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ABSTRACT

Modeling the phases of audio signals has received significantly less

attention in comparison to the modeling of magnitudes. This paper

proposes to use linear least squares and neural networks to predict

phases from the neighboring points only in the phase spectrum. The

simulation results show that there is a structure in the phase compo-

nents which could be used in further analysis algorithms based on

the phase spectrum.

Index Terms— STFT, phase spectrum prediction, phase un-

wrapping, linear least squares, neural networks

1. INTRODUCTION

A large amount of audio signal processing and analysis algorithms

operate in the time-frequency domain. Most of the analysis algo-

rithms use the magnitudes of the time-frequency points only. There

are some analysis methods which use the phase spectrum informa-

tion [1, 2, 3], but majority of the analysis systems do not use the

phase information at all.

Many audio processing methods operate using the magnitudes

only, and then either apply the original phases [4], or find phases so

that they match with the processed magnitudes [5, 6]. The main rea-

son why phases are not commonly used in the analysis of audio sig-

nals, or why phases are not often used in the processing of sounds, is

the stochastic nature of phases. In comparison to magnitudes, phases

are usually significantly more difficult to model [7]. Furthermore, it

has been assumed that the human auditory system is insensitive to

phases [8], even though it has been shown that the phase spectrum

affects the perception of sounds, at least in some situations [9, 10].

Although the phase and the magnitude of the short-time Fourier

transform (STFT) are strongly related [5], this paper investigates the

predictability of phases by using only phase information in the time-

frequency domain. We propose to model phases by linear regression

using phases in the neighboring time-frequency points. The simu-

lation results show that there is a structure in phases, which allows

predicting them, at least to some degree. The regression coefficients

or the residual that our methods produce could be used as the basis

for novel analysis algorithms based on the phase spectrum.

The structure of the paper is as follows: Section 2 describes the

time-frequency representation of phases used in the paper. Section 3

proposed regression models for predicting phases. Sections 4, and 5

present the results and discussion.

∗Currently in Department of Information and Computer Science, Aalto
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2. PHASE SPECTRUM

The STFT of signal x(n) is denoted by X(k, ℓNhop) where 0 ≤
k ≤ NFFT is the index of the spectral line, and ℓ is the index of the

time slice, and Nhop is the temporal decimation factor. In addition,

in this work we use the Hamming window (with size Nwin) as the

analysis window. If we decompose X(k, ℓNhop) in the following

way

X(k, ℓNhop) = |X(k, ℓNhop)| ejθW
k,ℓ , (1)

then |X(k, ℓNhop)| and θW

k,ℓ are called the “magnitude spectrum”

and the “phase spectrum” respectively. For the phase spectrum we

have

θ
W

k,ℓ = atan2
(

Xℑ(k, ℓNhop), Xℜ(k, ℓNhop)
)

, (2)

where the subscripts ℜ and ℑ denote the real and imaginary parts.

From the definition of θW

k,ℓ, it is obvious that −π < θW

k,ℓ ≤ π,

thus we call it “wrapped phase” since it is wrapped around ±π. The

superscript W in θW

k,ℓ stands for “wrapped”. Due to the discontinuity

of θW

k,ℓ which makes its prediction difficult, we firstly try to unwrap

it then model the unwrapped version which is a continuous function;

however, this is not an easy task because by adding any multiple of

2π to θW

k,ℓ the value of X(k, ℓNhop) does not change, thus there are

an infinite number of ways to unwrap θW

k,ℓ [7].

The chosen method for phase unwrapping relies on the detection

of the discontinuities between the wrapped phases at two adjacent

frequencies k − 1 and k; whenever the difference of those wrapped

phases is greater than π we say that discontinuity is present [11]. For

calculation of unwrapped phase spectrum θk,ℓ from θW

k,ℓ we have

θk,ℓ = θ
W

k,ℓ + ϑk,ℓ × 2π (3)

where ϑk,ℓ ∈ Z corresponds to the number of rotations in the

trigonometrical circle, and can be calculated in the following way

ϑk,ℓ =



















0 for k=0

ϑk−1,ℓ for k≥1 & −π<θW
k,ℓ−θW

k−1,ℓ≤π

ϑk−1,ℓ + 1 for k≥1 & θW
k,ℓ−θW

k−1,ℓ≤−π

ϑk−1,ℓ − 1 for k≥1 & π<θW
k,ℓ−θW

k−1,ℓ

. (4)

This method is implemented in MATLAB function unwrap(·). We

use this method by a modification when the FFT size and the analysis

window length are equal.

As demonstrated in Fig. 1, the unwrapped phase spectrum is

dependent on the FFT size (NFFT). In this paper we assume FFT size

is the multiplication of a power of two by the analysis window length

NFFT = 2p × Nwin, (5)
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Fig. 1. (a) is the 512 samples of a short-time section of an audio

signal (Nwin = 512) which is 32 ms long (sampling frequency is 16

kHz). (b) represents the unwrapped phase spectra with different FFT

length (NFFT = 512, 1024, 2048, and 4096). As can be seen the

unwrapped phase spectrum is dependent on the FFT length.

where p is a non-negative integer. If we assume there is a true un-

wrapped phase spectrum, each of the plots in Fig. 1 is an approx-

imation of that true unwrapped phase. But, it is obvious that this

approximation is not always accurate. For instance, when FFT size

is 512, we have a poor approximation of the true unwrapped phase.

According to our experiments, this phenomenon happen whenever

the FFT size is equal to the analysis window length (p = 0), and in

other cases where p ∈ N we do not have this problem.

To address this problem we can use more accurate phase un-

wrapping methods. But, in this paper we only want to investigate

the predictability of phases in phase spectrum not to propose an ef-

ficient phase unwrapping method. So, we simply modify the former

phase unwrapping method such that it satisfies our needs for model-

ing which is to create a smooth function for the phase spectrum, and

postpone the task of finding the efficient phase unwrapping method

for the future work. One way to solve the problem when p = 0
is to calculate the unwrapped phase for p ≥ 1 and then resample

the result. But, the proposed method here which is computationally

less expensive is obtained by analyzing the plots of the unwrapped

phases and finding an approximation for those plots by modifying

Eq. (4).

In Fig. 1 by looking at the unwrapped phases of NFFT =
1024, 2048, and 4096 we see that those graphs are the graphs

of almost monotonically decreasing functions. So, if we modify

the definition of ϑk,ℓ (only when p = 0) in the following way, the

resulting unwrapped phase is a monotonically decreasing function

ϑk,ℓ =











0 for k=0

ϑk−1,ℓ for k≥1 & θW
k,ℓ≤θW

k−1,ℓ

ϑk−1,ℓ − 1 for k≥1 & θW
k,ℓ>θW

k−1,ℓ

. (6)

Although the assumption that the unwrapped phase is a monotoni-

cally decreasing function is not true, the resulting unwrapped phase

matches the unwrapped phase at higher frequency resolution (higer

p) very well. As demonstrated in Fig. 2 the resulting unwrapped

phase in the case of NFFT = 512 using this method, matches the un-

modified phase unwrapping method with NFFT = 4096 which was a

good approximation of the unwrapped phase.
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Fig. 2. The unwrapped phase spectra of the same signal as Fig. 1

with different methods.

3. PHASE SPECTRUM PREDICTION

In the previous section we produce almost smooth curves for phases

in each time slice in the phase spectrum (phase unwrapping is done

on the frequency axis). In this section we propose models to esti-

mate the phase at the specific point in the phase spectrum by using

the actual observed values of the phases at the neighboring points.

We should consider that all the following models use neighboring

points in the phase spectrum with lower frequency and frame in-

dices (causal models). Moreover, the proposed models are not the

only models to estimate the phases, and one can estimate phases by

using higher order (higher number of neighboring points) or even

noncausal (the neighboring points with higher frequency and frame

indices) models. In this paper we only want to show the possibility

to predict phases by using phase information available in the phase

spectrum of STFT of signal.

If we consider Fig. 3 as a part of an unwrapped phase spectrum,

then one possible estimation for the unwrapped phase at frequency

k and time slice ℓ is

θ̂k,ℓ = θk−1,ℓ + θk,ℓ−1 − θk−1,ℓ−1. (7)

We are inspired to use this predictor based on the assumption that

the value of θk,ℓ is close to the value of θk−1,ℓ,

θk,ℓ = θk−1,ℓ + δk,ℓ, (8)

where δk,ℓ is the difference between θk,ℓ and θk−1,ℓ. We assume that

δk,ℓ can be estimated by the difference between unwrapped phases

of the previous time slice

δ̂k,ℓ = θk,ℓ−1 − θk−1,ℓ−1. (9)

As we will see later, this model is not very accurate, but for starting

point it is a good guess. We call it the basic model (BM). In the

following sections, we use the systematic ways to introduce models

based on the linear least squers and neural networks.

3.1. Phase Spectrum Prediction Using Linear Least Squares Re-

gression

In this section we introduce four different models based on the val-

ues of adjacent unwrapped phases to θk,ℓ in the unwrapped phase
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Fig. 3. A part of an unwrapped phase spectrum. Rows correspond

to the spectral lines and columns correspond to the time slices. The

unwrapped phase at frequency k and time slice ℓ is estimated by the

adjacent unwrapped phases.

spectrum. The four predictors are given as

θ̂
q

k,ℓ =



















λ0+λ1θk−1,ℓ for q=1

λ0+λ1θk−1,ℓ+λ2θk−2,ℓ for q=2

λ0+λ1θk−1,ℓ+λ2θk,ℓ−1+λ3θk−1,ℓ−1 for q=3

λ0+λ1θk−1,ℓ+λ2θk−2,ℓ+λ3θk,ℓ−1+λ4θk−1,ℓ−1 for q=4

,

(10)

where θ̂
q

k,ℓ is the predicted value for θk,ℓ by using the qth model.

And, λj are q + 1 adjustable parameters of the qth model. Fig. 3

illustrates the structure of the predicted phase and its neighboring

phases. We define vectors

λ
T
q =



















[λ0, λ1] for q = 1

[λ0, λ1, λ2] for q = 2

[λ0, λ1, λ2, λ3] for q = 3

[λ0, λ1, λ2, λ3, λ4] for q = 4

, (11)

and

(ψk,ℓ
q )T =



















[1, θk−1,ℓ] for q = 1

[1, θk−1,ℓ, θk−2,ℓ] for q = 2

[1, θk−1,ℓ, θk,ℓ−1, θk−1,ℓ−1] for q = 3

[1, θk−1,ℓ, θk−2,ℓ, θk,ℓ−1, θk−1,ℓ−1] for q = 4

.

(12)

Then, the vector form of the predictors are given as

θ̂
q = (ψq)

T
λq, (13)

where k (index of the spectral line) and ℓ (index of the time slice)

are omitted for convenience. The goal is to estimate the vector of

parameters λq to minimize the residual sum of squares (RSS)

RSS(λq) =

N
∑

i=1

(θ〈i〉 − θ̂
q

〈i〉)
2
, (14)

where 〈i〉 is the index of the training data, and N is the total number

of training data. The vector form of Eq. (14) is

RSS(λq) = (θ − Ψqλq)
T (θ − Ψqλq), (15)

where Ψq is the N × (q + 1) matrix of inputs and θ is the N -vector

of outputs in the training set. The solution minimizing this criterion

is

λ̂q = (ΨT
q Ψq)

−1
Ψ

T
q θ. (16)

And, the vector of the estimated values for the unwrapped phases is

θ̂ = Ψqλ̂q

= Ψq(Ψ
T
q Ψq)

−1
Ψ

T
q θ. (17)

In this paper the qth model using linear least squares is called

LS-q. For example, LS-2 means the 2nd model using linear least

squares indicated by Eq. (10) when q = 2. In addition, it is obvious

that BM which was described previously is a special case of LS-3

with fixed parameters λ0 = 0, λ1 = λ2 = 1, and λ3 = −1.

3.2. Phase Spectrum Prediction Using Neural Networks

So far, all models BM, LS-1, LS-2, LS-3, and LS-4 were linear func-

tions of input variables. In this section by using neural networks,

we introduce new models which are non-linear functions of inputs.

These models are counterpart of the previous models, i.e. we use

the same input/output structure as before in the input/output layer of

the neural networks. In addition, all models use one hidden layer

with 3 neurons. So, the general architecture of NN is R-3-1 in which

R ∈ {1, 2, 3, 4} is the number of units in the input layers, and we

only have one unit in the output layer. Again, the model with R units

in the input layers is called NN-R. For example, NN-4 means the

model with 4 units in the input layers using neural networks, and it

is the counterpart of LS-4.

For the hidden units we use “tanh” activation function, and for

the output unit we use identity activation function. Finally, for the

network training the BFGS quasi-Newton algorithm [12] is used.

4. SIMULATIONS AND RESULTS

In order to test the accuracy of the proposed methods, simulation

experiments were carried out.

4.1. Acoustic Material

The training data consists of approximately 15 seconds of audio sig-

nals including two segments of two different music pieces, and three

different speech signals from one female and two male speakers. The

test data consists of 100 different segments (in total approximately

300 seconds) of music and speech signals. The size of the training

data is chosen to be smaller than the test data to speed up the training.

In addition, the training and test data sets are disjoint, so the samples

which are used in training are not used in testing. The music pieces

are selected from the music database described in [13]. We choose

music data with different genre including pop, rock, blues, metal,

hip hop, and so on. The music data is re-sampled to 16 kHz. For

the speech data we use the TIMIT database [14] where the sampling

frequency is 16 kHz.



Table 1. Results of the phase spectrum prediction using Linear Least Squares when NFFT = Nwin, and Noverlap = 0.5 × Nwin.

NFFT = Nwin = 256 NFFT = Nwin = 512 NFFT = Nwin = 1024
Var SNR Ent Var SNR Ent Var SNR Ent

Random 3.333 −1.50 2.65 3.289 −2.00 2.65 3.288 −2.22 2.65

BM 2.336 3.93 2.11 2.524 2.59 2.58 2.784 −0.51 2.62

LS-1 1.659 6.54 2.30 1.716 7.00 2.34 1.813 5.45 2.40

LS-2 1.622 6.84 2.28 1.656 7.47 2.31 1.675 6.77 2.34

LS-3 1.638 6.58 2.29 1.687 7.04 2.33 1.744 5.53 2.37

LS-4 1.607 6.86 2.27 1.638 7.49 2.30 1.637 6.74 2.32

4.2. Performance Evaluation of Models

If the predicted value of unwrapped phase θk,ℓ is θ̂k,ℓ, then the pre-

diction error is

ǫ = θ − θ̂, (18)

where indices k and ℓ are omitted for convenience. We can rewrite

this prediction error in the following way

ǫ = υ + 2π × m, (19)

where υ ∈ (−π, π] and m ∈ Z. It is obvious that for different values

of m, we will have the same result if a signal is to be reconstructed

using the predicted phase. Thus, this error is not a good criterion to

evaluate the success in prediction; instead we can use υ which is the

wrapped version of ǫ. From now, whenever we say prediction error

we mean υ.

The first criterion which is used for performance evaluation of

different models is the variance of the prediction error (Var) of the

test data set. The smaller Var means the better prediction.

The second criterion used to evaluate the performance is the en-

tropy of the prediction error (Ent) of the test data set. Entropy is a

measure of the uncertainty of a random variable [15]. The prediction

error is a continuous random variable since υ can be any value in the

interval (−π, π]. Thus, we cannot use discrete entropy; instead we

use the differential entropy. The discrete entropy is positive and it

is used as a measure of uncertainty. But, unlike the discrete entropy,

the differential entropy is not in general a good measure of uncer-

tainty or information. For example, the differential entropy can be

any value from −∞ to ∞, and it is used to measure only changes

in uncertainty [16]. In other words, differential entropy does not

provide an absolute measure of randomness or code length; instead

it provides a relative measure of these properties [17]. In spite of

this drawback, still we can use the differential entropy as a criterion

for performance evaluation of the methods. A random variable Y is

less predictable than Z whenever Ent(Y ) > Ent(Z), and an event

from Y requires more bits on average to encode than an event from

Z [17].

The third and the last criterion is the power signal-to-noise ra-

tio (SNR) between the original signal x(n) and the reconstructed

signal x̂(n). To construct x̂(n), we take the inverse STFT of com-

plex spectra X̂k,ℓ which is obtained from the original magnitude and

the predicted phases, then followed by windowing and overlap-add

(OLA) synthesis method.

Both Var and Ent are good measures to show the success in pre-

diction of phase, but since they do not involve the magnitude in-

formation of audio signals, their relation to the quality of predicted

signal are not clear. On the other hand, since SNR uses both mag-

nitude and phase information in signal reconstruction, it is the most

important criterion in evaluation of the methods and it has a direct

relation to the quality of the predicted signal.

Table 2. Results of the phase spectrum prediction using neural net-

works when NFFT = Nwin = 512, and Noverlap = 0.5 × Nwin.

NFFT = Nwin = 512
Var SNR Ent

NN-1 1.707 7.13 2.33

NN-2 1.656 7.51 2.31

NN-3 1.681 7.09 2.33

NN-4 1.633 7.52 2.30

4.3. Results of Phase Prediction

The results of the phase prediction by using linear least squares in

addition to the results of the basic model and random guess are listed

in Table 1 (when NFFT = Nwin = 256, 512, and 1024). Moreover,

the results of the phase prediction by using neural networks when

NFFT = Nwin = 512 and Noverlap = 0.5 × Nwin are reported in

Table 2.

5. DISCUSSION

As can be seen in Table 1, the best results belong to LS-2 and LS-4;

they have the lowest Var, the lowest Ent, and the highest SNR. This

happen independent from FFT size. And, by increasing the FFT size

still these two models are better than the others. For example, if

NFFT = 4096, Nwin = 512, and Noverlap = 0.5 × Nwin, the SNR for

LS-2, and LS-4 are respectively 35.5 and 35.8 dB. But those numbers

for LS-1 and LS-3 are 27.9 and 28.3 dB.

The common property between LS-2 and LS-4 is that in both

models we use two unwrapped phases in the current time slice (LS-

4 uses two extra unwrapped phases from the previous time slice).

Thus, in phase estimation the unwrapped phases in the current time

slice have more effect than the unwrapped phases of the previous

time slice (it is good to remind that the unwrapping is done in the

frequency axis).

Another point which we mention here is that by increasing fre-

quency resolution (increasing p in Eq. (5)), the performance of the

proposed models will increase. For example, if Nwin = 512 and

Noverlap = 0.5 × Nwin, for p = 0, 1, 2, and 3 the SNR of LS-2 are

respectively 7.47, 11.77, 26.0, and 35.5 dB.

In addition, for the results in Table 1 we use modified unwrap(·)
function which was described in Section 2. But, if we use the orig-

inal MATLAB unwrap(·) function, the SNR (when NFFT = Nwin =
512) for LS-1 to LS-4 will be −5.1, −4.8, −5.1, and −4.8 dB. This

shows the crucial role of phase unwrapping method in the phase

modeling task.



300 350 400 450 500 550 600 650 700
10

12

14

16

EPOCH

S
N

R

300 350 400 450 500 550 600 650 700

0.62

0.64

0.66

0.68

0.7

EPOCH

V
A

R

300 350 400 450 500 550 600 650 700

1.5

1.55

1.6

EPOCH

E
N

T
R

O
P

Y

Fig. 4. The results of training the neural network for different

EPOCH count when NFFT = 1024, Nwin = 512, and Noverlap =
0.5 × Nwin. The dashed lines are the results of the test data. The

other lines are the results of the training data.

As can be seen from Table 2 the result of neural networks are

slightly better than linear least squares. Basically, we expect to get

the better result by using neural networks than linear least squares.

But, it is not easy, because the objective function in training the neu-

ral networks is the mean-square error of unwrapped phases. So,

by progress in training process the value of mean-square error de-

creases, but it does not mean that the result will have the higher

SNR. Thus, it would be better to change the objective function of

the neural network to some criterion which is related to SNR (we

postpone this for future works). The results of training the neural

network for different number of epochs are plotted in Fig 4.

And finally, because the number of parameters in the linear least

squares and also the number of neurons in the neural network are not

large we do not need to concern about overfitting problem.

6. CONCLUSIONS

In this paper, different methods for phase prediction from only phase

information have been proposed. The methods are based on the lin-

ear least squares and neural networks. The simulation results show

that there exists a structure in the phase spectrum that allows predict-

ing the phase using the neighboring phases at least to some degree.
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