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Abstract

This paper proposes a novel algorithm for separating vocals

from polyphonic music accompaniment. Based on pitch esti-

mation, the method first creates a binary mask indicating time-

frequency segments in the magnitude spectrogram where har-

monic content of the vocal signal is present. Second, non-

negative matrix factorization (NMF) is applied on the non-vocal

segments of the spectrogram in order to learn a model for the

accompaniment. NMF predicts the amount of noise in the vo-

cal segments, which allows separating vocals and noise even

when they overlap in time and frequency. Simulations with

commercial and synthesized acoustic material show an average

improvement of 1.3 dB and 1.8 dB, respectively, in compari-

son with a reference algorithm based on sinusoidal modeling,

and also the perceptual quality of the separated vocals is clearly

improved. The method was also tested in aligning separated vo-

cals and textual lyrics, where it produced better results than the

reference method.

Index Terms: sound source separation, non-negative matrix

factorization, unsupervised learning, pitch estimation

1. Introduction

Separation of sound sources is a key phase in many audio analy-

sis tasks since real-world acoustic recordings often contain mul-

tiple sound sources. Humans are extremely skillful in “hearing

out” the individual sources in the acoustic mixture. A similar

ability is usually required in computational analysis of acoustic

mixtures. For example in automatic speech recognition, addi-

tive interference has turned out to be one of the major limita-

tions in the existing recognition algorithms.

A significant amount of existing monaural (one-channel)

source separation algorithms are based on either pitch-based in-

ference or spectrogram factorization techniques. Pitch-based

inference algorithms (see Section 2.1 for a short review) uti-

lize the harmonic structure of sounds, estimate the time-varying

fundamental frequencies of sounds, and apply this in the sepa-

ration. Spectrogram factorization techniques (see Section 2.2),

on the other hand, utilize the redundancy of the sources by de-

composing the input signal into a sum of repetitive components,

and then assign each component to a sound source.

This paper proposes a hybrid system where pitch-based in-

ference is combined with unsupervised spectrogram factoriza-

tion in order to achieve a better separation quality of vocal sig-

nals in accompanying polyphonic music. The hybrid system

proposed in Section 3 first estimates the fundamental frequency

of the vocal signal. Then a binary mask is generated which cov-

ers time-frequency regions where the vocal signals are present.

A non-negative spectrogram factorization algorithm is applied

on the non-vocal regions. This stage produces an estimate of the

contribution of the accompaniment in the vocal regions of the

spectrogram using the redundancy in accompanying sources.

The estimated accompaniment can then be subtracted to achieve

better separation quality, as shown in the simulations in Sec-

tion 4. The proposed system was also tested in aligning sepa-

rated vocals with textual lyrics, where it produced better results

than the previous algorithm, as explained in Section 5.

2. Background

Majority of the existing sound source separation algorithms are

based either on pitch-based inference or spectrogram factoriza-

tion techniques, both of which are shortly reviewed in the fol-

lowing two subsections.

2.1. Pitch-based inference

Voiced vocal signals and pitched musical instrument are

roughly harmonic, which means that they consist of harmonic

partials at approximately integer multiples of the fundamental

frequency f0 of the sound. An efficient model for these sounds

is the sinusoidal model, where each partial is represented with

a sinusoid with time-varying frequency, amplitude and phase.

There are many algorithms for estimating the sinusoidal

modeling parameters. A robust approach is to first estimate

the time-varying fundamental frequency of the target sound and

then to use the estimate in obtaining more accurate parameters

of each partial. The target vocal signal can be assumed to have

the most prominent harmonic structure in the mixture signal,

and there are algorithms for estimating the most prominent fun-

damental frequency over time, for example [1] and [2]. Partial

frequencies can be assumed to be integer multiples of the funda-

mental frequency, but for example Fujihara et al. [3] improved

the estimates by setting local maxima of the power spectrum

around the initial partial frequency estimates to be the exact par-

tial frequencies. Partial amplitudes and phases can then be es-

timated for example by picking the corresponding values from

the amplitude and phase spectra.

Once the frequency, amplitude, and phase have been esti-

mated for each partial in each frame, they can be interpolated

to produce smooth amplitude and phase trajectories over time.

For example, Fujihara et al. [3] used quadratic interpolation of

phases. Finally the sinusoids can be generated and summed to

produce an estimate of the vocal signal.

The above procedure produces good results especially

when the accompanying sources do not have significant amount

of energy at the partial frequencies. A drawback in the above

procedure is that it assigns all the energy at partial frequencies

to the target source. Especially in the case of music signals,

sound sources are likely to appear in harmonic relationships so

that many of the partials have the same frequency. Furthermore,



unpitched sounds may have a significant amount of energy at

high frequencies, some of which overlaps with the partial fre-

quencies of the target vocals. This causes the partial amplitudes

to be overestimated and distorts the spectrum of separated vo-

cal signal. The phenomenon has been addressed for example by

Goto [2] who used prior distributions for the vocal spectra.

2.2. Spectrogram factorization

Recently, spectrogram factorization techniques such as non-

negative matrix factorization (NMF) and its extensions have

produced good results in sound source separation [4]. The al-

gorithms employ the redundancy of the sources over time: by

decomposing the signal into a sum of repetitive spectral com-

ponents they lead to a representation where each sound source

is represented with a distinct set of components.

The algorithms typically operate on a phase-invariant time-

frequency representation such as the magnitude spectrogram.

We denote the magnitude spectrogram of the input signal by X,

and its entries by Xk,m, where k = 1, . . . , K is the discrete fre-

quency index and m = 1, . . . , M is the frame index. In NMF

the spectrogram is approximated as a product of two element-

wise non-negative matrices, X ≈ SA, where the columns of

matrix S contain the spectra of components and the rows of ma-

trix A their gains in each frame. S and A can be efficiently es-

timated by minimizing a chosen error criterion between X and

the product SA, while restricting their entries to non-negative

values. A commonly used criterion is the divergence

D(X||SA) =
K

X

k=1

M
X

m=1

d(Xk,m, [SA]k,m) (1)

where the divergence function d is defined as

d(p, q) = p log(p/q)− p + q. (2)

Once the components have been learned, those correspond-

ing to the target source can be detected and further analyzed. A

problem in the above method is that it is only capable of learn-

ing and separating redundant spectra in the mixture. If a part of

the target sound is present only once in the mixture, it is unlikely

to be well separated.

In comparison with the accompaniment in music, vocal sig-

nals have typically more diverse spectra. The fine structure of

the short-time spectrum of a vocal signal is determined by its

fundamental frequency and the rough shape of the spectrum is

determined by the phonemes, i.e, sung words. In practice both

of these vary as a function of time. Especially when the input

signal is short, the above properties make learning of all the

spectral components of the vocal signal a difficult task.

The above problem has been addressed for example by Raj

et al. [5], who trained a set of spectra for the accompaniment us-

ing non-vocal segments which were manually annotated. Spec-

tra of the vocal part was then learned from the mixture by keep-

ing the accompaniment spectra fixed. Slightly similar approach

was used by Ozerov et al. [6] who segmented the signal to

vocal and non-vocal segments, and then a priorly trained back-

ground model was adapted using the non-vocal segments. The

above methods require temporal non-vocal segments where the

accompaniment is present without the vocals.

3. Proposed hybrid method

To overcome the limitations in the pitch-based and unsuper-

vised learning approaches, we propose a hybrid system which
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Figure 1: The block diagram of the proposed system. See the

text for an explanation.

utilizes the advantages of the both approaches. The block dia-

gram of the system is presented in Figure 1. In the right pro-

cessing branch, pitch-based inference and a binary mask is first

used to identify time-frequency regions where the vocal signal

is present, as explained in Section 3.1. Non-negative matrix fac-

torization is then applied on the remaining non-vocal regions in

order to learn an accompaniment model, as explained in Section

3.2. This stage also predicts the spectrogram of the accompa-

nying sounds on the vocal segments. The predicted accompa-

niment is then subtracted from the vocal spectrogram regions,

and the remaining spectrogram is inverted to get an estimate of

the time-domain vocal signal, as explained in Section 3.3.

3.1. Pitch-based binary mask

A pitch estimator is first used to find the time-varying pitch of

vocals in the input signal. Our main target in this work is music

signals, and we found that the melody transcription algorithm

of Ryynänen and Klapuri [7] produced good results in the pitch

estimation. To get an accurate estimate of time-varying pitches,

local maxima in the fundamental frequency salience function

[7] around the quantized pitch values were interpreted as the

exact pitches. The algorithm produces a pitch estimate at each

20 ms interval.

Based on the estimated pitch, time-frequency regions of the

vocals are predicted. The accuracy of the pitch estimation al-

gorithm was found to be good enough so that the partial fre-

quencies were assigned to be exactly integer multiples of the

estimated pitch. The NMF operates on the magnitude spectro-
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Figure 2: An example of estimated vocal binary mask. Black

color indicates vocal regions.

gram obtained by short-time discrete Fourier transform (DFT),

where DFT length is equal to N , the number of samples in each

frame. Thus, the frequency axis of the spectrogram consist of

a discrete set of frequencies fsk/N , where k = 0, . . . , N/2,

since frequencies are used only up to the Nyquist frequency. In

each frame, a fixed frequency region around each predicted par-

tial frequency is then marked as a vocal region. In our system,

a 50 Hz bandwidth around the predicted partial frequencies f
was marked as the vocal region, meaning that if the frequency

bin was within the 50 Hz interval, it was marked as the vocal

region. On N = 1764, this leads to two or three frequency

bins around the partial frequency marked as vocal segment, de-

pending on the alignment between the partial frequency and the

discrete frequency axis. In practice, a good bandwidth around

each partial depends at least on the window length, which was

40 ms in our implementation. The pitch estimation stage can

also produce an estimate of voice activity. For unvoiced frames

all the frequency bins are marked as non-vocal regions.

Once the above procedure is applied in each frame, we ob-

tain a K-by-M binary mask W where each entry indicates the

vocal activity (0=vocals, 1=no vocals). An example of a binary

mask is illustrated in Figure 2.

3.2. Binary weighted non-negative matrix factorization

A noise model is trained on non-vocal time-frequency segments

corresponding to value 1 in the binary mask. The noise model

is the same as in NMF, so that the magnitude spectrogram of

noise is the product of a spectrum matrix S and gain matrix

A. The model is estimated by minimizing the divergence be-

tween the observed spectrogram X and the model SA. Vocal

regions (binary mask value 0) are ignored in the estimation, i.e.,

the error between X and SA is not measured on them. The

above procedure allows using information of non-vocal time-

frequency regions even in temporal segments where the vocals

are present. Non-vocal regions occurring within a vocal seg-

ment enable predicting the accompaniment spectrogram for the

vocal regions as well.

The background model is learned by minimizing the

weighted divergence

DW(X||SA) =

K
X

k=1

M
X

m=1

Wk,md(Xk,m, [SA]k,m) (3)

which is equivalent to

DW(X||SA) = D(W⊗X||W ⊗ (SA)) (4)

where ⊗ is element-wise multiplication.

The weighted divergence can be minimized by initializing

S and A with random positive values, and then applying the

following multiplicative update rules sequentially:

S← S⊗
(W ⊗X⊘ SA)AT

WAT
(5)

A← A⊗
ST(W ⊗X⊘ SA)

STW
(6)

Here both ⊘ and X

Y
denote element-wise division. The updates

can be applied until the algorithm converges. In our studies

30 iterations was found to be sufficient for a good separation

quality.

The convergence of the approach can be proved as follows.

Let us write the weighted divergence in the form

D(W⊗X||W⊗ (SA)) =

M
X

m=1

D(Wmxm||WmSam) (7)

where Wm is a diagonal matrix where the elements of the mth

column of W are on the diagonal, and xm and am are the mth

columns of matrices X and A, respectively.

In the sum (7) the divergence of a frame is independent of

other frames and the gains affect only individual frames. There-

fore, we can derive the update for gains in individual frames.

The right side of Eq. (7) can be expressed for an individual

frame m as

D(Wmxm||WmSam) = D(ym||Bmam) (8)

where ym = Wmxm and Bm = WmS. For the above ex-

pression we can directly apply the update rule of Lee and Seung

[8] which is given as

am ← am ⊗
BT

m(ym ⊘ (Bmam))

BT
m1

(9)

where 1 is a all-one K-by-1 vector. The divergence (8) has

been proved to be non-increasing under the update rule (9) by

Lee and Seung [8]. By substituting ym = Wmxm and Bm =
WmS back to Eq. (9) we obtain

am ← am ⊗
STWm(xm ⊘ (Sam))

STWm

(10)

The above equals (6) for each column of A, and therefore the

weighted divergence (3) is non-increasing under the update (6).

The update rule (5) can be obtained similarly by changing the

role of S and A by writing the weighted divergence using trans-

poses of matrices as

DW(X||SA) = D
WT(XT||AT

S
T) (11)

and following the above proof.

3.3. Vocal spectrogram inversion

The magnitude spectrogram V of vocals is reconstructed as

V = [max(X− SA, 0)]⊗ (1−W), (12)

where 1 is K-by-M matrix which all entries equal 1. The

operation X − SA subtracts the estimated background from

the observed mixture, and it was found advantageous to restrict

this value above zero by the element-wise maximum operation.

Element-wise multiplication by (1−W) allows non-zero mag-

nitude only in the estimated vocal regions. The magnitude spec-

trogram of the background signal can be obtained as X−V.
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Figure 3: Spectrograms of a polyphonic example mixture signal

(top), separated vocals (middle) and separated accompaniment

(bottom). The darker the color, the larger the magnitude at a

certain time-frequency point.

Figure 3 shows example spectrograms of a polyphonic

signal, its separated vocals and background. Time-varying

harmonic combs corresponding to voiced parts of the vocals

present in the mixture signal are mostly removed from the esti-

mated background.

Complex spectrogram is obtained by using the phases of

the original mixture spectrogram, and finally the time-domain

vocal signal can be obtained by overlap-add. Examples of sep-

arated vocal signals are available at http://www.cs.tut.

fi/~tuomasv/demopage.html.

3.4. Discussion

We tested the method with various number of components (the

number of columns in matrix S). Depending on the length and

complexity of the input signal, good results were obtained with

a relatively small number of components (between 10 and 20)

and iterations (10-30). However, the method does not seem to

be very sensitive for the exact values of these parameters. On

the other hand, we observed that a large number of components

and iterations may lead to lower separation quality than fewer

components and iterations. This is caused either by overfitting

the accompaniment model or by learning undetected parts of the

vocals by the accompaniment model. The above is substantially

affected by the structure of the binary mask: a small number of

bins in a frame marked as vocals is likely to reduce the qual-

ity. More detailed analysis of an optimal binary mask and NMF

parameters is a topic for further research.

With a small number of iterations the proposed method is

relatively fast and the total computation time is less than the

length of the input signal on a 1.9 GHz desktop computer.

In addition to NMF, also more complex models (for exam-

ple which allow time-varying spectra, see [9, 10]) can be used

with the binary weight matrix, but in practice the NMF model

was found to be sufficient. The model can also be extended so

that the spectra for vocal parts can be learned from the data (as

for example in [5]), but this requires relatively long input signal

so that each pitch/phoneme combination is present in the signal

multiple times.

4. Simulations

The performance of the proposed hybrid method was quantita-

tively evaluated using two sets of music signals. The first test set

included 65 singing performances consisting of approximately

38 minutes of audio. For each performance, the vocal signal

was mixed with a musical accompaniment signal to obtain a

mixture signal, where the accompaniment signal was synthe-

sized from the corresponding MIDI-accompaniment file. The

signal levels were adjusted so that vocals-to-accompaniment ra-

tio was −5 dB for each performance.

The second test set consisted of excerpts from nine songs

on a karaoke DVD (Finnkidz 1, Svenska Karaokefabriken Ab,

2004). The DVD contains an accompaniment version of each

song and also a version with lead vocals. The two versions

are temporally synchronous at audio sample level so that the

vocal signal could be obtained for evaluation by subtracting

the accompaniment version from the lead-vocal version. The

segments which include several simultaneous vocal signals

(e.g., doubled vocal harmonies), were manually annotated in

the songs and excluded from the evaluation. This resulted in

approximately twenty minutes of audio, where the segment

lengths varied from ten seconds to several minutes. The aver-

age relative ratio of the vocals and accompaniment in the DVD

database was −4.0 dB.

Each segment was processed using the proposed method

and also the below reference methods. All the methods use

identical melody transcription algorithm, the one proposed by

Ryynänen and Klapuri [7]. All the algorithms use 40 ms win-

dow size and 50% overlap between adjacent windows. The

number of harmonic partials in all the methods was set to 60,

and they used an identical binary mask. The number of NMF

components was 20 and the number of iterations 30.

• Sinusoidal modeling. In the sinusoidal modeling al-

gorithm the amplitude and phase were estimated by

calculating the cross-correlation between the windowed

and a complex exponential having the partial frequency.

Quadratic interpolation of phases and linear interpola-

tion of amplitudes was used in synthesizing the sinu-

soids.

• Binary masking does not subtract the background model

subtraction but obtained the vocal spectrogram as: V =
X⊗ (1−W)

• The proposed method was also tested without vocal

mask multiplication after the background model subtrac-

tion. In this method the vocal spectrogram was obtained

as V = max(X−SA, 0), and the method is denoted as

“proposed*”.



Table 1: Average vocal-to-accompaniment ratio of the tested

methods in dB.

data set

method set 1 (synthesized) set 2 (Karaoke DVD)

proposed 2.1 dB 4.9 dB

sinusoidal 0.3 dB 3.6 dB

binary mask -0.8 dB 2.9 dB

proposed* 2.1 dB 4.6 dB

The quality of the separation was measured by calculating

the vocal-to-accompaniment ratio

VAR[dB] = 10 log
10

P

n
s(n)2

P

n
(s(n)− ŝ(n))2

, (13)

of each segment, where s(n) is the reference vocal signal and

ŝ(n) is the separated vocal signal. The weighted average of

VAR was calculated over the whole database by using the dura-

tion of each segment as its weight. Table 1 shows the results for

both data sets and methods.

The results show that the proposed method achieves clearly

better separation quality than the sinusoidal modeling and bi-

nary mask reference methods. All the methods are able to

improve clearly the vocal-to-accompaniment ratio of the mix-

ture signal, which were −5.0 dB and −4.0 dB for sets 1 and

2, respectively. Listening to the separated samples revealed

that most of the errors, especially on the synthesized database,

arise from errors on the transcription. The perceived quality of

the separated vocals was significantly better with the proposed

method than with the reference methods. The performance of

the proposed* method is equal on set 1 and slightly worse on

set 2, which shows that multiplication by the binary mask after

subtracting the background model increases the quality slightly.

5. Application to audio and text alignment

One practical application for the vocal separation system is au-

tomatic alignment of a piece of music to the corresponding tex-

tual lyrics. Having a separated vocal signal allows the use of

a phonetic hidden Markov model (HMM) recognizer to align

the vocals to the text in the lyrics, similarly to text-to-speech

alignment. A similar approach has been presented by Fujihara

et al. in [3]. The system uses a method for segregating vocals

from a polyphonic music signal, then a vocal activity detection

method to remove the nonvocal regions. The language model

is created by retaining only the vowels for Japanese lyrics con-

verted to phonemes. As a refinement, in [11] Fujihara and Goto

include a fricative detection for the /SH/ phoneme and a filler

model consisting of vowels between consecutive phrases.

The language model in our alignment system consists of

the 39 phonemes of the CMU pronouncing dictionary, plus

short pause, silence, and instrumental noise models. The sys-

tem does not use any vocal detection method, considering that

the noise model is able to deal with the nonvocal regions. As

features we used 13 Mel-frequency cepstral coefficients plus

delta and acceleration coefficients calculated on 25 ms frames

with a 10 ms hop between adjacent frames. Each monophone

model was represented by a left-to-right HMM with 3 states.

An additional model for the instrumental noise was used, ac-

counting for the distorted instrumental regions that can appear

in the separated vocals signal. The noise model was a 5-state

fully-connected HMM. The emission distributions of the states

were 20-component Gaussian mixture models (GMMs) for the

monophone states and 5-component GMMs for the noise states.

In the absence of an annotated database of singing

phonemes, the monophone models were trained using the en-

tire ARCTIC speech database. Silence and short pause models

were trained on the same material. The noise model was sep-

arately trained on instrumental sections from different songs,

others than the ones in the test database. Furthermore, using

maximum-likelihood linear regression (MLLR) speaker adap-

tation technique, the monophone models were adapted to clean

singing voice characteristics using 49 monophonic singing frag-

ments of popular music, their lengths ranging from 20 to 30

seconds.

The recognition grammar is determined by the sequence

of words in the lyrics text file. The text is processed to obtain

a sequence of words with optional short pause (sp) inserted

between each two words and optional silence (sil) or noise at

the end of each lyrics line, to account for the voice rest and

possible accompaniment present in the separated vocals. A

fragment of the resulting recognition grammar for an example

piece of music is:

[sil | noise] I [sp] BELIEVE [sp] I [sp] CAN [sp] FLY [sil |

noise] I [sp] BELIEVE [sp] I [sp] CAN [sp] TOUCH [sp] THE

[sp] SKY [sil | noise]

where [ ] encloses options and | denotes alternatives.

This way, the alignment algorithm can choose to include pauses

and noise where needed.

The phonetic transcription of the recognition grammar was

obtained using the CMU pronouncing dictionary. The features

extracted from the separated vocals were aligned with the ob-

tained string of phonemes, using the Viterbi forced alignment.

The Hidden Markov Model Toolkit (HTK) [12] was used for

feature extraction, training and adaptation of the models and for

the Viterbi alignment.

Seventeen pieces of commercial popular music were used

as test material. The alignment system processes text and music

of manually annotated verse and chorus sections of the pieces.

One hundred such sections with lengths ranging from 9 to 40

seconds were paired with corresponding lyrics text files. The

timing of the lyrics was manually annotated for a reference.

In testing, the alignment system was used to align the sep-

arated vocals of a section with the corresponding text. As a

performance measure of the alignment, we use the mean abso-

lute alignment error in seconds at the beginning and at the end

of each line in the lyrics.

We tested both the proposed method and the reference sinu-

soidal modeling algorithm, for which the mean absolute align-

ment errors were 1.33 and 1.37, respectively. Even though

the difference is not large, this study shows that the proposed

method enables more accurate information retrieval of vocal

signals than the previous method.

6. Conclusions

We have proposed a novel algorithm for separating vocals from

polyphonic music accompaniment. The method combines two

powerful approaches, pitch-based inference and unsupervised

non-negative matrix factorization. Using pitch estimate of the

vocal signal, the method is able to learn a model for the ac-

companiment using non-vocal regions in the input magnitude

spectrogram, which allows subtracting the estimated accompa-

niment from vocal regions. The algorithm was tested in sepa-



ration of both real commercial music and synthesized acoustic

material, and produced clearly better results than the reference

separation algorithms. The proposed method was also tested in

aligning separated vocals with textual lyrics, where it improved

slightly the performance of the existing method.
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