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ABSTRACT The paper is orgar]ized as fc_)IIows: Sectior] 2 presents _the
This paper describes a study of the speaker adaptation tecRrinciples and basic alternatives of supervised adaptatio
nigues that can be applied for adapting a speech recog_Sectlon 3 presents the specific details we chose for adapt-
nizer to singing voice. Maximum likelihood linear regres-iNg the speech-trained models to singing and the singing-
sion (MLLR) techniques are studied, with specific details irffo-1yrics alignment application used for testing the aeapt
nition performance of the different methods is measuredliscussion and conclusions.
in terms of phoneme recognition rate and singing-to-lyrics

alignment errors of the adapted recognizers. Differentrmet 2. HMM PHONETIC RECOGNIZER
ods improve the correct recognition rate with up to 10 Per-Singing recognition can be done using a phonetic hid-
centage units, compared to the non-adapted system. n Markov model (HMM) recognizer, which is the stan-

singing-to-alignment we obtain a best of 0.94 seconds meag, g technique in automatic speech recognition. In HMM
absolute alignment error, compared to 1.26 seconds for thgaseq speech recognition it is assumed that the observed se-
non—adapyed system. G_Iobal adaptation was found to prOV'dauence of speech vectors is generated by a hidden Markov
the most improvement in the performance, but small furthepgqe| An HMM consists of a number of states with asso-
improvement was obtained with regression tree adaptation. siated observation probability distributions and a tréiosi
matrix defining transition probabilities between the state
1. INTRODUCTION Phoneme-level recognizers use typically a 3 state leftgfiot

Recognition of lyrics has a large potential in music informa HMM to represent each phoneme. The emission probabil-
tion retrieval (MIR). Until now, information retrieval frm ity of each state is modeled by a Gaussian mixture model
singing has focused on melodic information, ignoring the(GMM). In the training process, the transition matrix and
lyrics. The lyrics are an important aspect of music sincg the the means and variances of the Gaussian components in each
carry the semantic information. Early attempts to performstate are estimated to maximize the likelihood of the obser-
lyrics recognition using a large-vocabulary speech recog¥ation vectors in the training data.
nizer were somewhat successful on pure singing voice [1, 25 ,
but the performance is still limited. -1 MLLR adaptation

A lyrics recognition system can be developed based oEach speaker has slightly different characteristics irakpe
principles used in automatic speech recognition. Buildingng, and construction of a speaker-dependent speech recog-
a phonetic recognizer requires a large database of examizer is not always feasible. It is possible to improve the
ples, multiple annotated recordings of phonetically beé@h  performance of a speaker-independent recognizer on a tar-
sentences. There is no such database available for singinget speaker by using speaker adaptation. Speaker adaptatio
therefore for singing recognition we have to resort to mod-methods use a smaller amount of the target speaker voice ma-
els trained on speech data. In automatic speech recognitiagrial to adapt the recognizer parameters in order to reduce
it is possible to build improved acoustic models by adaptinghe mismatch between the trained models and the speaker
a speaker-independent model to a specific speaker. Usingdata. The speaker-specific data is referred to as adaptation
small amount of data from the target speaker, the speakegtata. Maximum likelihood linear regression (MLLR) [5]
independent set of models can be adapted to better fit theomputes a set of transformations for the means and vari-
characteristics of the target speaker. The same approach cances of a Gaussian mixture HMM system. The transforma-
be used in building a recognition system for the singing®oic tions shift the component means and variances of the initial
[3]. system so that the resulting HMM is more likely to generate

Our previous work tackles the automatic alignment ofthe adaptation data.
polyphonic music with textual lyrics in English, by usinga  The transformation matrix used to give a new estimate
speech recognizer [4] . Using standard maximum-likelihoothf the adapted models is obtained by solving a maximiza-
linear regression (MLLR) speaker adaptation technique, thtion problem using the Expectation-Maximization techmiqu
monophone models trained on speech data were adaptedtae adaptation of the mean vector of each Gaussian compo-
clean singing voice characteristics [3, 4]. The adaptatia®  nent is carried out using a transformation maix as:
found to be beneficial in the alignment.

This work represents a more thorough study of the p=wE& (2)
speaker adaptation technique, looking into different jilss
ities of generating the linear transforms used in the adaptavhereW is then x (n+ 1) transformation matrixr(is the
tion, in order to obtain better models for singing phonemesdimensionality of the data) anfl is the extended mean vec-



tor§ =1 p}T, with u being the mean vector of a mix- by VTN frequency warping parameter [7]. Singing at high
ture componentW can be decomposed inM = [b A],  pitch includes fundamental frequencies greater than tee fir
whereA represents the transformation matrix dni a bias.  formant, determining a trained singer to adjust the forreant
In the MLLR adaptation of the mean (MLLRMEAN), the position, with a small loss of perceived vowel quality [8].
adapted models will be characterized by m@iain Equation  Depending on the singer’s skills, the vowels in singing may
1. In MLLRMEAN, the covariance matrices of the models have different spectral characteristics than vowels irespge
are not transformed. and this cannot be compensated by VTN.
The constrained MLLR (CMLLR) applies the same tran- ~ Our scope is to investigate adaptation of a speech recog-
formation matrix to the means and the covariances of thaizer to singing voice using different grouping of phonemes

models, so that the adapted covariance maftinf a mix-  into classes and test the recognition performance of the re-
ture component is obtained as: sulting adapted models. For this, we trained a HMM speech
recognizer consisting of 39 monophone models plus silence

= ASAT, (2)  and short pause models.

i . . ) } As features, we used 13 mel-frequency cepstral coeffi-
where X is the original covariance matrix of the mixture cients plus delta and acceleration coefficients, calcdlate

component. 25 ms frames with a 10 ms hop between adjacent frames.
) A left-to-right HMM with 3 states is used to represent each
2.2 Number of adaptation transforms phoneme. The silence model is a fully connected HMM with

lterative adaptation steps and multiple transforms can ba States and the short pause is a one-state HMM tied to the

used to modify the means and variances of the Gaussian coffiddle state of the silence model. The system was imple-

ponents of each state in the HMM. Several components caiented using HTK. _

be grouped into relevant categories caltebe classesThe The training was done using the CMU ARCTIC speech

classes can be defined based on the acoustic similarity of tigitabasé. For adaptation we used a singing voice database,

models, states or Gaussian components. The components aensisting of 49 fragments of 12 pop songs, ranging from

sociated to one base class will share the same transform. 20 to 30 seconds. There are 19 male and 30 female voice
Depending on the amount of available data it is impor-fragments. The phonetic transcription of the fragments was

tant to determine the appropriate set of transforms. If dlsmaavailable, so that adaptation could be done in a supervised

amount of adaptation data is available, the simplest fortim is manner.

generate a global transform [6]. A global transform is agpli

to every Gaussian component in the model set, no matter tfi#l Singing adaptation

phoneme model or the state. After this, a second iteration cap, speech analysis, the phonemes are usually classified into

be done, with increased number of transforms . Each rans; boad categories: monophtongs, diphtongs, approximants
form will be more specific and applied to certain Gaussmrhasal& fricatives, plosives, affricates. In singing, i of

comAp(()jnents,_ groupedfln bas_e _clasts;:s.b | voiced sounds can be up to 95%, compared to about 60% in
ynamic way of specifying the base classes uses goqch 8], because the voiced sounds carry the musical in-
regression tree to group the Gaussians in the initial modgh,ation ” Considering this, we can think about singing as

set. The regression tree is constructed such that it CB‘Stef:omposed from two types of sounds: vowels and consonants.

together mixture components that are close in the acoustg third way of classifying the singing sounds is considering

space [6]. The regression tree is built using the original,.p yopel as a separate base class, and grouping the rest of
model set, and thus it is independent of the adaptation datg nemes into consonants into approximants, nasals; frica

In this definition, the leaves of the tree are the base class Ses plosives and affricates. One more base class can be

and they stpefcify tRe tc?mp]?nenrt] grr?upings. EachG?us& ded to model the silence and short pause nonspeech events.
component of €ach state ot €ach phonéme model beloNgs 10 \ye gevise two adaptation strategies consisting of two it-

one particular base class, making this a very detailed 9rOURrations each. The first strategy is by using a global trarsfo
ing of the model parameters. in the first iteration. The second iteration uses base casse
obtained by means of a regression tree, which is data-driven
3. SINGING RECOGNITION The base classes defined at this stage are based on the acous-

Speech and singing voice sounds have many properties fif Similarity of mixture components. We test MLLREAN
common because they convey the same kind of semantic if"d CMLLR adaptation to determine which type of adapta-
formation and originate from the same production physiol-1on @nd what number of base classes (3, 8 or 22) is better
ogy. In singing, however, the intelligibility is often sewary suited for the adaptatl_on. Dn‘feren'g adaptation methods ar
to the intonation and musical qualities of the voice. Vowelgdeénoted as GM or GTiC, where G is the global transform,
are sustained much longer in singing than in speech and irl- IS @ tree-based transform wittbase classes and M or C
dependent control of pitch and loudness over a large rangd€note MLLRMEAN and CMLLR, respectively.
is required. The dynamic range is greater in singing than !N the second adaptation strategy, we define base classes
in speech, and also the fundamental frequency variations & Phoneme-level, according to the phoneme classifications
singing are of about 2 octaves for an average trained Singer_prese_nted above, to replace the global tran_sform for thie firs
In speech recognition, feature-space transformations afteration. We obtain 3, 8 or 22 transforms in the place of a
used to compensate for the difference in pitch. The method , .
called vocal tract normalization (VTN) was found to be htt;mfk'eng.?;?gg;.ukmyfrkov Model  Toolkit  (HTK),
equivalent to a constrained MLLR transformation in the 2cmy ~ ARCTIC  databases  for  speech  synthesis,
model space, with the transformation matrix being congill  http://festvox.org/cmuarctic/




o . phonemes, using Viterbi forced alignment. The alignment
Table 1: Different adaptation methods and the number ofcap pe viewed as a special case of recognition, with the pos-
classes in the two adaptation iterations. The first itenatio

. sible paths in the Viterbi search algorithm restricted te th
global or phoneme-dependent base classes, the second itgf5, given by the phoneme sequence from the text.
ation: mixture-level base classes, based on the acoustic si

ilarities 4. SIMULATION EXPERIMENTS

method | first | second | adaptation We evaluate the performance of the adaptation methods by
lteration | Iteration type the phoneme recognition rate of singing and the accuracy of

GT3M 1 3 MLLRMEAN singing-to-lyrics alignment. The phoneme recognitiorktas

GT3C 1 3 CMLLR uses no language model, which means that any phoneme can

GT8M 1 8 MLLRMEAN follow any other phoneme. Correctness and accuracy of the

GT8C 1 8 CMLLR recognition are defined in terms of the number of substitutio

GT22M 1 22 MLLRMEAN errorsS, deletion errord and insertion errors, reported to

GT22C 1 22 CMLLR the total number of tested instanchs,

G3 3 not used CMLLR N—_D-S

G8 8 not used CMLLR correct{%| = ——— x 100

G22 22 [ notused| CMLLR N

G3T8 3 8 CMLLR N-D_S_|

G8T8 8 8 CMLLR accuracy%| = ———— x 100

G22T8 22 8 CMLLR N

The alignment performance is measured using the mean
absolute error in alignment at the start and end of each line
in the lyrics, on a number of 100 sections from 17 songs,
single (global) transform, resulting in the adaptation et manually annotated for reference.
ods G3, G8 and G22 (see Table 1). The second iteration uses For testing the phoneme recognition rate of the adapted
8 base classes obtained by means of the regression tree, ggstems we used a 5-fold experimental setup on the acoustic
ing the component-wise acoustic similarities. The systemsmaterial described in Section 3. The test data was approxi-
are denoted as [38, havingj phoneme-level base classes mately one fifth of the entire singing material, while thetres
and tree-based transform with 8 base classes. The combinaas used for adaptation. For testing the alignment perfor-
tions of user defined and data-driven number of classes andance, we adapted the systems with the entire singing mate-
corresponding adapted systems is summarized in Table 1. rial, consisting of a total of 4770 phonemes.

The singing phoneme recognition rate of the non-adapted

3.2 Audio-to-lyricsalignment recognizer is 33.29% with an accuracy-66.4%. The accu-
In addition to phooneme recognition, the previously develfacy of the recognition is very low due to a large number of
oped application, audio to lyrics alignment [4] can be used t insertion errors. The mean absolute error for the alignment
test the adapted models. We align the singing voice from Sk is 1.26 seconds.

olyphonic audio with the corresponding textual lyrics.eTh
gugil[oJ file is preprocessed to separate the vocal line from thel MLLRMEAN and CMLLR
polyphonic mixture. Our first goal was to test which of the two adaptation methods

For separating the singing from the polyphonic signalyields a better result: adaptation of the means only or the co
we use the system proposed in [9]. The system first estistrained adaptation (means and variances transformed with
mates the time-varying pitch of the singing. By assuminghe same matrix). For this, the adaptation was performed us-
perfect harmonicity, it generates a binary mask which indiing one global transform and different number of classes tre
cates the presence of singing in each time-frequency pbint @ased adaptation. The regression trees were generated on th
the spectrogram. The method learns a model for the acconspeech material. In this task we included all the singing dat
paniment using non-negative matrix factorization in tha-no in the adaptation and report the phoneme recognition rate on
vocal time-frequency regions, and subtracts the accompanihe adaptation data.
ment model from the singing regions. The time-domain sig- Table 2 lists the phoneme recognition results of MLL-
nal corresponding to the singing is generated by using phas®RMEAN and CMLLR adapted systems with one global
of the mixture signal, inverse discrete Fourier transfoamg ~ transform and a tree-base transform with 8 base classes, in
overlap-add. In [9] the system was found to produce bettethe 5-fold setting, compared to the performance of the non-
separation quality than reference system based on siralsoichdapted system. Both methods improve the phoneme recog-
modeling or basic binary masking. nition rate and accuracy in comparison with the non-adapted

After separating the vocal line, we extract features of thanodels, CMLLR being slightly better.
singing voice. An additional noise model trained on instru- The systems adapted with different numbers of base
mental fragments is used to account for occasional distorteclasses in the second iteration were tested in the alignment
instrumental fragments that remain in the separated signal task. The results are presented in Table 3. While the dif-

The lyrics text is preprocessed to obtain a sequence dérences between the differently adapted systems in the the
words with optional silence, pause and noise between therphoneme recognition were small, we see quite a large varia-
The transcription from words to phonemes is done using th&on in the alignment results. The minimum alignment error
CMU pronouncing dictionary. The features extracted fromis obtained by the models adapted using CMLLR with one
the separated vocals are aligned with the obtained string @flobal class and tree with 8 base classes. Using 22 classes



Table 2: Phoneme recognition results of GT8M and GT8CTable 4: Phoneme recognition results of Gj and GjT8

adapted systems on the test set and adaptation set

adapted systems on the test set and adaptation set

method test set adaptation set method test set train set
correct/ acc [%]| correct/ acc [%] correct/ acc [%]| correct/ acc [%]
non-adapted 33.29/-6.40 - G3 40.39/19.90 60.59/46.00
GT8M 40.86/20.85 62.81/47.52 G8 40.29/18.72 60.74/45.12
GT8C 41.317/18.94 62.90/47.41 G22 38.39/18.67 57.47140.97
G3T8 41.35/20.01 62.56 /47.26
G8T8 41.05/18.95 62.45746.98
G22T8 | 40.68/19.53 62.02/46.44

Table 3:Average singing to lyrics alignment errors for GTiM
and GTiC adapted systems

method alignment error Table 5: Average singing to lyrics alignment errors for Gj
non-adapted 1.26s and GjT8 adapted systems
GT3M 124s i
GT3C 114 s method | alignment error
GT8M 112s G3 127s
GT8C 1025 G8 131s
GT22M 134 G22 131s
GT22C 1.16s G3T8 0.97s
G8T8 0.94s
G22T8 1.07s

in the regression tree adaptation reduces the alignment per
formance of the system. For 22 base classes there is not
enough adaptation data for estimating a reliable transierm 5 CONCLUSIONS

tion of each base class. In the alignment, CMLLR performedrhis paper investigated MLLR adaptation of a speech rec-
substantially better than MLLR. ognizer to singing voice. We tested the mean and the con-
strained adaptation with different number of classes and
transforms at phoneme level or mixture level. CMLLR pro-
vided slightly better phoneme recognition rates and cjearl

In the second adaptation experiment we replace the globglener alignment accuracy.

transform with classes defined according to phoneme clas .6r n’?‘a‘?’]'ggl%Stl%?grfr?r?sﬁ?rinmtgv:%fgfeng tgcli?cpg?qveegh?ai?r:_
fications, constructing phoneme-level base classes. We dg- ' ging P y 9

fined 3, 8 and 22 base classes for the first iteration in th to account phoneme properties also improved the results.

adaptation. Based on the previous experiment, we decided o adaptation iterations are needed because the first one

use the CMLLR adaptation only. In the second iteration, wegggtsl:?gsrs dpert]gi?segz)%lljet\{ﬁ!etrsailr?*nsirgrrigséf\,\t/ﬁgriﬁﬁ?aﬁhrﬁ osde;k(?nd on
used a tree based transform with 8 base classes.

N ture components.
The results of the phoneme recognition task are presented

in Table 4. The systems G3 and G8 are very close to ea-
chother in the phoneme recognition rate, both on the testing
and on the adaptation data. After the second iteration, thegi] A. Loscos, P. Cano, and J. Bonada, “Low-delay singing
continue to stay at similar performance level, as G3T8 an voice alignment to text,” irProceedings of the Interna-
G8T8, with G3T8 having better accuracy. The performance tional Computer Music’Conference (ICMQ)999

of G22 and G22T8 is lower than of the other systems be- ) e .
cause there is not enough adaptation data for estimating[@] T- Hosoya, M. Suzuki, A. Ito, and S. Makino, “Lyrics
reliable transformation of each of the 22 base classes. The recognition from a singing voice based on finite state au-
first adaptation iteration accounts for the largest improve  tomaton for music information retrieval,” iRroceedings
ment, while the second iteration improves the performance Of the 6th International Conference on Music Informa-
of all the methods by about one or two percentage units. tion Retrieval ISMIR2005.

The mean absolute error of the alignment performance i§3] H. Fujihara, M. Goto, J. Ogata, K. Komatani, T. Ogata,
presented in Table 5. The G3T8 and G8T8 systems achieve and H. G. Okuno, "Automatic synchronization between
under 1 second mean absolute error, the minimum of 0.94 lyrics and music CD recordings based on Viterbi align-
seconds belonging to G8T8. When all the singing data was Ment of segregated vocal signals,” I8M '06: Pro-
used for adaptation, the recognition rate of thigf& adapted ceedings of the Eighth IEEE International Symposium
systems on the adaptation data is around 73% correct, with ©n Multimedia Washington, DC, USA, 2006.
over 47% accuracy. This is a 10% increase compared to tHéd] A. Mesaros and T. Virtanen, “Automatic alignment of
62% average of the 5-fold experiments. Thus, the amount of music audio and lyrics,” ifProceedings of the 11th Int.
adaptation data is important. Conference on Digital Audio Effects (DAFx-02D08.

4.2 Phoneme-level base classes
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