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ABSTRACT
This paper describes a study of the speaker adaptation tech-
niques that can be applied for adapting a speech recog-
nizer to singing voice. Maximum likelihood linear regres-
sion (MLLR) techniques are studied, with specific details in
choosing the number and types of transforms. The recog-
nition performance of the different methods is measured
in terms of phoneme recognition rate and singing-to-lyrics
alignment errors of the adapted recognizers. Different meth-
ods improve the correct recognition rate with up to 10 per-
centage units, compared to the non-adapted system. In
singing-to-alignment we obtain a best of 0.94 seconds mean
absolute alignment error, compared to 1.26 seconds for the
non-adapted system. Global adaptation was found to provide
the most improvement in the performance, but small further
improvement was obtained with regression tree adaptation.

1. INTRODUCTION

Recognition of lyrics has a large potential in music informa-
tion retrieval (MIR). Until now, information retrieval from
singing has focused on melodic information, ignoring the
lyrics. The lyrics are an important aspect of music since they
carry the semantic information. Early attempts to perform
lyrics recognition using a large-vocabulary speech recog-
nizer were somewhat successful on pure singing voice [1, 2],
but the performance is still limited.

A lyrics recognition system can be developed based on
principles used in automatic speech recognition. Building
a phonetic recognizer requires a large database of exam-
ples, multiple annotated recordings of phonetically balanced
sentences. There is no such database available for singing,
therefore for singing recognition we have to resort to mod-
els trained on speech data. In automatic speech recognition
it is possible to build improved acoustic models by adapting
a speaker-independent model to a specific speaker. Using a
small amount of data from the target speaker, the speaker-
independent set of models can be adapted to better fit the
characteristics of the target speaker. The same approach can
be used in building a recognition system for the singing voice
[3].

Our previous work tackles the automatic alignment of
polyphonic music with textual lyrics in English, by using a
speech recognizer [4] . Using standard maximum-likelihood
linear regression (MLLR) speaker adaptation technique, the
monophone models trained on speech data were adapted to
clean singing voice characteristics [3, 4]. The adaptationwas
found to be beneficial in the alignment.

This work represents a more thorough study of the
speaker adaptation technique, looking into different possibil-
ities of generating the linear transforms used in the adapta-
tion, in order to obtain better models for singing phonemes.

The paper is organized as follows: Section 2 presents the
principles and basic alternatives of supervised adaptation.
Section 3 presents the specific details we chose for adapt-
ing the speech-trained models to singing and the singing-
to-lyrics alignment application used for testing the adapted
models. Sections 4 and 5 present simulation experiments,
discussion and conclusions.

2. HMM PHONETIC RECOGNIZER

Singing recognition can be done using a phonetic hid-
den Markov model (HMM) recognizer, which is the stan-
dard technique in automatic speech recognition. In HMM
based speech recognition it is assumed that the observed se-
quence of speech vectors is generated by a hidden Markov
model. An HMM consists of a number of states with asso-
ciated observation probability distributions and a transition
matrix defining transition probabilities between the states.
Phoneme-level recognizers use typically a 3 state left-to-right
HMM to represent each phoneme. The emission probabil-
ity of each state is modeled by a Gaussian mixture model
(GMM). In the training process, the transition matrix and
the means and variances of the Gaussian components in each
state are estimated to maximize the likelihood of the obser-
vation vectors in the training data.

2.1 MLLR adaptation

Each speaker has slightly different characteristics in speak-
ing, and construction of a speaker-dependent speech recog-
nizer is not always feasible. It is possible to improve the
performance of a speaker-independent recognizer on a tar-
get speaker by using speaker adaptation. Speaker adaptation
methods use a smaller amount of the target speaker voice ma-
terial to adapt the recognizer parameters in order to reduce
the mismatch between the trained models and the speaker
data. The speaker-specific data is referred to as adaptation
data. Maximum likelihood linear regression (MLLR) [5]
computes a set of transformations for the means and vari-
ances of a Gaussian mixture HMM system. The transforma-
tions shift the component means and variances of the initial
system so that the resulting HMM is more likely to generate
the adaptation data.

The transformation matrix used to give a new estimate
of the adapted models is obtained by solving a maximiza-
tion problem using the Expectation-Maximization technique.
The adaptation of the mean vector of each Gaussian compo-
nent is carried out using a transformation matrixW as:

µ̂µµ = Wξξξ (1)

whereW is then× (n+ 1) transformation matrix (n is the
dimensionality of the data) andξξξ is the extended mean vec-



tor ξξξ = [1 µµµ]
T , with µµµ being the mean vector of a mix-

ture component.W can be decomposed intoW = [b A],
whereA represents the transformation matrix andb is a bias.

In the MLLR adaptation of the mean (MLLRMEAN), the
adapted models will be characterized by meanµ̂µµ in Equation
1. In MLLRMEAN, the covariance matrices of the models
are not transformed.

The constrained MLLR (CMLLR) applies the same tran-
formation matrix to the means and the covariances of the
models, so that the adapted covariance matrixΣ̂ of a mix-
ture component is obtained as:

Σ̂ = AΣA
T
, (2)

whereΣ is the original covariance matrix of the mixture
component.

2.2 Number of adaptation transforms

Iterative adaptation steps and multiple transforms can be
used to modify the means and variances of the Gaussian com-
ponents of each state in the HMM. Several components can
be grouped into relevant categories calledbase classes. The
classes can be defined based on the acoustic similarity of the
models, states or Gaussian components. The components as-
sociated to one base class will share the same transform.

Depending on the amount of available data it is impor-
tant to determine the appropriate set of transforms. If a small
amount of adaptation data is available, the simplest form isto
generate a global transform [6]. A global transform is applied
to every Gaussian component in the model set, no matter the
phoneme model or the state. After this, a second iteration can
be done, with increased number of transforms . Each trans-
form will be more specific and applied to certain Gaussian
components, grouped in base classes.

A dynamic way of specifying the base classes uses a
regression tree to group the Gaussians in the initial model
set. The regression tree is constructed such that it clusters
together mixture components that are close in the acoustic
space [6]. The regression tree is built using the original
model set, and thus it is independent of the adaptation data.
In this definition, the leaves of the tree are the base classes
and they specify the component groupings. Each Gaussian
component of each state of each phoneme model belongs to
one particular base class, making this a very detailed group-
ing of the model parameters.

3. SINGING RECOGNITION

Speech and singing voice sounds have many properties in
common because they convey the same kind of semantic in-
formation and originate from the same production physiol-
ogy. In singing, however, the intelligibility is often secondary
to the intonation and musical qualities of the voice. Vowels
are sustained much longer in singing than in speech and in-
dependent control of pitch and loudness over a large range
is required. The dynamic range is greater in singing than
in speech, and also the fundamental frequency variations of
singing are of about 2 octaves for an average trained singer.

In speech recognition, feature-space transformations are
used to compensate for the difference in pitch. The method
called vocal tract normalization (VTN) was found to be
equivalent to a constrained MLLR transformation in the
model space, with the transformation matrix being controlled

by VTN frequency warping parameter [7]. Singing at high
pitch includes fundamental frequencies greater than the first
formant, determining a trained singer to adjust the formants
position, with a small loss of perceived vowel quality [8].
Depending on the singer’s skills, the vowels in singing may
have different spectral characteristics than vowels in speech,
and this cannot be compensated by VTN.

Our scope is to investigate adaptation of a speech recog-
nizer to singing voice using different grouping of phonemes
into classes and test the recognition performance of the re-
sulting adapted models. For this, we trained a HMM speech
recognizer consisting of 39 monophone models plus silence
and short pause models.

As features, we used 13 mel-frequency cepstral coeffi-
cients plus delta and acceleration coefficients, calculated in
25 ms frames with a 10 ms hop between adjacent frames.
A left-to-right HMM with 3 states is used to represent each
phoneme. The silence model is a fully connected HMM with
3 states and the short pause is a one-state HMM tied to the
middle state of the silence model. The system was imple-
mented using HTK1.

The training was done using the CMU ARCTIC speech
database2. For adaptation we used a singing voice database,
consisting of 49 fragments of 12 pop songs, ranging from
20 to 30 seconds. There are 19 male and 30 female voice
fragments. The phonetic transcription of the fragments was
available, so that adaptation could be done in a supervised
manner.

3.1 Singing adaptation

In speech analysis, the phonemes are usually classified into
7 broad categories: monophtongs, diphtongs, approximants,
nasals, fricatives, plosives, affricates. In singing, therate of
voiced sounds can be up to 95%, compared to about 60% in
speech [8], because the voiced sounds carry the musical in-
formation. Considering this, we can think about singing as
composed from two types of sounds: vowels and consonants.
A third way of classifying the singing sounds is considering
each vowel as a separate base class, and grouping the rest of
phonemes into consonants into approximants, nasals, frica-
tives, plosives and affricates. One more base class can be
added to model the silence and short pause nonspeech events.

We devise two adaptation strategies consisting of two it-
erations each. The first strategy is by using a global transform
in the first iteration. The second iteration uses base classes
obtained by means of a regression tree, which is data-driven.
The base classes defined at this stage are based on the acous-
tic similarity of mixture components. We test MLLREAN
and CMLLR adaptation to determine which type of adapta-
tion and what number of base classes (3, 8 or 22) is better
suited for the adaptation. Different adaptation methods are
denoted as GTiM or GTiC, where G is the global transform,
Ti is a tree-based transform withi base classes and M or C
denote MLLRMEAN and CMLLR, respectively.

In the second adaptation strategy, we define base classes
at phoneme-level, according to the phoneme classifications
presented above, to replace the global transform for the first
iteration. We obtain 3, 8 or 22 transforms in the place of a

1The Hidden Markov Model Toolkit (HTK),
http://htk.eng.cam.ac.uk/HTK

2CMU ARCTIC databases for speech synthesis,
http://festvox.org/cmuarctic/



Table 1: Different adaptation methods and the number of
classes in the two adaptation iterations. The first iteration:
global or phoneme-dependent base classes, the second iter-
ation: mixture-level base classes, based on the acoustic sim-
ilarities

method first second adaptation
iteration iteration type

GT3M 1 3 MLLRMEAN
GT3C 1 3 CMLLR
GT8M 1 8 MLLRMEAN
GT8C 1 8 CMLLR
GT22M 1 22 MLLRMEAN
GT22C 1 22 CMLLR
G3 3 not used CMLLR
G8 8 not used CMLLR
G22 22 not used CMLLR
G3T8 3 8 CMLLR
G8T8 8 8 CMLLR
G22T8 22 8 CMLLR

single (global) transform, resulting in the adaptation meth-
ods G3, G8 and G22 (see Table 1). The second iteration uses
8 base classes obtained by means of the regression tree, us-
ing the component-wise acoustic similarities. The systems
are denoted as GjT8, having j phoneme-level base classes
and tree-based transform with 8 base classes. The combina-
tions of user defined and data-driven number of classes and
corresponding adapted systems is summarized in Table 1.

3.2 Audio-to-lyrics alignment

In addition to phooneme recognition, the previously devel-
oped application, audio to lyrics alignment [4] can be used to
test the adapted models. We align the singing voice from a
polyphonic audio with the corresponding textual lyrics. The
audio file is preprocessed to separate the vocal line from the
polyphonic mixture.

For separating the singing from the polyphonic signal,
we use the system proposed in [9]. The system first esti-
mates the time-varying pitch of the singing. By assuming
perfect harmonicity, it generates a binary mask which indi-
cates the presence of singing in each time-frequency point of
the spectrogram. The method learns a model for the accom-
paniment using non-negative matrix factorization in the non-
vocal time-frequency regions, and subtracts the accompani-
ment model from the singing regions. The time-domain sig-
nal corresponding to the singing is generated by using phases
of the mixture signal, inverse discrete Fourier transform,and
overlap-add. In [9] the system was found to produce better
separation quality than reference system based on sinusoidal
modeling or basic binary masking.

After separating the vocal line, we extract features of the
singing voice. An additional noise model trained on instru-
mental fragments is used to account for occasional distorted
instrumental fragments that remain in the separated signal.

The lyrics text is preprocessed to obtain a sequence of
words with optional silence, pause and noise between them.
The transcription from words to phonemes is done using the
CMU pronouncing dictionary. The features extracted from
the separated vocals are aligned with the obtained string of

phonemes, using Viterbi forced alignment. The alignment
can be viewed as a special case of recognition, with the pos-
sible paths in the Viterbi search algorithm restricted to the
one given by the phoneme sequence from the text.

4. SIMULATION EXPERIMENTS

We evaluate the performance of the adaptation methods by
the phoneme recognition rate of singing and the accuracy of
singing-to-lyrics alignment. The phoneme recognition task
uses no language model, which means that any phoneme can
follow any other phoneme. Correctness and accuracy of the
recognition are defined in terms of the number of substitution
errorsS, deletion errorsD and insertion errorsI , reported to
the total number of tested instances,N:

correct[%] =
N−D−S

N
×100

accuracy[%] =
N−D−S− I

N
×100

The alignment performance is measured using the mean
absolute error in alignment at the start and end of each line
in the lyrics, on a number of 100 sections from 17 songs,
manually annotated for reference.

For testing the phoneme recognition rate of the adapted
systems we used a 5-fold experimental setup on the acoustic
material described in Section 3. The test data was approxi-
mately one fifth of the entire singing material, while the rest
was used for adaptation. For testing the alignment perfor-
mance, we adapted the systems with the entire singing mate-
rial, consisting of a total of 4770 phonemes.

The singing phoneme recognition rate of the non-adapted
recognizer is 33.29% with an accuracy of−6.4%. The accu-
racy of the recognition is very low due to a large number of
insertion errors. The mean absolute error for the alignment
task is 1.26 seconds.

4.1 MLLRMEAN and CMLLR

Our first goal was to test which of the two adaptation methods
yields a better result: adaptation of the means only or the con-
strained adaptation (means and variances transformed with
the same matrix). For this, the adaptation was performed us-
ing one global transform and different number of classes tree-
based adaptation. The regression trees were generated on the
speech material. In this task we included all the singing data
in the adaptation and report the phoneme recognition rate on
the adaptation data.

Table 2 lists the phoneme recognition results of MLL-
RMEAN and CMLLR adapted systems with one global
transform and a tree-base transform with 8 base classes, in
the 5-fold setting, compared to the performance of the non-
adapted system. Both methods improve the phoneme recog-
nition rate and accuracy in comparison with the non-adapted
models, CMLLR being slightly better.

The systems adapted with different numbers of base
classes in the second iteration were tested in the alignment
task. The results are presented in Table 3. While the dif-
ferences between the differently adapted systems in the the
phoneme recognition were small, we see quite a large varia-
tion in the alignment results. The minimum alignment error
is obtained by the models adapted using CMLLR with one
global class and tree with 8 base classes. Using 22 classes



Table 2: Phoneme recognition results of GT8M and GT8C
adapted systems on the test set and adaptation set

method test set adaptation set
correct / acc [%] correct / acc [%]

non-adapted 33.29 / -6.40 -
GT8M 40.86 / 20.85 62.81 / 47.52
GT8C 41.31 / 18.94 62.90 / 47.41

Table 3:Average singing to lyrics alignment errors for GTiM
and GTiC adapted systems

method alignment error
non-adapted 1.26 s
GT3M 1.24 s
GT3C 1.14 s
GT8M 1.12 s
GT8C 1.02 s
GT22M 1.34 s
GT22C 1.16 s

in the regression tree adaptation reduces the alignment per-
formance of the system. For 22 base classes there is not
enough adaptation data for estimating a reliable transforma-
tion of each base class. In the alignment, CMLLR performed
substantially better than MLLR.

4.2 Phoneme-level base classes

In the second adaptation experiment we replace the global
transform with classes defined according to phoneme classi-
fications, constructing phoneme-level base classes. We de-
fined 3, 8 and 22 base classes for the first iteration in the
adaptation. Based on the previous experiment, we decided to
use the CMLLR adaptation only. In the second iteration, we
used a tree based transform with 8 base classes.

The results of the phoneme recognition task are presented
in Table 4. The systems G3 and G8 are very close to ea-
chother in the phoneme recognition rate, both on the testing
and on the adaptation data. After the second iteration, they
continue to stay at similar performance level, as G3T8 and
G8T8, with G3T8 having better accuracy. The performance
of G22 and G22T8 is lower than of the other systems be-
cause there is not enough adaptation data for estimating a
reliable transformation of each of the 22 base classes. The
first adaptation iteration accounts for the largest improve-
ment, while the second iteration improves the performance
of all the methods by about one or two percentage units.

The mean absolute error of the alignment performance is
presented in Table 5. The G3T8 and G8T8 systems achieve
under 1 second mean absolute error, the minimum of 0.94
seconds belonging to G8T8. When all the singing data was
used for adaptation, the recognition rate of the GjT8 adapted
systems on the adaptation data is around 73% correct, with
over 47% accuracy. This is a 10% increase compared to the
62% average of the 5-fold experiments. Thus, the amount of
adaptation data is important.

Table 4: Phoneme recognition results of G j and G jT8
adapted systems on the test set and adaptation set

method test set train set
correct / acc [%] correct / acc [%]

G3 40.39 / 19.90 60.59 / 46.00
G8 40.29 / 18.72 60.74 / 45.12
G22 38.39 / 18.67 57.47 / 40.97
G3T8 41.35 / 20.01 62.56 / 47.26
G8T8 41.05 / 18.95 62.45 / 46.98
G22T8 40.68 / 19.53 62.02 / 46.44

Table 5: Average singing to lyrics alignment errors for G j
and G jT8 adapted systems

method alignment error
G3 1.27 s
G8 1.31 s
G22 1.31 s
G3T8 0.97 s
G8T8 0.94 s
G22T8 1.07 s

5. CONCLUSIONS

This paper investigated MLLR adaptation of a speech rec-
ognizer to singing voice. We tested the mean and the con-
strained adaptation with different number of classes and
transforms at phoneme level or mixture level. CMLLR pro-
vided slightly better phoneme recognition rates and clearly
better alignment accuracy.

A single global transform was found to improve the per-
formance, but changing it into a more specific one by taking
into account phoneme properties also improved the results.
Two adaptation iterations are needed because the first one
considers phoneme-level transforms, whereas the second one
captures details about the similarity of the initial model mix-
ture components.
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