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Abstract — A data-adaptive algorithm for the separation of
sound sources from one-channel signals is presented. The algo-
rithm applies weighted non-negative matrix factorization on the
power spectrogram of the input signal. Perceptually motivated
weightsfor each critical band in each frame are used to model the
loudness perception of the human auditory system. The method
compresses high-energy components, and enables the estimation
of perceptually significant low-energy characteristics of sources.
The power spectrogram is factorized into a sum of components
which have a fixed magnitude spectrum with a time-varying gain.
Each source consists of one or more components. The parameters
of the components are estimated by minimizing the weighted
divergence between the observed power spectrogram and the
model, for which a weighted non-negative matrix factorization
algorithm is proposed. Simulation experiments were carried out
using generated mixtures of pitched musical instrument samples
and percussive sounds. The performance of the proposed method
was compared with other separation algorithms which are based
on the same signal model. These include for example independent
subspace analysis and spar se coding. Accor ding to the simulations
the proposed method enables perceptually better separation qual-
ity than the existing algorithms. Demonstration signals are availa-
ble at http://www.cs.tut.fi/~tuomasv/.

Index Terms — Sound source separation, non-negative matrix
factorization, sparse coding, independent subspace analysis

[. INTRODUCTION

In real-world audio signals several sound sources are usu-
ally mixed. The process in which individual sources are esti-
mated from the mixture signal is called sound source
separation. Separation of mixed sounds has several applica-
tions in the analysis, editing and manipulation of audio signals.
These include for example object-based audio coding, auto-
matic transcription of music, and computational auditory scene
analysis. There are powerful algorithms for the processing of
isolated sounds, therefore the capability of separating sources
from polyphonic mixtures is very appealing. In this paper the
focus is on the separation of music signals.

The definition of a sound source depends somewhat on the
application. Usually the term is used to refer to an individual

The author is with the Institute of Signal Processing, Tampere University of

physical source or to an entity that humans perceive individu-
ally. Humans tend to perceive similar-souding physical sound
sources as a single entity. For example, if a violin section plays
in unisono, all the sounds arriving from the same musical
instrument are perceived as a single source.

Humans are extremely skillful in “hearing out” individual
sources from complex mixtures even in noisy conditions. Com-
putational modeling of this ability is very difficult. All the
existing separation systems are limited in either polyphony or
quality. The most successful ones are those which try to extract
only the most prominent source [1], [2].

Without any prior knowledge of the sources, the problem of
estimating several overlapping sources from one input signal is
ill-defined. By making some assumptions of the underlying
sounds, it is possible to analyze and synthesize signals which
are perceptually close to the original ones before mixing. For
example the harmonicity of sources has been assumed in most
systems which are aimed to separate musical sounds [1], [3].

Independent Component Analysis (ICA) has been success-
fully used to solve blind source separation problems in several
application areas. A related technique called independent sub-
space analysis (ISA) has been used for sound separation e.g. by
Casey and Westner [4], FitzGerald, Coyle, and Lawlof5],
Uhle, Dittmar, and Sporg6], Orife [7], and with some modifi-
cations by Emmanual and Rodet [8]. The method tries to find
source spectra which are statistically independent from each
other. Also the analysis procedure proposed by Brown and
Smaragdis [9] can be viewed as an ISA algorithm. A sound
recognition system based on ISA has also been adopted in the
MPEG-7 standardization framework [10].

The non-negative matrix factorization (NMF) algorithms
proposed by Lee and Seung [11] has been suggested as a solu-
tion for the blind source separation problem with non-negativ-
ity constraints. The algorithm has been used for sound source
separation by Smaragdis and Brown [12]. In sound classifica-
tion NMF was reported to perform better than ISA [13].

A data-driven technique called sparse coding has been suc-
cessfully used for example to model the functioning of the
early stages of vision [14]. The term sparse is used to refer to a
signal model, in which the data is represented in terms of a
small number of active elements chosen out of a larger set.
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Bimbot, and Gribonval [17].

The non-negative sparse coding algorithm proposed by
Hoyer [18] combines non-negative matrix factorization and
sparse coding. With some modifications and a temporal conti-
nuity objective the algorithm was used in sound separation by
Virtanen [19]. More complex models derived from NMF and
sparse coding have been proposed by Smaragdis [20] and
Virtanen [21].

All the above mentioned studies claim that it is possible (to
some degree) to separate sound sources without any prior
knowledge of the sources, while it is clear that for robust high-
quality separation more assumptions have to be made. In this
paper, algorithms based on a linear signal model are discussed
and compared. The proposed perceptually weighted NMF
algorithm is shown to outperform previously proposed algo-
rithms in perceptual separation quality.

A. Sgnal model

The signal model used in this paper and in ISA, NMF, and
sparse coding methods is in general linear: each observation
vector x; is assumed to be a linear mixture of basis vectors s,,.
In the case of NMF and sparse coding the model is not neces-
sarily noise-free. With a residual term r, the model can be writ-
ten as:

N
x, = Z a; Syt t=1..K Q)
n=1

where g, , is the mixing weight of the nth component in the I
observation, N is the number of components, and K is the
number of observations. In this paper, term component is used
to refer to one basis function. A sound source is represented as
a sum of one or more components.

In the signal model (1), only the observations are known.
The algorithms for estimating the basis functions and weights
are shortly reviewed in Section B. In a matrix form the model
can be expressed as

X = AS+R )

_ T _ _ T

where X = [xl xK] ., [Al,,=a, ,, S= [sl SK] ,
T

and R = [rl "K] . In this paper notation [A],, is used to

refer the (t,n)th element of matrix 4.

In the case of music signals the most obvious choice for the
observation matrix is a time-frequency spectrogram, so that the
basis functions are the spectra of components. The components
are parametrized by a fixed spectrum over time so that only the
gains are time-varying. The signal model in (1) is very restric-
tive in the sense that natural sound sources have to be repre-
sented with a fixed spectrum over time. For example different
fundamental frequencies of a source have different spectra. In
practise this is solved by representing one sound source as a
sum of several components. The observed data is separated
into components, which are then clustered into sound sources,
as suggested e.g. by Casey and Westner [4] and Virtanen [19].
In general the clustering is a difficult task and will not be dis-

cussed in this paper.

The time-domain signals and therefore also the complex
spectra of sources sum linearly. However, the phase spectra of
natural sounds are very unpredictable. Also, the human sound
perception is rather insensitive to phase. The estimation of
frame-wise phases for each source would make the model too
complex, therefore complex spectra cannot be used in this
framework. The linear addition of complex spectra has to be
approximated as a linear addition of real-valued spectra.

When arbitrary complex sources with unknown random
phase spectra are summed, the expectation value for the power
spectrum of the sum equals the sum of the power spectra of the
sources, if the phase spectra of the sources are independent.
This holds only for the power spectra, not for magnitude spec-
tra, for example. Thus, the most accurate linear addition is
obtained in the power spectral domain.

Unfortunately, the power spectrogram is not a perceptually
well motivated representation. The human sound perception is
very nonlinear as a function of the intensity of the input signal,
which enables the perception of low-intensity sources. The per-
ceived loudness is approximately proportional to the logarithm
of the intensity, or, to the intensity raised to the power 0.23 [28,
pp- 181-214]. If the parameters are fitted to the observations in
the power spectral domain, high-intensity observations will
dominate the separation.

Basically the same estimation algorithms can be used for
magnitude or power spectra. Taking element-wise an arbitrary
power of the input spectrogram changes the summation proper-
ties and the dynamic range of the data. With this approach
there is always a trade-off between the accurate summation in
the power spectral domain and the sensitivity to low-intensity
sources in the logarithmic domain, which can not be achieved
at the same time. In most data-driven algorithms the model fit-
ting is done using the magnitude spectra, which is a compro-
mise between the alternatives.

B. Estimation criteria

In ISA, the estimation is done by assuming statistical inde-
pendence of the spectra of components. The estimation can be
done using any ICA algorithm, which usually consist of whit-
ening, dimension reduction by principal component analysis,
and estimation of an unmixing matrix which maximizes the
independece of resultant spectra. The components are obtained
by multiplying the observation matrix by the unmixing matrix.
If the basis vectors are magnitude or power spectra, it is rea-
sonable to restrict that the component matrix S and mixing
weights A are element-wise nonnegative. Currently there do
not exist algorithms which could estimate independent compo-
nents which are restricted to be nonnegative and have non-neg-
ative mixing weights. This limitation has been tried to
overcome by Plumbley and Oja [22], whose non-negative PCA
algorithm can be use to estimate non-negative sources with real
mixing weights. Even though the nonnegativity restrictions are
not met with current ICA algorithms, the separation results of
ISA are relatively good. In the simulation experiments pre-
sented in Section III, the proposed method is compared with



ISA where the independent components are estimated using
FastICA [23], [24] and Jade [25], [26] algorithms.

In the NMF algorithms proposed by Lee and Seung [11],
the non-negative basis functions and mixing weights are esti-
mated using an iterative procedure which is based on the mini-
mization of the Euclidean distance between the observed data
X and model A4S, or divergenge D, given as

D(X||AS) = S d([X],5.[AS],)) 3)
tf
where the function d is defined as
d(p,q) = plogs—pﬂi (4)

The divergence is lower bounded by zero, which is attained
only when X = AS. The divergence reduces to the Kullback-

Leibler divergence when Zz,f[X]tf = Zt,f[AS]tf =1[11].

In this paper the use of the divergence is motivated by two fac-
tors: first, there exists an efficient algorithm for minimizing the
divergence. Second, the divergence is less sensitive to large-
energy observations than for example the Euclidean distance.
This enables the use of power spectrogram as the observation.
Hoyer combined the multiplicative update used in the NMF
with steepest descent [18]. His algorithm allows the use of fur-
ther assumptions such as sparseness and temporal continuity of
sources [19]. In sound source separation, the sparseness objec-
tive is used either for the mixing weights a, ,, or for the spectra
of components. For the mixing weights the sparseness objec-
tive means that the probability for mixing weight a,, being
zero is high. In matrix form (2) this means that mixing matrix
A 1is sparse. In sound source separation the sparseness of
sources means that only few sources are active at each time.

C. Improvementsin the proposed method

As stated earlier, human sound perception is very nonlinear
as a function of the intensity of sources, enabling the percep-
tion of low-energy sources. Thus, data-driven algorithms are
not always able to extract low-energy sources even though they
are perceptually significant. This phenomenon has been
noticed for example by FitzGerald [27] in the case of ISA and
percussice sound separation.

In this paper a method for modeling the loudness percep-
tion of the human auditory system is incorporated into the non-
negative matrix factorization algorithm. The divergence is
weighted linearly to obtain an error criterion which approxi-
mates the intensity perception of the human auditory system.
The method is explained in Section II.A. It achieves the accu-
rate summation in the power spectral domain and a good sensi-
tivity on a large dynamic range at the same time.

The weighted non-negative matrix factorization algorithm
for the estimation of the components is explained in
Section II.B, and the synthesis procedure is shortly described
in Section II.C. Especially the use of perceptually motivated
weights increases the quality of the separated sources, as the
simulation experiments presented in Section III indicate.

II. PROPOSED METHOD

An input signal is represented using the power spectro-
gram, which is calculated as follows. First, the time-domain
signal is divided into frames and windowed. In our implemen-
tation a fixed 40 ms frame size is used with 50% overlap
between frames since it provides a good compromise between
time and frequency resolutions. The square root of the Hanning
window is used, since it allows smooth synthesis using the
overlap-add as explained in Section C.

Each frame is transformed into frequency domain by taking
the discrete Fourier transform (DFT). The length of the DFT is
equal to the frame size. Only positive frequencies are retained.
Phases are discarded by squaring the absolutive values of the
DFT spectra to result in the spectrogram x;,, where f=1.Fis
the discrete frequency index and ¢ = 1...K is the frame index.
Fis the number of frequency bins and K is the number of
frames. Matrix [X]tf Ux, , is used to denote the observed
power spectrogram. The phase spectrogram is stored since it is
needed in the synthesis.

The source model used in the proposed method is given by
Equations (1) and (2), so that the basis vectors are the power
spectra of each component, and the mixing weights are the
time-varying gains. The parameters are estimated using a
weighted version of divergence as given by (3). The weighted
divergence is defined as

D(X||AS;W) = D(W *X||W *(A4S)) (5)

where W is a positive 7T-by-F weight matrix and .* is the ele-
ment-wise multiplication. The estimation of perceptually moti-
vated weights is explained in this section, and the weighted
NMEF algorithm in next section.

A. Perceptually motivated weights

Function d (4) is linear as a function of the scale of the
input, since d(ap, ag) = ad(p, q) for any positive scalar o .
The divergence (3) is a sum of function d over x, Iz Thus, the
amount of contibution, or, quantitative “significance” of an
individual observation X; in the divergence is X g Thus,
the quantitative significance of an auditory object within a mix-
ture in the parameter estimation is the sum of power spectral
bins, which is the energy of the object.

The large dynamic range of the human auditory system is
mainly caused by the non-linear response of the auditory cells,
which can be modeled as a compression of the input signal sep-
arately within each critical band. In this system the compres-
sion is modeled by calculating a weight for each frequency bin
in each frame. The weights are selected so that the weighted
sum of spectrum bins is equal to the estimated loudness. This
way the quantitative significance of a time-frequency compo-
nent corresponds roughly to its “perceptual significance.”

The loudness of one frame is modeled by calculating the
excitation using perceptually motivated frequency scale 1/Bark
and critical bandwidth [28, pp. 141-144], compressing the
excitation, and integrating over frequency [28, p. 197]. Thus,
the loudness can be estimated individually for each critical
band. In our system, 24 separate bands are spaced uniformly on



the Bark scale and denoted by disjoint sets of frequency bins
Fy, b =1..24. The energy within each band in every frame is

calculated as
ey = Xy (6)
T

The fixed power response of the outer and middle ear is
taken into account by multiplying the energies within each
band by the corresponding power response /. The energies
after middle and outer ear filtering are given as

g1 = hpep @)

To get a good match of loudness at the active regions of the
input signal, 4 is set to be the equal-loudness contour at
60 dB [29, p. 55]. Term loudness index is used to refer to the

the loudness estimate of a frame within a critical band. Loud-
ness index Ly , of critical band b at frame ¢ is given by:

Ly, = [g5,78)" -8, (®)
where V is a fixed compression factor, and €, is the threshold
of hearing at band . The loudness model of the system is
adopted from the loudness models of Moore et al. [30] and
Zwicker and Fastl [28, p. 201].

The threshold of hearing may not be known in practise, so
it can be estimated from the input signal. The separation algo-
rithm is noncausal so this is not a problem. For simplicity, €,

is defined to be equal for all critical bands (the linear response
of outer and middle ear is taken into account in 4;). The level

of the signal is estimated from the variance 02 after middle
and outer ear filtering, which is given as
) 24
=23 g, ©)
b=1
A good choise for €, was found to be 107 (2. For each
critical band in each frame, weight ¢, , is assigned, which mim-
ics the loudness perception. The weights are selected so that
the quantitative criterion, the weighted energy, equals the esti-
mated loudness:

bt = Lpy (10)
from which ¢;, ; can be solved as
L
b,
Cb,l = e_t (11)
b,t

From (7), (8) and (11) it can be seen that as the energy
approaches zero, the limit for ¢, is:

L
. b, t _ V=
lim —= = vhg,

(12)
e~ 0 €py

Therefore, for critical bands the energy of which is exactly

. -1 .
Z€ro, ¢y, is set to vh bsbv . For real-world signals the energy

within a band will in practise never be exactly zero, but for

generated test signals it is possible to have such situations.
Simulation procedures similar to those described in

Section III were used to test different values of €, and v. It

was noticed that the algorithm is not sensitive for the exact val-

ues of the parameters. A good performance was obtained with
0<g, <107 12 and 0.17 <v <0.3. Too large €, or v will

decrease the amount of compression, which is the main moti-
vation for using the weights.

To simplify the notation, let us denote the estimated
weights by F-by-K matrix [ W] n = Cppoforall fOF,.

B. Algorithm for weighted non-negative matrix factorization

The estimation of the parameters 4 and S in (2) is done by
minimizing the cost function (5) with respect to 4 and S. The
optimization algorithm updates randomly initialized 4 and §
iteratively using multiplicative update rules. For the minimiza-
tion of the unweighted divergence (3), Lee and Seung [11] pro-
posed the multiplicative update rules

S — §*[AT(X./AS8)]./[AT1] (13)
A« A*[(X./AS)ST] /[187] (14)
where .* and ./ are the element-wise multiplication and divi-
sion, respectively, and 1 is an all-one N-by-F matrix. The diver-
gence (3) was shown to be nonincreasing under the update
rules [11].
For the weighted divergence (5) update rules for A and §
are given as
S « SH[AT(W.*X./AS)]./[ATW)] (15)
A AX[(W*X./AS)ST]./[WST) (16)
which can be verified as follows. Let us write the weighted
divergence in the form
F
D(X||ASW) = Y D(x/||As/;w/)
f=1
where x/, s/, and w/ are the f th columns of matrices X, S,
and W. The divergence for each frequency bin can be written as
D(x/||As/w/) = D(D/x/||Df As/) (18)
where D/ is a diagonal matrix in which the elements of w are
on the diagonal. By assigning D/x/ = y/ and D/ A/ = B/
the divergence (18) can be written as

7)

D(D/x/||DfAsf) = D(y/||B/s/) (19)
for which the update rule (13) is given as
s/ — s/ *[(BYT(y//B/$)./[(B/)T1] (20)

where 1 is a all-one N-by-1 vector. By substituting
y/ = D/x/ and B/ = D/ A/ back to the equation, the
update rule (20) can be written as

s/« s/ *[ATD/ (DS xS /DS As/)]./[ATD/ 1] (21)
The above equals (15) for each column of S, and therefore (15)
is the update rule for weighted non-negative matrix factoriza-
tion. Similarly, the update rule (16) for A can be verified by
writing the weighted divergence individually for each row
of A.

As preprocessing, the power spectrogram X and the weight
matrix W are calculated from the time-domain input signal
using the procedure described in Section II. The number of
components N is set by hand. N should be equal or larger than
the number of clearly distinguishable musical instruments. For



a drum sequence, for example, one might use N =3 for a drum
pattern which consists of bass drum, snare, and hi-hat sounds.
The iterative algorithm is given as follows:

Step 1. Initialize each element oA and S with the absolute category

value of Gaussian noise.
Step 2. UpdateS using the multiplicative step (15).
Step 3. UpdateA using the multiplicative step (16).

Step 4. Evaluat the cost function and repeat steps 2 - 4 if

needed.

The steps 2 - 4 are repeated until the value of the cost func-
tion does not change. In practise this is done by keeping track
of the iteration steps for which the decrease of the cost function
is smaller than a small threshold. Iteration is stopped when the
decrease has been smaller for a certain number of iterations.

The computation time depends on the length and complex-
ity of the input signal and on the number of components. For
example, the separation of a 10-second polyphonic signal into
four components takes about one hundred iterations to con-
verge, which takes about half a minute on a regular desktop
(:omputer1 when implemented in Matlab.

C. Yynthesis

In the synthesis, the power spectrum of each component
within every frame is calculated as a, ,Sy> 1= 1.K, n=1..N.
The square root is taken element-wise to get the magnitude
spectra. To get complex spectra, there are two alternative meth-
ods for the estimation of the phases. Either the phases of the
original spectrogram can be used for the separated compo-
nents, or the phase generation method proposed by Griffin and
Lim [31] with the improvements proposed by Slaney, Naar,
and Lyon [32] can be used.

In most cases where the separation is successful the use of
original phases produces good results. It also allows the syn-
thesis of sharp attacks with an accuracy which would otherwise
be impossible with 40 ms window sizes. However, if the origi-
nal phases are for some reason not suitable for the separated
magnitude spectrogram, the resulting time-domain signal may
become distorted because of discontinuities at at the frame
boundaries.

In our simulations, the best perceptual quality was obtained
using the original phases and the following overlap-add proce-
dure. First, the complex spectrogram of a component is
obtained by assigning the original phases for the separated
spectrogram. Second, the time-domain signal of each frame is
obtained by the inverse discrete Fourier transform. Third, each
frame is windowed using the square root of the Hanning win-
dow. Finally, the frames are concatenated using overlap-add.
The windowing eliminates most discontinities between frames.
Since the square root of Hanning window is used twice, both in
the analysis and in the synthesis, the method allows perfect
reconstruction since adjacent windows sum to unity. This
method was found to produce the best quality, and also the
computational cost is very low. The described synthesis
method was used for all algorithms in the simulation experi-
ments that are presented in the next section.

1 1.7 GHz Pentium 4

Table I: Description of the test categories. For each category,
150 signals with randomly selected samples were generated.

description

1 Two equal-length pitched samples which overlap half of
their duration; the second one sets on at the half of the
duration of the first one.

2 Two equal-length pitched instrument samples which set
on simultaneously and overlap their whole duration.

3 Two percussive sounds. The first one is repeated alone
three times, then both sounds are repeated three times
simultaneously, and in the end the second sound is

repeated three times. The repetitions are random instants
of both classes, i.e. not identical samples. There is a 200

ms interval between the repetitions.

4 A pitched instument sample and a percussive sound
which is repeated six times. The repetitions are random
instants of a class, with a 200 ms interval between the
repetitions. The first repetition onsets simultaneously

with the pitched sample. The number of overlapping rep-

etitions depends on the length of the pitched sample.

5 Two pitched instrument samples and two percussive
sounds (the sum of signals from categories 1 and 3)

III. SIMULATION EXPERIMENTS

In general, the objective of sound source separation algo-
rithms is to extract sound sources which are perceptually close
to the original ones before mixing. Quantitative evaluation of
the perceptual separation quality is difficult. It can be measured
either by listening tests or by computational procedures which
compare the ideal source signals with separated signals. Basi-
cally in both cases, the source signals before mixing are
required. In practise this will limit us to synthesized test sig-
nals.

A. Sgnals

Since the performance of all one-channel data-driven sepa-
ration algorithms is currently very limited and no systematic
evaluation of the algorithms has been published, the evaluation
was performed using simple “elementary” mixing situations of
pitched and percussive sounds. Five different test categories
were used and 150 test cases were generated within each cate-
gory. The categories are described in Table 1.

The samples of pitched instruments were randomly drawn
from a database of 4379 samples of individual notes. The data-
base is a combination of samples from the McGill University
Master Samples Collection [33], the University of Iowa
website [34], IRCAM Studio Online [35]. The total number of
pitched instrument samples was 4378, each having the sam-
pling frequency 44100 Hz..

The percussive instrument database is recorded at the Tam-



pere University of Technology and it consists of 48 classes of
human-made percussive sounds such as clapping of hands and
tapping of foot. For each class there are 15 instances, which are
perceptually similar but the acoustic waveform may differ.

For each category, 150 mixtures were generated. In the cat-

ness of the mixing matrix and the temporal continuity of mix-
ing weights can be used. Unlike in the reference [19], the
squared difference between the weights of adjacent frames was
used as a cost function to obtain temporal continuity, since it
produced better results. The algorithm in which sparseness is
favoured is denoted by SC, and an algorithm in which temporal

egories 1, 2, 4, and 5, the pitched instument samples were ran-
domly drawn from the database. The samples within a mixture
were truncated so that the lengths become equal. However, in
all test cases the maximum length of the samples was limited to
two seconds. The fundamental frequencies or instruments
within each mixture were not allowed to be equal. In percus-
sive mixtures (categories 3, 4, and 5) a random class of sounds
was selected for each percussive source. For each source, six
instances were randomly drawn from the class, one for each
repetition.

To simulate the mixing conditions encountered in real-
world situations, the dynamic difference between sources is
varied. For each pair of samples, the difference was randomily
drawn from a uniform distribution between -10 and 10 dB, and
the samples were scaled to obtain the desired power ratios. The
samples were summed and the mixture signal is normalized to
range [-1, 1]. The original sources before mixing were stored to
allow the measurement of the separation quality.

B. Algorithms

In addition to the proposed method, some recently pub-
lished data-driven algorithms were used as a baseline in the
systematic evaluation. All the algorithms use the same preproc-
essing that was described in the beginning of Section II and
synthesis based on the original phases as described in
Section C. However, all the other algorithms except the pro-
posed one performed better when magnitude spectrogram was
used as an observation. Therefore, magnitude spectrograms
were used for all the other algorithms except the proposed one.
For all the algorithms the number of components was set to
equal the number of sources in the mixtures. The following
algorithms were tested:

continuity is favoured is denoted by SC+temp.
4) The proposed method, which is denoted as W-NMF.

C. Evaluation

The evaluation can be done by comparing the separated
components with the original sources which were stored. First,
each separated component has to be assigned to a source.
A separated component with the time-domain signal #(¢) is
clustered to source u,,(f) which minimizes the residual-to-sig-
nal ratio (RSR)

S L, (1) (0]
RSR(m) = 4L > m=1.M
S 1, (1)
t

where M is the number of sources. The use of the RSR proved
to be a robust way of assigning separated components to
sources. The algorithms may use more than one component to
represent a source. In this case the components assigned to the
source are summed. For algorithms which estimate the parame-
ters using the magnitude spectrogram, the summation can be
done for the synthesized time-domain signals. For the proposed
method the summation has to be done for the estimated power
spectrograms of the components, which are then resynthesized.

If no components are assignined to a source, the source is
said to be undetected. This is defined to be a detection error.
The detection error rate is defined to be the ratio of the total
number of undetected sources to the total number of sources. It
measures how well an algorithm is able to detect sources from
a signal.

The perceptual audio quality measure (PAQM, [36]) is used

(22)

1) Independent subspace analysis. The implementation of tife€valuate the perceptual quality of separated signals. The
algorithm follows the outline proposed by Casey and’AQM is a computational procedure which can be used to esti-
Westner [4], using which the algorithm was implemented. Twéhate the perceptual difference between two audio signals. In
different algorithms for the estimation of independent specti®e PAQM, both signals are processed using a specific auditory
were tested: FastICA [23], [24] and Jade [25], [26]. HoweveII,HOdel’ and the difference in the auditory domain is calculated.
differences between the algorithms were very small, so thihe difference is called noise disturbance, and it is usually

results are shown only for Jade, which performed slightly begxamined on the logarithmic scale. In our case the PAQM is
ter. calculated between the separated and the original signals. The
measure is calculated for sources for which at least one compo-

2) Non-negative matrix factorization was tested with the algoﬁent is assigned. The PAQM algorithm was implemented

rithms pr(:Eosed Ii_r:j[ll].d'!'rlese minirgize tge urlwdeigh?\ldeFivgrii\clcordmg to the reference [36].
gence or the euclidean distance, and are aenoted by . In addition to PAQM, the quality is also evaluated by calcu-

and NMF-.EUC' respectively. The algorithms  were Imple-l.':lting the RSR (22) between the separated and the original sig-
mented using the reference.

nal. In this case the residual is the error between the separated
3) Non-negative sparse coding. The algorithm is a combinatiafignal and original one, and RSR is the ratio between the ener-
of multiplicative update and projected steepest descent, andsiks of the error signal and original signal. For both measures,
follows the outline proposed in[19]. Since the algorithmhe averaging over test cases is done before taking the loga-

allows the usage of perceptually motivated weights as preithm. The measures are not calculated for undetected sources.
posed in [21], the parameters are estimated using the weighted

Euclidean distance. Also cost terms which favours the sparse-



D. Results

The obtained results are illustrated in Fig. 1. Each measure
in categories 1 to 5 is an average of 150 test cases. Column “all’
is the average of all the categories. The PAQM scale can be
roughly interpreted so that measures below -1.5 are of a rela-
tively high quality, and measures above -0.5 mean large distor-
tions. Because of the logarithmic scale, even small changes in
the PAQM mean large differences in the quality. RSR measures
the average amount of interference in the separated signals.
The differences between PAQM and RSR are large, which is
natural since the way the measures are calculated are totally
different. The PAQM measures better the quality at low-inten-
sity regions, since it uses an auditory model which compresses
the signals.

The differences between the categories are large.
Category 1 was found to be a fairly easy separation task, since
both samples occur also separately in the mixture. Category 2
seemed to be the most difficult one. The samples overlap their
whole duration and if the amplitude envelopes are similar, the
separation is very difficult, since the algorithms do not utilize
the harmonic structure of the sources.

According to the detection error rate, the proposed method

Detection error rate / percent

(W-NMF) produced good results in all categories except the
second one, in which all the algorithms had big difficulties.
The overall detection rate was best for the proposed method,
even though the differences between the algorithms are quite
small.

The PAQM indicates that the proposed method outperforms
all the other algorithms clearly in the perceptual quality.
Thanks to the perceptually motivated weights, W-NMF models
the low-intensity sections more accurately than the other algo-
rithms. According to the RSR, the differences between the
algorithms are small, and none of the algorithms performs
clearly better than the others. To obtain better accuracy at low-
intensity sections, the proposed method tends to allow errors
on high-intensity sections. Therefore, the performance is only
moderate according to the RSR.

The performance of the sparse coding algorithms is compa-
rable with that of the NMF. In general the use of the sparseness
term does not improve the quality, but the use of the temporal
continuity constraint improved the quality of pitched sounds,
so that the best performance among non-ISA algorithms in cat-
egory two was obtained with SC+temp.

Informal listening test showed that the perceptual quality of

PAQM / log of avarage noise distubandeesidual-to—signal ratio in dB
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Fig. 1. The average detection error rates (left plot), perceptual audio quality measures (middle plot), and residual-to-signal ratios
(right plot) in different test categories. The acronyms for different algorithms are explained in the text. For all measures, t
smaller the measure, the better the quality. For categories 1 to 5, the measure is an average of 150 mixtures, which contain eith
two or four sources. Category ‘all’ is an average of categories 1 to 5.



synthesized sources correlated well with the PAQM. For a
human listener all the cases can be considered to be relatively
easy separation tasks. The humans’ ability to utilize the har-
monic structure of sounds makes the separation of harmonic
sounds fairly easy task even in category 2 which was most dif-
ficult for tested algorithms. In informal listening test the cate-
gories 3 and 5 were found to be most difficult ones, since the
repetition rate was identical for both percussive sources.

E. Convolutive models or multiple components per source

The limitations of the signal model can be overcome either
by using multiple components per source or a more complex
signal model. When multiple components per source are used,
the components has to be clustered into sources. In general this
is a difficult task. Some clustering principles have been pro-
posed by e.g. Casey and Westner [4] and by Virtanen [19].

The presented simulation experiments were carried out also
with multilple components per source and with convolutive
models. The convolutive models and their estimation algo-
rithms are derived from NMF and non-negative sparse coding.
The algorithm proposed by Smaragdis [20] is denoted by
NMD and the algorithm proposed by Virtanen [21] is denoted
by CONV-SC. NMD was implemented using the reference,
with the exception of new update rules, which update all the
spectra simultaneously, which makes the algorithm more effi-
cient.

Since the optimal number of components is not known, ISA
was tested with 6, 16, and 40 components, referred as ISA(6),
ISA(16), and ISA(40). The Jade algorithm was computation-
ally too heavy with 40 components, so FastICA was used as
ISA(40). The proposed method (W-NMF) was tested with 6

Table II: Simulation results for algorithms with multiple

components per source and convolutive models. The measures

are the average of test categories 1 to 5.

algorithm Zﬁt;crﬁ;,zg PAQM RSR
ISA 10.1 -0.95 -6.7
ISA(6) 1.7 -1.07 75
ISA(16) 0.3 -1.13 7.7
ISA(40) 0.1] -1.18 7.8
W-NMF 8.0 -1.279 -6.7T
W-NMF(6) 1.8 -1.25 7.1
W-NMF(16) 0.6 -1.23 7.4
CONV-SC 11.3 -1.08 -65
NMD 11.3 -1.07 -6.4

holds only for the percussive sources. The algorithms may have
potential in source separation, but that is out of the scope of
this paper.

F. Discussion

The only category in which ISA performs systematically
better than algorithms based on the NMF is the second one, in
which the samples overlap their whole duration. This suggests
that the independence of spectra is a better separation criterion
if the objective is to separate sources which are overlapping

and 16 components, denoted by W-NMF(6) and W—NMF(lG)t,heir whole duration. If two sources are always present simulta-

respectively.

In our simulations the objective was to compare separation
algorithms, not clustering algorithms, so the clustering was
avoided by using the original sources as a reference. The com-
ponents were assigned to sources using the RSR (22) as
described earlier. This method was found to be a very robust
way of clustering components to sources also with multiple
components per source. Using this procedure a performance
measure for the multi-component algorithms in the ideal case
was obtained; in practise it will be very difficult to get perfect
clustering.

The results are presented in Table II. For both ISA and W-
NMEF, the detection error rate decreases when the number of
components increases. For ISA also the quality of separated
signals increases with multiple components. However, for W-
NMF the perceptual quality of separated signals does not
increase with multiple components. The highest perceptual
quality of separated samples among all the algorithms is
obtained with W-NMF when the number of components equals
the number of sources.

The performance of the convolutive models (NMF and
CONV-SC) is worse than the proposed method, but compara-
ble with the other algorithms. The algorithms are based on the
assumption of repetitive sources, and for the test signals this

neously, it might even be desirable to model them as one
source. The performance of all the algorithms was poor in the
category two. In human sound perception the harmonicity is a
very strong grouping principle. However, it will be very diffi-
cult to incorporate harmonicity restriction to any of the tested
algorithms, since they use the DFT spectrum to characterize a
source. Harmonicity will require the paramterization of the
fundamental frequency, and in practise a parametric source
model has to be used.

In the proposed method the number of components has to
be set by hand. Currently there is no method for the automatic
estimation of the number of components. In practise this can be
solved by using a large number of components, which are then
clustered to sound sources. If the number of components is
large, the estimation algorithm becomes computationally very
slow. This makes the estimation algorithm unpractical for long
signals. This can be solved by analysing the input signal in
short segments.

The proposed separation algorithm was also tested using
polyphonic music signals. Demonstration signals are available
at http://www.cs.tut.fi/~tuomasv/.

IV. CONCLUSIONS

A data-adaptive algorithm for the separation of sound



sources from one-channel signals is presented. The existing
algorithms based on the linear generative model are limited in
a sense that the accurate summation of sources in the power
spectral domain and a large dynamic range may not be
obtained simultaneously. In practise, high-intensity observa-
tions will dominate the separation, and a good perceptual
quality is difficult to obtain since also low-intensity observa-
tions are perceptually significant. The use of the weighted cost
function is a simple and efficient way for obtaining a large
dynamic range in this framework. Perceptually motivated
weights can be used to approximate the loudness perception of
the human auditory system. The parameters of the sources can
be efficiently estimated using the proposed weighted non-
negative matrix factorization algorithm.

Simulation experiments indicate that the proposed method
enables higher perceptual quality of separated components
than the existing algorithms, e.g. widely used independent
subspace analysis. In some cases it is possible to obtain a
relatively high separation quality. However, none of the tested
algorithms was able to separate robustly two-note mixtures of
pitched instrument samples, which overlap their whole
duration. This suggests that data-driven algorithms may not be
sufficient for the separation of music signals without a prior
knowledge, such as harmonicity.
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