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ABSTRACT

This paper proposes to use non-negative matrix factorization based
speech enhancement in robust automatic recognition of mixtures
of speech and music. We represent magnitude spectra of noisy
speech signals as the non-negative weighted linear combination
of speech and noise spectral basis vectors, that are obtained from
training corpora of speech and music. We use overcomplete dic-
tionaries consisting of random exemplars of the training data. The
method is tested on the Wall Street Journal large vocabulary speech
corpus which is artificially corrupted with polyphonic music from
the RWC music database. Various music styles and speech-to-
music ratios are evaluated. The proposed methods are shown
to produce a consistent, significant improvement on the recog-
nition performance in the comparison with the baseline method.
Audio demonstrations of the enhanced signals are available at
http://www.cs.tut.fi/˜tuomasv.
Index Terms: noise robustness, automatic speech recognition,
non-negative matrix factorization, speech enhancement

1. INTRODUCTION

The problem of recognizing speech in the presence of non-
stationary noises remains a difficult one without a satisfactory so-
lution to date. A large number of algorithms have been proposed
in the literature to address the more general problem of mitigating
the effect of noise on the speech signal. Many of these attempt to
reduce the noise from the speech signal itself [1, 2]. Other tech-
niques e.g. [3, 4] modify features derived from the signal to reduce
the effect of noise.

Many of the above mentioned methods are quite effective,
often achieving dramatic improvements in recognition accuracy
when speech is corrupted by stationary or slowly-varying noise.
Unfortunately, the same improvements are not achieved when the
noise is non-stationary. The reason for this is simple to intuit -
these algorithms require (statistical) estimates of the spectral char-
acteristics of the noise. Non-stationary noise changes quickly, of-
ten as quickly as the speech signal itself. Any local characteris-
tics that one may estimate for the noise, based on past samples of
speech, or even on a window of samples around the current sample,
are unlikely to be representative of the noise affecting the current
segment.

It can be reasoned, therefore, that techniques that can effec-
tively estimate the noise at the current instant based on the cur-
rent sample of the noisy speech are more likely to be effective
when the noise is fast varying. However, since we have only the
noisy speech to estimate the instantaneous noise from, we require

stronger a priori information about the signals involved, namely
the speech and the noise.

A number of techniques have been proposed based on this
principle. These techniques generally attempt to model the tem-
poral dynamics of either the speech [5], or the corrupting noise
[6] or both [7, 8] by HMMs or linear dynamical systems, in order
to aid localization of the current noise characteristics. However
a simple characterization such as a linear dynamical system (or
the more coarse Gaussian mixture model) is insufficiently detailed
for signals such as music or speech, which have nearly unlimited
range of variation. More detailed characterizations such as HMMs
or graphical models [8] are only useful for very restricted noises
as they are very detailed tend to overfit to the specific instances of
noise they are trained from.

In this paper we follow a different approach. In previous
work we (and other researchers) have demonstrated that non-
negative spectral factorization methods, including those based on
non-negative matrix factorization (NMF) [9] and latent-variable
analysis (LVA) [10], can be effectively used for signal separation.
These methods represent signals by a compositional model that
characterizes their spectra as a weighted linear combination of ad-
ditive units, or bases that combine to compose it. By appropri-
ately learning these bases, it becomes possible to attempt to sep-
arate out mixtures of sounds. The mixed sound is modelled as a
composition of the bases of all the contributing sources. Through
the application of appropriate constraints, we can the estimate the
contributions of the individual bases, and thereby reconstitute the
individual sources contributing to the mixture.

In this paper we show that the NMF-based approach, described
in Sections 2-3, is also capable of generating enhanced signals that
significantly improve recognition on speech corrupted by a highly
non-stationary signal, specifically music. Unlike the methods of
[9, 10], we will use an exemplar-based method [11, 12] to learn
overcomplete sets of bases for the signals. As in the previous tech-
niques, both for NMF-based separation and statistical techniques
such as [6, 7, 8], we require characterizations of both signals, i.e.
speech and the corrupting signal (music in our case). However,
we also demonstrate that the separation obtained using the exem-
plar based method generalizes to cases where the specific music
type is not known. Experiments described in Section 4 on speech
corrupted by music, a notoriously difficult non-stationary signal to
compensate for, show that while large improvements in recogni-
tion accuracy can be obtained if the characterizations for both the
speaker and the specific genre of music in the signal are known, the
method is equally effective even if only generic characterizations
that represent ensembles of music or speakers are available.



2. FEATURE REPRESENTATION

The basic feature representation we employ for NMF-based en-
hancement is the magnitude spectrogram. To obtain this, we
compute series of short-time Fourier transforms (STFT) from
hamming-windowed frames of the signal, and take the abso-
lutive values of the resulting spectral vectors. For automatic
speech recognition, Mel-frequency cepstral coefficients are com-
puted from the enhanced magnitude spectrum representation.

The optimal analysis window length for NMF-based signal en-
hancement and speech recognition are different — for the former
we have found an analysis window between 40ms and 64ms to be
optimal, whereas speech recognition works best with an analysis
window of about 25ms. As a result, we revert the NMF-enhanced
magnitude spectrogram back to a time-domain signal, as described
in Section 3.4. The reconstituted signal is used to compute features
for recognition.

A key aspect of the magnitude spectrographic representation
is that the magnitude spectrogram of the sum of two signals is ap-
proximately equal to the magnitude spectrogram of the individual
signals. Let y[n] be a noisy speech signal that is the sum of clean
speech signals s[n] and noise m[n], n being the discrete time in-
dex. Let us denote the magnitude spectrum vectors of the signals
in frame t as yt, st, and mt, respectively. The sequence the spec-
tral column vectors from the whole recording are grouped into
matrices Y, S, and M, respectively. Thus, we can approximate
Y ≈ S+M.

3. SEPARATING SPEECH FROM NOISE

The principle behind NMF-based separation of speech from noise
is this. Per the compositional model presented in Section 3.1, the
spectral vector for clean speech is composed from the bases of
speech, and the spectrum for the noise that corrupts the speech
is composed from the bases for noise. The noisy speech, being
an addition of speech and noise, is therefore a composition of the
combined bases from speech and noise. The contributions of the
individual bases to the noisy speech can be estimated as described
in 3.3, segregating the contributions of speech bases from the noise
bases, so that the speech in the mixture can be separated from the
noise and synthesized as described in Section 3.4.

3.1. The Compositional Model

The compositional model represents the magnitude spectrum st of
speech in frame t as a weighted linear non-negative combination
of basis vectors bs

i as

st =

S∑
i=1

bs
iw

s
i,t (1)

where bs
i is the ith speech basis vector and ws

i,t is the weight of
the basis in frame t, and S is the number of speech basis vectors.

If we represent the set of basis vectors using matrix Bs =[
bs
1, . . . ,b

s
S

]
, the model and the weights using matrix [Ws]i,t =

ws
i,t, we can write the model for the speech spectrogram as the

product of matrices Bs and Ws:

S = BsWs (2)

Similarly, the noise is modeled as the weighted sum of noise
basis vectors bm

i , i = 1, . . . ,M , where M is the number of noise

basis vector. When the noise basis vectors are grouped into matrix
Bm and the noise weights into matrix Wm, the model for the noise
spectrogram can be written as M = BmWm.

The model for the noisy speech spectrogram Y ≈ S+M can
be written as

S ≈ BW, (3)

where B = [BsBm] be a matrix that combines the bases for
speech and noise into a single matrix, and W = [Ws

⊤Wm
⊤]⊤

combines the weights into a single matrix. If there are S bases
for speech (i.e Bs is D × S, where D is the dimensionality of the
spectral vectors) and M bases for the noise (Bm is D ×M ), then
the total number of bases in B is S+M , i.e. B is a D× (S+M)
matrix. W is a (S +M)× T matrix.

All bases and weights in (3) are strictly non-negative. The in-
tuition behind this is that any sound is composed by constructive
composition of various components. For instance, a segment of
music may be composed by additive composition of the notes that
comprise it. Cancellation, which is a major component of any de-
composition in terms of additive bases, rarely, if ever, factors into
the composition of a sound, except by careful design. In fact, it has
been found out that the non-negativity restriction alone is sufficient
for even blind separation of sources [9].

3.2. The bases

The bases bs
i and bm

i which form the columns of B reside in the
same domain as the data vectors yt, i.e. they too are spectral vec-
tors and represent the spectral magnitudes of the composing sig-
nals. Equation 1 does not specify how the bases are obtained, and
this remains a matter of choice. It is possible to obtain a data-
driven estimate of an set of bases by analysis of example data.
Two methods are immediately available - latent variable decom-
positions [10] and non-negative matrix factorization (NMF) [9].
However in this paper we have found an exemplar-based charac-
terization [11, 12] to be most effective.

Exemplar-based characterizations use realizations of spectral
vectors from the source signals itself as the bases. These bases
may simply be drawn randomly from a collection of spectral vec-
tors for the source. Thus each spectral vector is explained as being
a linear combination of the exemplar vectors from the source. Al-
though this defies any clear semantic interpretation (such as notes
being the elementary units of music), such bases nevertheless have
useful theoretical properties, particularly in the context of signal
enhancement, as explained in [11].

We obtain the set of speech basis vectors Bs as the magnitude
of the DFT of randomly drawn frames from training examples of
speech. Similarly, the set of noise basis vectors Bm is obtained
from from training examples of the corrupting signal. The detailed
explanation of the data sets are described in Section 4.

3.3. Estimating Weights

Once a set of bases B is given, the weights with which they must
be combined to optimally compose the spectral vectors in Y can
be determined using either the EM algorithm from [10] or one of
various NMF-based update rules [13]. In this paper we employ the
NMF update rule that minimizes a generalized Kullback-Leibler
divergence between the spectral vectors in S and the composition
BW. This rule estimates the weights through iterations of:

W = W ⊗
B⊤.[ Y

B.W
]

B⊤.1
(4)



where 1 is a D-by-T matrix of ones. The operation ⊗ repre-
sents element-wise multiplication, and all divisions too are ele-
ment wise. We initialize all the weights W to unity and apply the
update 200 times. After that the weight matrices Ws and Wm

for speech and noise, respectively, are obtained by splitting W as
W = [W⊤

s W⊤
m]⊤.

3.4. Signal reconstruction

The minimum-mean-squared-error estimate of S, i.e. the contri-
bution of speech to Y can be extracted as:

S = Y ⊗ BsWs

BsWs +BmWm
(5)

The reconstituted speech spectrogram is then converted back
to a time-domain signal by combining it with the phase ob-
tained from the complex spectrogram of the noisy signal, ap-
plying an inverse STFT, and overlap-add combination of the
frames. The time-domain signal is then further used for speech
recognition. The above procedure can also be viewed as fil-
tering the noisy signal with a time-varying filter defined by
(BsWs)/(BsWs +BmWm), similarly to Wiener filtering.

4. EXPERIMENTAL EVALUATION

4.1. Acoustic material and recognizer

We performed speech recognition experiments on digital mixtures
of speech and music. The CMU-Sphinx HMM-based continuous-
density speech recognizer was used for all experiments. Since
NMF-based separation typically requires bases to characterize the
speaker, we used a somewhat unconventional setup. Acoustic
models with 1000 tied states, each modelled by a mixture of 8
Gaussians, were trained from the Resource Management database.
As features we use MFCCs and their deltas and double-deltas cal-
culated in 25 ms frames. Speakers from the training components
of the Wall Street Journal were used as our test set. A total of 3775
utterances distributed approximately uniformly across 83 speakers
were used as our test set. The remaining data from each speaker
were used to train bases for the speaker where necessary.

The test utterances were corrupted by digital addition of mu-
sic. For the music, we used the RWC database [14], which is a pro-
fessionally produced polyphonic music database containing many
different music styles. The included styles are “classical” from the
RWC Classical database, and “jazz”, “latin”, and “world” from
the RWC Genre database. Some of the recordings contain vo-
cals. As speech may be confused with sung vocals, we simplify
the recognition task by semi-automatically discarding music ma-
terial containing singing, using simple rules to discard shorter seg-
ments, derived from MIDI references, and by listening to the rest.
The first minute of each recording was segmented out and added
to a collection to be used as “training data”. Random segments
from the remaining material were used for corrupting the speech.
The above procedure resulted in total 339, 149, and 281 seconds of
training material for the jazz, latin, and world main categories, re-
spectively, and 1015, 368, and 674 seconds of testing material. For
the classical music we had nearly 3 hours of test data and over 20
minutes of training data. All the material was downsampled from
44.1 to 16 kHz sampling frequency, and downmixed to mono. The
test data were used to corrupt the speech and the training data were
used to learn bases for the music types.
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Fig. 1. Recognition performance on speech corrupted by a. clas-
sical, b. jazz, c. latin, d. world music. In each figure, the lower
dotted curve is the performance on uncompensated speech and the
upper curve is the performance on enhanced speech.

4.2. Speaker and music style dependent bases

We ran a number of different experiments. In the first set of experi-
ments, we corrupted the test speech with each of four music types:
classical, jazz, latin, and world to a number of different SNRs,
namely -5dB, 0dB, 10dB, 15dB and 20dB. NMF-based separation
is usually assumed to require detailed knowledge of the corrupt-
ing noise and the speaker. This is often not such an unrealistic
assumption – the identity of the speaker will often be known, and
the bases for music can be learned from music-only segments that
have been detected by a voice-activity detector. For this test we
used the training sets of recordings from each speaker to learn
speaker-dependent bases for each speaker. For each of the mu-
sic types we also learned music-specific bases. 3000 bases were
obtained for each music type and speaker. In all experiments, the
signals were analyzed using 60ms windows with a 15ms frame
shift between windows to compute spectrograms.

Figure 1 shows the performance on speech corrupted by each
of the four categories of music. We observe, firstly, that signifi-
cant improvements in recognition accuracy are obtained on speech
corrupted by all music types. The most improvement, however, is
obtained on speech corrupted by classical music.

4.3. Multi-speaker and multi-style music bases

This first experiment makes some pretty stringent assumptions. It
assumes that the type of music affecting the signal and the identity
of the speaker are both known. In the next two experiments we
relaxed both assumptions. Speech was corrupted with randomly
selected segments of music from any of the music types from the
RWC Genre database. In the first experiment the identity of the
corrupting music was assumed to be unknown. A total of 3000
bases were drawn randomly from l all music types and used for
separation. Although this is not an open set of music types, it is
still a fairly large closed set since the music segments are diverse
in their variety. In the second experiment it was assumed that the
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Fig. 2. Recognition of speech corrupted by assorted music. The
lowest curve shows performance on uncompensated speech. The
central black dash-dotted line is obtained with mixed music bases
and speaker-specific speech bases. The top red line is the perfor-
mance with mixed music bases and multi-speaker speech bases.
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Fig. 3. Recognition performance on speech corrupted by classi-
cal music. Results shown are i) basline on uncompensated speech
ii) on speech compensated by VTS [3], iii) with baseline models
adapted to the corrupted data using MLLR, iv) on NMF-enhanced
speech, v) with a “matched” recognizer, and vi) after adaptation
of the models using hypotheses obtained from NMF-enhanced
speech, on NMF-enhanced speech.

identity of the speaker too was unknown. A common set of 6000
bases drawn from all speakers was used for separation. Again,
although this is not an open set of speakers, the number of speakers
(83) is very large. Figure 2 shows the performance obtained in both
experiments. The algorithm not only holds up when the identity of
the music and speaker are unknown, but the performance obtained
when the speaker identity was not known is actually slightly higher
than that obtained when the identity is known.

4.4. Recognizer adaptation

Speech recognition systems frequently employ adaptation tech-
niques to improve recognition. It is often unclear if compensa-
tion methods combine well with adaptation, and if they do what
the upper bound on performance might be. Figure 3 shows the
performance obtained with maximum likelihood linear regression
(MLLR) adaptation. For this experiment we chose the speech data
corrupted by music and speaker-specific speech bases were em-
ployed. Adaptation was performed by speaker.

Not only does adaptation improve performance greatly, the fi-
nal performance is better than that obtained with a matched rec-
ognizer that was trained on speech corrupted by exactly the same
music and music level as the test speech. This is the best perfor-
mance we have obtained to date on speech corrupted by music.

5. CONCLUSIONS

We have shown that NMF-based compensation of speech cor-
rupted by music can result in large improvements in recognition
accuracy. We have also shown that although the compensation re-
quires bases drawn from the music and speech, it functions very
well even when the identity of the music or speaker are unknown.
Interestingly, we observe that large improvements are obtained in
recognition accuracy even when when perceptual improvements in
the background music level in the signal are not as high.

Various direct enhancements to NMF, including the enforce-
ment of temporal continuity constraints, can improve performance
greatly. In addition, NMF provides an instantaneous characteriza-
tion of the distribution of music, through the weights assigned to
the bases. This can in fact be used directly to adapt the models
in the recognizer for improved recognition. This and other tech-
niques remain topics for future work.
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