reconstructed source and converted spectro-
grams, respectively. Then, source residuals are calculated by
subtracting the modeled spectrograms with reference source
spectrograms in log-scale as that in Eq. (14). After that,
the source residuals are mapped to target, which are added
to the converted spectrograms on a logarithmic amplitude
scale. Finally, the residual compensated spectrograms will be
reverted back to a linear amplitude scale. The whole process
is formulated as

Ŷ(DFT) = exp(log(((B(DFT))ρH)1/ρ) + F(R(X))). (17)

We perform residual compensation on a logarithmic amplitude
scale to guarantee the nonnegative nature of a spectrogram.

F. Dictionary Construction

As shown in Fig. 3, two kinds of dictionaries are involved
in this work. Before constructing dictionaries, the feature
representations used in this work are presented as follows:
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• High-resolution Magnitude spectra consist of a se-
quence of 513-dimensional spectral envelopes extracted
by STRAIGHT [43], and the envelopes are passed to
STRAIGHT to reconstruct an audible speech signal at
runtime. The frequency resolution of the high-resolution
spectra is similar to that from the discrete Fourier trans-
form (DFT). To this end, we use label DFT to denote the
high-resolution spectra used in the source spectrogram
X(DFT), the target spectrogram Y(DFT) or Ŷ(DFT), the
source spectral dictionary A(DFT) and the target spectral
dictionary B(DFT).

• Low-resolution mel-scale filter-bank energies (MELs) are
obtained by passing the high-resolution magnitude spec-
trogram to 50 mel-scale filter-banks, where the lower
and upper frequencies are set to be 133.33 Hz and
6,855.5 Hz, respectively. In this paper, MELs are used
as low-resolution features in X(MEL) and in the source
feature dictionary A(MEL), which are used to estimate
the activation matrix.

• Mel-cepstral coefficients (MCCs) are obtained by apply-
ing the mel-cepstral analysis technique [44] on a magni-
tude spectrogram and keeping 24 dimensions as features.
During synthesis, MCCs are reverted back to a magnitude
spectrogram, which is then passed to STRAIGHT to
reconstruct an audible speech signal.

Given a parallel dataset between source and target speakers,
we take the following steps to extract paired exemplars:

(a) Extract high-resolution magnitude spectrograms (spectral
envelopes) from both source and target speech signals
using STRAIGHT.

(b) Apply mel-cepstral analysis technique [44] to the magni-
tude spectrogram to compute MCCs.

(c) Apply 50 Mel-scale filter-banks to the source spectro-
grams to compute 50-dimensional MELs.

(d) Perform dynamic time warping (DTW) to align the source
and target MCCs to obtain frame-by-frame source-target
alignment.

(e) Apply the frame alignment information to the source
and target magnitude spectrograms to obtain the high-
resolution source a

(DFT)
n and target exemplars b

(DFT)
n ,

respectively.
(f) Apply the same frame alignment information to the

source MELs to obtain the low-resolution source dictio-
naries a

(MEL)
n .

In the above six steps, we produce the paired exemplars from
the training dataset. A simple way to construct dictionaries
is by putting all these paired exemplars as column vectors
in the corresponding dictionaries such as A(DFT), B(DFT)

and A(MEL), and keeping them unchanged for runtime con-
version. In the experiments, we examine the performance
of dictionaries using a subset of the paired exemplars, for
example, randomly selecting exemplar pairs and storing as
column vectors in corresponding dictionaries.

IV. EXPERIMENTS

We conducted experiments using the VOICES1 database
[45] to assess the performance of the proposed exemplar-based
sparse representation with residual compensation method.
Speech data from two male speakers (jal and jcs) and two
female speakers (sas and leb) was used. Voice conversion was
conducted for all the 12 speaker pairs including 4 intra-gender
and 8 inter-gender conversions. In each pair, 10 utterances
were randomly selected as a training set, 10 utterances as a
development set, and 20 utterances as an evaluation set. There
was no overlapping across the three sets.

A. Reference methods and setups

To validate our proposals, we use a large set of state-of-the-
art methods as the reference baselines, that include the well
established ML-GMM method and several variations of the
partial least squares (PLS) regression based methods. Note that
PLS-based methods also depend on GMM in order to imple-
ment local transformations, but use more advance techniques
to obtain the mapping function. In addition, we implement
several nonnegative matrix factorization (NMF) based methods
within the exemplar-based sparse representation framework to
show the intermediate methods towards the proposed method.
They are summarized as follows:

• ML-GMM: The joint-density Gaussian mixture model
(JD-GMM) method with dynamic feature constraint pro-
posed by Toda et al. [12] is a well-established baseline
method. Note that in this work, 24-dimensional MCCs
were used to represent the spectral envelope. Cross-
diagonal covariance was adopted in the JD-GMM.

• ML-GMM-GV: The ML-GMM method with global vari-
ance enhancement in [12]. We used the same configura-
tion as ML-GMM and used a postprocessing technique
as presented in [46] to perform the GV implementation.

• DKPLS: The dynamic kernel partial least squares
(DKPLS) regression method has been shown to be ef-
fective for implementing a nonlinear conversion function
[21]. We used the same configuration as that in [21].

• DKPLS-DFT: The dynamic kernel partial least squares
(DKPLS) regression method was also applied to high-
resolution spectrograms. Comparing with DKPLS, this
implementation is to examine the flexibility of DKPLS
in face of high-dimensional features.

• DPLS-DFT: The partial least squares (PLS) regression
method [16] was applied to high-resolution spectrograms,
and three consecutive spectra were stacked as source
features to include dynamic information for predicting
a target spectrum. Comparing with DKPLS-DFT, this
method is to evaluate the performance of basic PLS
without kernel transformation.

• NMF-DFT: This is the basic exemplar-based sparse rep-
resentation method implemented by nonnegative matrix
factorization (NMF). High-resolution magnitude spectra
were employed in the source and target dictionaries. It

1http://catalog.ldc.upenn.edu/LDC2006S01
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used Eq. (5) to estimate the activation matrix and Eq. (6)
to generate the converted spectrograms.

• NMF-DFT-SC: This is the NMF-DFT method with spec-
tral compression, as presented in Eq. (9) and (10). With
reference to NMF-DFT, this method is to show the effect
of spectral compression.

• NMF-MEL-SC: This is the NMF with spectral compres-
sion method using low-resolution Mel-scale filter-bank
energies (MELs) in the source dictionary. It employed
Eq. (13) to estimate the activation matrix, and Eq. (10)
to produce the converted spectrograms. With reference
to NMF-DFT-SC, this method is to show the effect of
feature dimensionality reduction in the source dictionary.

• NMF-MEL-SC-RC (Proposed): This is the complete
exemplar-based sparse representation with residual com-
pensation method as presented in Section III-E and Fig.
3. With reference to NMF-MEL-SC, we show the effect
of residual compensation.

Table I summarizes the voice conversion methods with in-
volved feature representations, and the equations for activation
matrix estimation and spectrogram generation. The spectral
mapping was performed using above methods, while F0 was
converted by a simple linear conversion, normalizing the mean
and variance of the source speech to equalize that of the
target. In this work, we only deal with the magnitude spectra,
while adopting minimum-phase for all the methods when
reconstructing the speech signals. In practice, the STRAIGHT
vocoder was employed. For a fair comparison, we shared
across all the methods the same frame alignment obtained from
frame-by-frame DTW.

TABLE I: Summary of the implemented methods and their
formulations.

Spectral Activation Spectrogram
Method feature estimation generation
ML-GMM MCCs n/a Eq. (39) in [12]
ML-GMM-GV MCCs n/a Eq. (16) in [46]
DKPLS MCCs n/a Eq. (6) in [21]
DKPLS-DFT DFTs n/a Eq. (6) in [21]
DPLS-DFT DFTs n/a Eq. (10) in [16]
NMF-DFT DFTs Eq. (5) Eq. (6)
NMF-DFT-SC DFTs Eq. (9) Eq. (10)
NMF-MEL-SC DFTs, MELs Eq. (13) Eq. (10)
NMF-MEL-SC-RC DFTs, MELs Eq. (13) Eq. (17)

In the first iteration of Eq. (8), H was initialized to unity,
and the update rule was repeated for 500 iterations. The
sparsity penalty factor λ was empirically set to 0.1 which is
selected according to the performance on the development set.

We conducted both objective and subjective evaluations to
assess the performance of the reference methods discussed
above. In both evaluations, we first assessed the performance
of NMF-based methods to show the effect of the incremental
modifications to the basic exemplar-based sparse representa-
tion, namely, NMF-DFT. After that, we compared our pro-
posed NMF-MEL-SC-RC method with the baselines, namely,
ML-GMM, DKPLS, DKPLS-DFT and DPLS-DFT methods.

B. Objective evaluations

Mel-cepstral distortion (MCD) calculated between the con-
verted and corresponding reference target Mel-cepstra was
employed as an objective evaluation measure. The MCD was
calculated as

MCD[dB] =
10

log 10

√√√√2

24∑
i=1

(ci − cconvi )2, (18)

where ci and cconvi are the ith coefficients of the reference
target and converted MCCs, respectively. For the DKPLS-
DFT, PLS-DFT, DPLS-DFT and exemplar-based sparse repre-
sentation methods, MCCs were computed from the converted
spectrograms to calculate the MCD, so that the objective
measure was comparable across all the methods. The MCD
was calculated frame-by-frame over all the paired frames in
the evaluation set, and the average MCD value was reported.
A lower MCD value indicates smaller spectral distortion.

1) Effect of dictionary construction: We examined the
effect of dictionary construction using NMF-DFT method
which represents a basic sparse representation method. In
the training set, there were approximately 5500 exemplars
from each speaker pair. If all the exemplars were used,
the computation and memory usage would be considerably
high. Thus, we varied the number of exemplars from 500 to
5500 and observed the conversion performance. Note that the
exemplars were randomly selected from the training set, and
a smaller set of exemplars was always a subset of a larger set.

Fig. 4 presents the spectral distortions as a function of the
number of exemplars, and the results on the development and
evaluation sets are presented for comparison. It is observed that
the spectral distortion decreases as the number of exemplars
increases. With 3000 exemplars, we achieve almost the same
performance as that of 5500 exemplars in terms of spectral
distortion . The results on the development set are consistent
with those on the evaluation set. Note that 3000 exemplars
yield about 2 times faster computation and about half memory
usage comparing with 5500 exemplars. We hence use N =
3000 exemplars in the following experiments.
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Fig. 4: Spectral distortion as a function of the number of
exemplars N in a dictionary.
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2) Analysis of the NMF-based methods: By setting the
number of exemplars in the dictionary to be N = 3000,
we assessed the performance of the incremental modifications
to the basic exemplar-based sparse representation setup. The
spectral distortions of the NMF-based methods are presented
in Table II, and discussed in details in this Section. Without
voice conversion, the spectral distortions between reference
source and target MCCs are 7.77 dB and 7.91 dB on the
development and evaluation sets, respectively.

TABLE II: Comparison of spectral distortions of the NMF-
based methods

Window Spectral distortion (dB)
Conversion method size Development Evaluation
No conversion n/a 7.77 7.91
NMF-DFT 1 5.48 5.52
NMF-DFT-SC 1 5.05 5.13
NMF-MEL-SC 1 5.08 5.18
NMF-DFT 7 5.25 5.31
NMF-DFT-SC 7 4.91 4.99
NMF-MEL-SC 9 4.93 5.03
NMF-MEL-SC-RC 9 n/a 4.92

Firstly, we examined the effectiveness of spectral compres-
sion by comparing the NMF-DFT and NMF-DFT-SC methods.
Correspond to Fig. 2, spectral distortions as a function of
the varied compression factors on both development and
evaluation sets are presented in Fig. 5. We observed consistent
behavior in both development and evaluation sets. A com-
pression factor of 0.4 gives the lowest spectral distortions of
5.05 dB and 5.13 dB on the development and evaluation sets,
respectively. We hence choose ρ = 0.4 as the compression
factor to represent NMF-DFT-SC method as shown in Table
II in the reminding experiments. When a compression factor is
set to 1.0, NMF-DFT-SC is reduced to the NMF-DFT method.
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Fig. 5: Spectral distortion as a function of spectral compression
factors (ρ).

Secondly, we examined the effect of feature dimensionality
reduction in the source dictionary by comparing the NMF-
DFT-SC and NMF-MEL-SC methods. As shown in Table
II, NMF-DFT-SC method which uses high-resolution source
dictionary to estimate the activation matrix produces a spectral
distortion of 5.13 dB on the evaluation set. On the other

hand, NMF-MEL-SC gives a slightly higher spectral distortion
of 5.18 dB on the same set after performing dimensionality
reduction.

We also examined the computational costs between the
NMF-DFT-SC and the NMF-MEL-SC methods. The com-
puting time was computed over all the testing data, and the
average performance for generating one second of speech was
reported. The computational costs to generate one second of
speech as a function of the window sizes in an exemplar are
presented in Fig. 6. We note that the computing time was
calculated only for the 500 iterations’ multiplicative updates.
The MATLAB 2 codes were run on graphics processing unit
(GPU), called GeForce GTX TITAN 3. In general, the NMF-
MEL-SC method is about 7 times faster than the NMF-DFT-
SC method.
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Fig. 6: Computing time to generate one second of speech as
a function of the window size (L) of an exemplar.

Thirdly, we examined the effect of using multiple-frame
exemplars to assess whether an exemplar spanning multiple
consecutive frames is useful. Fig. 7 presents the spectral
distortion results as a function of the window size L of an
exemplar on both development and evaluation sets. For NMF-
MEL-SC method, it is observed that as the window size
increases, the spectral distortions consistently decrease and
reach their minimum at 9 on both development and evaluation
sets. While for NMF-DFT-SC method, spectral distortions
have similar trends, but they reach their minimum at 7 and 9
on the development and evaluation sets, respectively. Due the
heavy computations, we did not test the performance of NMF-
DFT-SC when the window sizes were larger than 9. When the
window size equals to 9, the source dictionary size of NMF-
DFT-SC is 3000 × (513 × 9) = 3000 × 4617, while that of
NMF-MEL-SC is 3000× (50× 9) = 3000× 450.

We analyzed the activation weight for NMF-MEL-SC by
setting the window size of an exemplar to 9. Fig. 8 presents
an example of activation weights calculated for a single
observation. In the example, there are only 13 exemplars
that have weights greater than 0.01, and only two of them
have weights greater than 0.05. For further analysis, we
calculated the average top weights over one utterance. Given
an utterance, the activation matrix was calculated; then the
activations corresponding to each source frame were sorted

2http://www.mathworks.com/products/matlab/
3http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan
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Fig. 7: Spectral distortion as a function of the window size
(L) of an exemplar.

in a descending order; after that, the activations weights were
averaged over all the source frames in the utterance. The top
100 averaged weights are presented in Fig. 9. It shows that the
top 30 or 50 exemplars contribute more to the generated target
spectrogram, while the other 2950 exemplars have weights
that almost equal to zero. It implies only 1 % or even fewer
exemplars are activated in generating each target spectrum,
and confirms that effectiveness of the sparsity constraint.
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Fig. 8: Illustration of the activation weights associated to each
exemplar to generate a target spectrum.
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Fig. 9: Illustration of top 100 activation weights out of the
3000 exemplars, which are averaged over an utterance.

Lastly, we assessed the effectiveness of residual compen-
sation. We first applied the NMF-MEL-SC method using
9-frame exemplars on the development set to produce the
residuals. Then, a mapping between the source and target

residuals was established using dynamic partial least squares
(DPLS) regression. 20 latent factors were adopted in the DPLS
regression based on the performance of DPLS-DFT which
was tuned on the development set. After that, at runtime
conversion, the same NMF-MEL-SC method was applied to
each source utterance to predict a converted spectrogram and
at the same time generate a source residual. The pre-trained
DPLS mapping function was applied to the source residual
to predict the target residual, which was compensated to the
converted spectrogram.

We applied our method on the evaluation set. As shown in
Table II, it is observed that residual compensation is able to
reduce the spectral distortion from 5.03 dB for NMF-MEL-SC
to 4.92 dB for NMF-MEL-SC-RC. It implies the effectiveness
of residual compensation.

3) Overall performance assessment: We compared the
proposed NMF-MEL-SC-RC method with the state-of-the-art
baselines, namely, ML-GMM method and PLS-based methods.
Table III presents the spectral distortions on the development
and evaluation sets. Note that only N = 3000 exemplars rather
than all the exemplars are adopted in the dictionary for the
NMF-MEL-SC-RC method, while ML-GMM and PLS-based
methods use all the frames N ≈ 5500 in the training set.
In the ML-GMM and ML-GMM-GV methods, the number
of Gaussian components was set to 32 based on the MCD
results on the development set. It is observed that on the eval-
uation set, the ML-GMM and ML-GMM-GV methods achieve
spectral distortions of 5.19 dB and 5.71 dB, respectively, and
the DKPLS method which performs nonlinear mapping gives
a spectral distortion of 4.95 dB. Two variants of DKPLS,
namely, DKPLS-DFT and DPLS-DFT, are applied on the high-
resolution features and produce spectral distortions of 5.13 dB
and 5.26 dB, respectively. On the same set, our NMF-MEL-
SC-RC method achieves 4.92 dB, which is lower than both
the ML-GMM method and the three PLS-based methods.

TABLE III: Comparison of spectral distortions of the proposed
and baseline methods

Window Spectral distortion (dB)
Conversion method size Development Evaluation
No conversion n/a 7.77 7.91
ML-GMM 3 5.09 5.19
ML-GMM-GV 3 5.64 5.71
DKPLS 3 4.88 4.95
DKPLS-DFT 3 5.07 5.13
DPLS-DFT 3 5.18 5.26
NMF-MEL-SC-RC 9 n/a 4.92

We then examined the flexibility of the proposed NMF-
MEL-SC-RC comparing with the DKPLS method. The num-
ber of exemplars in the dictionary or the number of frames
as training was varied from 500 to 3000. For a fair compar-
ison, the development set for training the residual mapping
was also varied accordingly. The spectral distortions on the
evaluation set as a function of the number of exemplars/frames
is presented in Fig. 10. We observe that the NMF-MEL-SC-
RC method has a similar behavior to the NMF-DFT method
as shown in Fig. 4, and that the effect of the DKPLS method
is consistent with [21]. It is worth noting that NMF-MEL-SC-
RC is more stable than the DKPLS method even when the
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training data is limited. Note that the exemplars/frames were
randomly selected from the training set and high-resolution
features for NMF-MEL-SC-RC were paired with MCCs used
in DKPLS.
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Fig. 10: Spectral distortions on the evaluation set as a function
of the number of exemplars/frames N as training.

In general, our NMF-MEL-SC-RC method robustly
achieves lower spectral distortions with varying the train-
ing data, and also works well on high-resolution features.
PLS-based methods give lower spectral distortions on low-
resolution features, but the performance drops considerably
when applied to high-resolution features.

C. Subjective evaluations

We conducted listening tests to compare the performance
between our proposed NMF-MEL-SC-RC and the baseline
methods in terms of speech quality and speaker individuality.
Amazon Mechanical Turk (AMT)4, a crowd sourcing platform,
was used in each listening test. The same platform has been
earlier used in subjective evaluations, e.g. in [47], [48], [49].
In the evaluation set, there were 12 conversion pairs and each
pair had 20 utterances. Hence, in total there were 240 (12×20)
converted utterances. In the listening test, 20 utterances were
randomly selected from the 240 utterances for each listener
(or worker as called in AMT) to avoid bias on utterances.
Moreover, 3 golden standard pairs were randomly mixed with
the 20 real testing utterances to prevent cheating as advised
in [49]. In each test, ten paid listeners were involved.

1) Analysis of the NMF-based methods: Four preference
listening tests were conducted to assess the effect of the
incremental modifications to the basic sparse representation
setup. We focused on speech quality in this section.

Firstly, we performed an AB preference evaluation between
NMF-DFT and NMF-DFT-SC methods regarding the effect
of spectral compression. In an AB preference test, speech
samples converted by two methods, namely NMF-DFT and
NMF-DFT-SC, were presented to listeners in a random order,
and the listeners were asked to choose the one that sounded
more natural. Fig. 11 presents the preference scores. It shows
that the preference scores are consistent with the spectral
distortions and NMF-DFT-SC achieves significantly better
speech quality than NMF-DFT without spectral compression.

4https://www.mturk.com

In general, both objective and subjective evaluations confirm
the effectiveness of spectral compression.
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NMF−DFT

NMF−DFT−SC

Fig. 11: Preference test results of speech quality with 95%
confidence intervals for NMF-DFT and NMF-DFT-SC meth-
ods.

Secondly, a three-way preference test was conducted to
examine the effect of the feature dimensionality reduction in
the source dictionary. Different from the AB preference test,
the three-way test had three options. Two speech samples gen-
erated from NMF-DFT-SC and NMF-MEL-SC methods were
randomly presented to each listener, and then the listeners were
asked to decide which sample is more natural. If they were
not able to perceive the difference between two samples, they
were asked to choose the option claiming no preference. The
preference test results are presented in Fig. 12. It is observed
that around 60 % sample pairs have the same speech quality,
while NMF-DFT-SC achieving around 25 % preferences is
slightly better than NMF-MEL-SC of around 15 %, but the
difference is not statistically significant. Again, note that NMF-
MEL-SC was around 7 times faster than NMF-DFT-SC and
that there was 10 times memory reduction of NMF-MEL-SC
comparing with NMF-DFT-SC. We hence conclude that NMF-
MEL-SC with slightly performance drop is computationally
more efficient than NMF-DFT-SC.
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Fig. 12: Preference test results of speech quality with 95
% confidence intervals for NMF-DFT-SC and NMF-MEL-SC
methods.

Thirdly, we conducted an AB preference test to assess the
effectiveness of using multiple-frame exemplars in the source
dictionary. NMF-MEL-SC using a single frame as an exemplar
was compared with that using a nine-frame speech segment as
an exemplar. Fig. 13 presents the subjective evaluation results.
It shows that NMF-MEL-SC using nine-frame exemplars is
significantly better than that using single-frame exemplars, and
confirms the effectiveness of using multiple-frame exemplars.
The subjective results are consistent with the objective spectral
distortions.

Lastly, we conducted an AB preference test to exam-
ine the effectiveness of residual compensation by compar-
ing NMF-MEL-SC and NMF-MEL-SC-RC. Fig. 14 presents
the preference scores. It is observed that NMF-MEL-SC-RC
achieves a significantly higher preference score than that of the
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Fig. 13: Preference test results of speech quality with 95
% confidence intervals for NMF-MEL-SC with and without
multiple-frame exemplars.

NMF-MEL-SC method. The preference results are consistent
with the objective evaluations. In general, NMF-MEL-SC-RC
achieves a lower spectral distortion and better than the NMF-
MEL-SC method.
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Fig. 14: Preference test results of speech quality with 95 %
confidence intervals for NMF-MEL-SC and NMF-MEL-SC-
RC methods.

2) Overall speech quality assessment: We conducted sub-
jective evaluations to assess the speech quality between the
proposed and baseline methods.

Firstly, we conducted AB preference tests to assess the
speech quality between the proposed NMF-MEL-SC-RC
method and PLS-based methods, where PLS-based methods
used the whole training set N ≈ 5500, while our method
used N = 3000 exemplars. Fig. 15 presents the preference
test results. In Fig. 15a, it is observed that the proposed NMF-
MEL-SC-RC achieves similar performance to DKPLS method,
in the sense that each method’s preference score falls into the
other method’s confidence intervals. Figs. 15b and 15c show
that our method is significantly better than both DKPLS-DFT
and DPLS-DFT methods. As the three PLS-based methods
were compared with the same NMF-MEL-SC-RC method,
the preference scores imply that even though DKPLS works
well with low-resolution MCC features, the performances of
DKPLS as well as DPLS are degraded considerably in face
of high-dimensional features. We conclude that PLS-based
methods are not as flexible as our NMF-MEL-SC-RC method
in handling high-dimensional features. The preference scores
are consistent with the spectral distortions as shown in Table
III.

Secondly, we conducted an AB preference test to assess
the flexibility of the NMF-MEL-SC-RC and DKPLS methods.
Here, both methods used 500 exemplars/frames as training.
Fig. 16 presents the preference scores with 95 % confidence
intervals. It is observed that the proposed NMF-MEL-SC-RC
method is slightly better than the DKPLS method when limited
training data are available, but the difference is not statisti-
cally significant. Even though previous result with 5500/3000
exemplars shows that the two methods achieve almost the

(a)
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Fig. 15: Preference scores of speech quality with 95% con-
fidence intervals for PLS-based methods with N ≈ 5500
training frames and our proposed NMF-MEL-SC-RC method
with N = 3000 exemplars in the dictionary. From top to
bottom, (a), DKPLS vs. NMF-MEL-SC-RC; (b), DKPLS-DFT
vs. NMF-MEL-SC-RC; and (c), DPLS-DFT vs. NMF-MEL-
SC-RC.

same performance, the result using 500 exemplars shows the
superiority of the proposed NMF-MEL-SC-RC. It confirms
the flexibility of the proposed NMF-MEL-SC-RC, and it is
consistent with the spectral distortions as presented in Fig.
10.
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Fig. 16: Preference test results of speech quality with 95
% confidence intervals for DKPLS and NMF-MEL-SC-RC
methods. Both methods used 500 exemplars/frames as training.

Next, we conducted a mean opinion score (MOS) test to
compare the NMF-MEL-SC-RC and ML-GMM methods, as
the ML-GMM method is a well-established baseline. The
opinion score was set to a five-point scale: 1 = bad, 2 =
poor, 3 = fair, 4 = good and 5 = excellent. 20 speech pairs
were randomly selected from the 240 pairs, and each pair
consisted of two conversion samples from the ML-GMM
and NMF-MEL-SC-RC methods. The language content of the
paired conversion samples was exactly the same. 3 pairs with
natural speech were mixed with the 20 real testing pairs as
golden standard pairs to exclude cheaters. The average MOS
results with 95% confidence intervals are presented in Fig.
17. ML-GMM has a MOS of 2.49, while NMF-MEL-SC-RC
achieves 3.15. It clearly shows that the proposed NMF-MEL-
SC-RC method significantly outperforms the baseline ML-
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GMM method.
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Fig. 17: Mean opinion scores with 95% confidence intervals
for ML-GMM and NMF-MEL-SC-RC methods.

Finally, we conducted another MOS test to compare the
NMF-MEL-SC-RC and ML-GMM-GV methods. It is gen-
erally believed that the ML-GMM-GV method is able to
avoid the over-smoothing problem in conventional statistical
parametric methods, and produces natural converted speech.
We followed the same procedures as that for comparing the
NMF-MEL-SC-RC and ML-GMM methods. Fig. 18 presents
the average MOS results with 95 % confidence intervals. It
is observed that ML-GMM-GV achieves a MOS of 3.07,
while NMF-MEL-SC-RC gives 2.95. Although the average
MOS of ML-GMM-GV is slightly higher than NME-MEL-
SC-RC, the ML-GMM-GV method does not outperform our
proposed NMF-MEL-SC-RC method significantly, in the sense
that the MOS of each method falls into the other method’s
confidence intervals. We note that the scores in Figs. 17 and 18
cannot be compared directly, as the two tests were conducted
independently and the listeners may not be exactly the same
for both tests.
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Fig. 18: Mean opinion scores with 95% confidence intervals
for ML-GMM-GV and NMF-MEL-SC-RC methods.

3) Identity evaluations: We conducted subjective evalu-
ations to assess the speaker similarity/individuality perfor-
mance. From our previous experience [28], speech quality
would affect the speaker individuality evaluation results in a
preference test, as the listeners usually paid more attention
on speech quality and preferred to choose samples that sound
more natural. To this end, we conducted an XAB test for each
method independently for fair comparison. In the test, 20 pairs
were presented to the listeners, and each pair consisted of
three speech samples: X = a converted sample, A = a source
sample and B = a target sample. The language content of
paired A and B was the same while that of X was different to
make sure the listeners focus on the spectral attributes other
than prosodic patterns. During the test, the converted sample
was first presented as a reference. Then, source and target
samples were presented in a random order. The listeners were
asked to decide whether sample A or B sounded closer to X in
terms of speaker individuality. The identification rate, which is
the percentage of converted samples identified as target, was
reported. Similar to [12], [21], all the inter-gender conversion

pairs were identified correctly in an initial listening test. We
hence only reported the results of intra-gender conversion,
which was a more challenging task than the inter-gender task.

Fig. 19 presents the identification rate results. The results
suggest that the NMF-based methods achieve slightly higher
identification rates than the baseline ML-GMM method, and
similar identification rates to the ML-GMM-GV method. In
particular, NMF-MEL-SC-RC achieves an identification rate
of 79.50 % while ML-GMM and ML-GMM-GV reaches 73.50
% and 80.00 %, and DKPLS attains 77.00 %. It is also
observed that DPLS-DFT gives the lowest identification rate of
67.00 %. We note that the ML-GMM-GV achieves the smallest
variance of the identification rates from all the listeners.
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Fig. 19: Comparison of speaker identification rates of different
voice conversion approaches.

In general, both the speech quality and identity tests confirm
the effectiveness and flexibility of our proposed NMF-MEL-
SC-RC method over a large set of state-of-the-art baseline
methods. The subjective results are consistent with the objec-
tive spectral distortions.

V. DISCUSSION

The experimental results have confirmed the effectiveness
of the proposed exemplar-based sparse representation with
residual compensation framework. Even though it is a non-
parametric framework, there are some fundamental relation-
ships between the proposed NMF-MEL-SC-RC method and
the state-of-the-art methods as discussed in this section.

A. Relationship with vector quantization and frame selection
methods

The vector quantization (VQ) and frame selection are two
related methods that use original feature vectors to generate
the target speech. In the VQ method, a codebook is established
as a subset of the source-target feature pairs. At runtime
conversion, the codebook is employed to find a target feature
whose paired source feature is close to the given source
feature. A similar method named frame selection [50], also
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called unit selection [51], establishes a source-target corre-
spondence during offline training. At runtime conversion, the
correspondence is applied to select a target feature vector given
a source feature vector.

The advantage of using the VQ and frame selection is that
the selected target feature keeps the spectral details as original
one. However, the hard clustering nature of VQ results in
the incoherence phenomenon across frames. This phenomenon
is also usually observed in the frame selection method [52].
On the other hand, in the proposed exemplar-based sparse
representation method, exemplars in the paired source-target
dictionaries can be treated as entries of a codebook in the VQ
method, or source-target correspondence in the frame selection
method. The proposed exemplar-based sparse representation
with residual compensation method differs from the VQ and
frame selection methods by presenting an observation as a
linear combination of exemplars, whereas the VQ and frame
selection methods calculate the selection costs for exem-
plars/frames independently from each other.

In addition, the frame selection method usually requires a
significant amount of training data, while our method works
with even 500 exemplars, that is 2.5 seconds of speech. Similar
to the work in [50], our method can also be combined with the
frame selection method, in the way that the converted speech
by our method is used as the reference target speech for frame
selection.

B. Relationship with JD-GMM methods

In JD-GMM based methods, the joint mean vectors µ
(z)
k

and covariance matrices Σ
(z)
k are employed to establish a

conversion function to predict a target feature ŷ given a source
feature x:

ŷ =

K∑
k=1

pk(x)(µ
(y)
k + Σ

(yx)
k (Σ

(xx)
k )−1(x− µ

(x)
k )), (19)

µ
(z)
k = [µ

(x)
k ;µ

(y)
k ] =

N∑
n=1

zn · γn,k, (20)

Σ
(z)
k =

[
Σ

(xx)
k Σ

(xy)
k

Σ
(yx)
k Σ

(yy)
k

]
=

N∑
n=1

γn,k·(zn−µ(z)
k )(zn−µ(z)

k )>,

(21)
where γn,k is the occupation probability of the nth frame
belonging to the kth Gaussian component [2], [12], and pk(x)
is the posterior probability of the source feature x generated
from the kth Gaussian component.

On the other hand, as presented in Eq. (17), if the residual
compensation is performed on a linear amplitude scale and the
compression factor ρ is set to 1.0, the predicted target feature

ˆy(DFT) can be presented as

ŷ(DFT) = B(DFT)h + F(r(X)), (22)

where r(X) is one column of R(X).
Comparing Eqs. (19), (22) and (20), it is observed that both

B(DFT)h =
∑N
n=1 b

(DFT)
n · hn and µ

(y)
k =

∑N
n=1 yn · γn,k

do conversion as a linear combination of either b
(DFT)
n or

yn. Note that b
(DFT)
n is a high-resolution spectrum, and

yn is the corresponding low-resolution MCC feature. The
activation vector h is constrained to be sparse, while γk =
[γ1,k, γ2,k, · · · , γn,k, · · · , γN,k] does not have such a con-
straint. Thus, γk interpolates training samples to generate
the mean vectors, in some sense, it tries to use as many as
possible training samples to represent an unseen sample; while
the sparse representation method uses a minimum number of
samples to describe the unseen sample. For example, if a
testing sample is included in the training, sparse representation
similar to the VQ method is able to find the exact sample,
while GMM-based approaches interpolate the whole training
sample space. In this way, our proposed exemplar-based sparse
representation with residual compensation method is able to
avoid the over-smoothing effect introduced by the statistical
average.

Moreover, as discussed in [53], the entries in h are con-
ditionally dependent on each other given the dictionary and
observation. However, the entries in γk are dependent only
through the scalar normalization constant, otherwise they are
independent from each other. Thus, h is able to benefit from
the dependencies of exemplars for regression, while γk cannot.

C. Relationship with PLS

In partial least squares regression, given parallel data X ∈
Rd×N and Y ∈ Rd×N , we have such decompositions:

X ≈ OP, (23)

Y ≈ VQ, (24)

where P ∈ Rp×N and Q ∈ Rp×N are projections or factor
matrices of X and Y, respectively, and O ∈ Rd×p and
V ∈ Rd×p are loading matrices corresponding to P and Q,
respectively.

As discussed in [54], a transformation matrix T can be
estimated from Eq. (23) and (24), and applied to a given source
feature x for predicting a target feature ŷ during runtime as

ŷ = Tx + T(µ(Y) − µ(X)) (25)

= YP>(QXX>P>)−1QXx + T(µ(Y) − µ(X)), (26)

where µ(X) and µ(Y) are the mean vectors of source and target
training data, respectively.

Eq. (25) has a considerable similarity to Eq. (22), if we
treat P>(QXX>P>)−1QXx as the activation vector h, and
Y as the target dictionary. Our method is hence similar
and comparable to DPLS-DFT, which also operates on high-
resolution features. The difference between our method and
DKPLS/DKPLS-DFT is that DKPLS methods perform the
spectral mapping in kernel space which introduces nonlinear-
ity, while our method does not.

There are two advantages of our method over PLS-based
methods. First, the flexibility allows our method to be robust
in handling high-resolution features and in face of limited
training samples. The experimental results show that in face
of high-resolution features and limited training samples, the
performance of PLS-based methods is degraded considerably,
while our method is still reliable in such scenario. Second,
the experimental results also confirmed the scalability of our
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method, in the sense that the performance of our method
can be boosted by simply appending new exemplars to the
dictionary without much tuning. However, for PLS-based
methods, re-optimization is required in the face of new training
data.

D. Computational complexity and memory footprint

In comparison to the reference methods, major drawbacks
of our method are the computational complexity and memory
footprint. From the perspective of computational complexity,
to generate one second of target speech, the ML-GMM and
DKPLS methods take 0.41 and 0.06 seconds, respectively,
on a 2.3 GHz Intel i7 core when implemented in MATLAB.
However, our method costs 19.02 seconds. The computational
cost of our method is about 45 times higher than the ML-
GMM method and about 295 times higher than the DKPLS
method.

For the memory footprint, at runtime, the ML-GMM method
only needs to store 32 + 2 × 32 × (48 + (48 + 24)) = 7712
parameters, supposing 32 Gaussian mixtures, 24 dimensional
MCCs, and static+delta coefficients. The DKPLS method only
requires to store (200×3)∗24 = 14400 parameters. However,
our method needs to store the source and target dictionaries.
The size of the target dictionary is 513×3000, and that of the
source dictionary is 9× 50× 3000. In total, the dictionaries’
size is 513 × 3000 + 9 × 50 × 3000 = 2889000. Hence, the
memory occupation of our method is about 375 times higher
than the ML-GMM method, and is about 200 times higher
than the DKPLS method.

VI. CONCLUSIONS

We proposed an exemplar-based sparse representation
framework as an alternative nonparametric framework for
voice conversion. The flexibility of this framework allows us to
easily adapt it to new training data, and makes it more robust in
handling high-resolution spectra directly to maintain spectral
details for better speech quality. In addition, the use of cou-
pled dictionaries avoids to estimate the correlation/covariance
matrix which is required in conventional statistical methods
and is problematically estimated when source-target feature
pairs have a low correlation [35]. The experimental results
confirmed the effectiveness of the proposed exemplar-based
sparse representation with residual compensation method,
which achieves a spectral distortion of 4.92 dB, a MOS of 3.15
and a speaker identification rate of 79.50 %, outperforming the
baseline ML-GMM method which gives a spectral distortion
of 5.19 dB, a MOS of 2.49 and a speaker identification rate
of 73.50 %. Moreover, our method is also more flexible than
PLS-based methods, and comparable with the ML-GMM-GV
method.

Our main findings are:
• Sparse representation is able to produce relatively high

quality speech. It allows us to model high-resolution fea-
tures directly for spectral details, and the activation vector
for regression is constrained to be extremely sparse, in
this way, the over-smoothing effect can be avoided.

• Spectral compression is helpful. A compression factor
is able to control the spectrum intensity and affect the
estimation of activations as well as the spectrogram
generation.

• Multiple-frame exemplars which are able to describe the
time sequence structure of speech are beneficial to reduce
spectral distortion and to produce better speech quality.

• Residual compensation works well to reduce spectral
distortion and to enhance speech quality. The sparse
representation modeling capacity can be boosted by
compensating source model residuals to the converted
spectrograms.

As an alternative framework, our method is complemen-
tary with the statistical parametric methods, which can be
employed to perform residual compensation.

Currently, parallel data, which is not always available,
is required to construct source-target dictionaries. It would
be interesting to find a method to relax such a constraint.
Moreover, the computation of exemplar-based sparse repre-
sentation is considerably higher than the ML-GMM method.
It is possible to reduce computational time by applying low-
resolution features to estimate the activation matrix and by
using a small set of exemplars in the dictionaries. We will
continue those directions in near future as a follow-up work.
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