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ABSTRACT

This paper proposes a novel algorithm for minimizing the perceptual

distortion in non-negative matrix factorization (NMF) based audio

representation. We formulate the noise-to-mask ratio audio quality

criterion in a form where it can be used in NMF and propose an al-

gorithm for optimizing the criterion. We also propose a method for

compensating the spreading of the representation error in the syn-

thesis filterbank. The objective perceptual quality produced by the

proposed method is found to outperform all the reference methods.

We also study the trade-off between the window length and the rank

of factorization with a fixed data rate, and find that the best perfor-

mance is obtained with window lengths between 10 and 30 ms.

Index Terms— Non-negative matrix factorization, Noise-to-

mask ratio, Audio coding, Signal representations

1. INTRODUCTION

In audio signal processing, an acoustic time-domain signal is often

represented using a mid-level representation [1], which allows more

efficient analysis or manipulation of the signal. Commonly used

mid-level representations include, for example, the time-frequency

representations such as the short-time Fourier transform (STFT), and

parametric representations such as the sinusoidal model. More ad-

vanced models can take into account the structure of the sounds in

more detail, for example by using a harmonic model [2]. The lat-

ter two can be also viewed as lossy compression, since they reduce

the amount of information needed to approximate the original sig-

nal. The parameters of a representation can be estimated by using a

statistical criterion such as the mean-square error, but also the prop-

erties of the human audio perception can be taken into account.

All present-day perceptual audio coders are essentially based on

a sub-band bit allocation upon a psychoacoustical masking model.

They quantize a time-frequency representation of audio signal in

such way that the quantization noise stays below the masking thresh-

old and thus remains inaudible [3]. An objective measure of the

perceptual quality of a compressed signal is the noise-to-mask ra-

tio (NMR) [4], which measures the relative level of the quantiza-

tion noise in comparison with the masking threshold. An alterna-

tive approach to audio compression is object-based audio coding,

where individual sound sources or objects (e.g. musical instruments,

speakers, notes) in an audio recording are represented separately [5].

Object-based coding allows using the most efficient codec for each

object, but as well interactive synthesis of the signal.

Recently, non-negative matrix factorization (NMF) has been ap-

plied in many audio signal processing tasks, such as sound source

separation [6]. Its main advantage is the ability to automatically de-

compose a mixture signal into a representation where each sound

source is represented as an individual object [6]. The NMF decom-

position also effectively finds repetitive structures in the signal, thus

being able to reduce redundancy and being attractive from signal

compression point of view.

This paper proposes a novel algorithm for NMF which min-

imizes the noise-to-mask ratio of the signal decomposition. The

NMR objective is formulated as a cost function for NMF and it is

minimized using a weighted NMF algorithm. We also propose to

filter the estimated masking patterns in time, which effectively re-

duces the pre-echo caused by the spreading of errors in the synthesis

filterbank. Potential applications of the proposed method include

object-based audio coding and analysis of audio signals.

The block diagram of the proposed system is shown in Figure 1.

First, the magnitude spectrogram of an input signal is calculated for

the NMF algorithm. Masking thresholds are estimated from an input

signal, which are then used for NMF weighting. Approximation of

original spectrogram is obtained from the weighted NMF algorithm

and the signal is reconstructed by assigning the original phases to

it and taking the inverse FFT. Frames are finally combined in the

synthesis filterbank by overlap-add.

The structure of the paper is as follows: Section 2 gives short

review of the noise-to-mask ratio which is the objective of the pro-

posed method. In Section 3 we derive a weighted cost function for

NMF corresponding to the NMR. Section 4 presents a synthesis pro-

cedure and proposes a technique to reduce the pre-echo effect. The

proposed method is compared to conventional NMF algorithms in

Section 5. Section 5 also presents results from an experiment on

finding the best combination of coding parameters in case of con-

stant data rate.

2. NOISE-TO-MASK RATIO

Human hearing includes a masking phenomenon, which causes low-

intensity frequency components to become masked by more intense

ones, that occur spatially and temporally close to each other. It

means that a loud frequency component can make a fainter com-

ponent become completely inaudible to our hearing [7, p. 56]. The

masking concept can be utilized in audio coding, where it is used to

decide, which parts of the audio can be disregarded without percep-

tual difference.

A quality metric to measure the audibility of distortions is the

noise-to-mask ratio, which was introduced by Brandenburg [4]. The

metric consists of the following processing steps: 1) The error be-

tween a distorted signal and a reference signal is calculated. 2) The

masking threshold is estimated from the reference. 3) The noise-to-

mask ratio in each time frame is calculated in Bark scale. 4) The

final measure is average over all the time-frequency points. Distor-

tions having a NMR value of -10 dB or below can be assumed to be
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Fig. 1. Block diagram of proposed method

inaudible.

NMR has been included into recommendation BS.1387 [8] for

perceptual evaluation of audio quality (PEAQ). The recommenda-

tion includes specifications for the auditory model to be used for es-

timating the masking threshold required for NMR evaluation. PEAQ

auditory model (with clarifications from [9]) is used here for mask-

ing threshold estimation. The model includes parameter Lp for scal-

ing the mask estimation to correspond to desired listening sound

pressure level (SPL). This is due to the fact that spatial and tem-

poral spreading functions are dependent on the energy of the masker

component.

The NMR in PEAQ can be described using the equation

NMRB =10 log10

“ 1

T

T
X

t=1

1

B

B
X

b=1

[M]b,t[CH(X−X̂).2]b,t

”

, (1)

and it consists of the operations below: 1) Squared difference be-

tween the magnitude spectrograms of the original signal X and the

estimated signal X̂ is calculated. X.2 denotes element-wise power

of two. The spectrograms are calculated using a 42.7 ms Han-

ning window and discrete Fourier transform (DFT). 2) The error is

weighted by middle- and outer ear transfer function, which is imple-

mented by multiplying the squared error spectrogram by a diagonal

matrixH having the values of the transfer function on the diagonal.

3) The error is decimated to a bark scale representation, which is

implemented by multiplication by matrix C ∈ R
≥0,B×K , where

each row contains the power response of a bark band for all the DFT

indices. 4) The error in bark scale is weighted byM ∈ R
≥0,B×T ,

which is the element-wise inverse of the masking threshold in each

frame t and bark band b. Both the error and masking patterns are
having a quarter bark band frequency resolution, which results to

109 bands with 48 kHz sampling frequency. 5) The results are av-

eraged over frequency and time and converted to the dB scale. T is
the total number of frames, and the total number of bark bands is B.

3. PROPOSED PERCEPTUALLYWEIGHTED NMF

NMF approximates the observation matrix X ∈ R
≥0,K×T as a

product of basis matrix B ∈ R
≥0,K×R and gain matrix G ∈

R
≥0,R×T as X ≈ BG. Matrix X consists of magnitudes of

frame-wise DFTs of the observed audio signal, calculated in frames

t = 1, . . . , T . Only positive frequencies k = 1, . . . , K of the DFT
are used. The rank of the decomposition is denoted by R, which is a
free parameter chosen by the user.

Matrices B andG are estimated by minimizing the error of the

approximation. Measures for the error include, for example, the

squared Euclidean distance (EUC), generalized Kullback-Leibler di-

vergence (KLD), and the Itakura-Saito divergence (ISD) [10].

3.1. NMR as cost function for NMF

The masking thresholds inM for certain observations X are calcu-

lated before the NMF algorithm. The mask estimation and NMR

evaluation in PEAQ is defined in bark scale, but due to its lower

resolution, we wish to perform the NMF decomposition in a linear

frequency scale provided by the DFT. In the following we formulate

the NMR objective into a weighted squared error, calculated in a lin-

ear frequency scale. Let use denote the squared error in Equation (1)

as E = (X− X̂).2. The measure (1) is a monotonic function (log10

and scalar multipliers) of term
PT

t=1

PB

b=1
[M]b,t[CHE]b,t. Thus,

minimizing the NMR is equivalent to minimizing the above term. In

each frame t, the term can be formulated as

B
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K
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[W]k,t[E]k,t , where W = (CH)TM

The above formulation can be placed back to Equation (1) and

the result is an NMR metric defined for linear frequency scale error

NMRL = 10 log10

“ 1

T
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”

. (2)

When applying the above equation as NMF cost function, we model

X̂ using BG. The resulting NMF criterion is the weighted squared

Euclidean distance:

DWEUC(X,BG,W) =
X

kt

[W]k,t([X]k,t − [BG]k,t)
2, (3)

The NMR quality criterion has been also implemented as cost

function for NMF by O’Grady in [11]. His method calculated the

error between the observed magnitude spectrogram and the model in

bark bands, which does not allow modeling the fine spectral struc-

ture, that the linear frequency scale models.

3.2. Algorithm for minimizing the NMR

The weighted squared Euclidean distance and thus the proposed cost

function can be minimized by the update rules proposed in [12] and

applied in [11]. First, the entries of matricesB andG are initialized

with random values normally distributed between zero and one. The

matrices are updated iteratively using the update rules

B← B.×
(W.×X)GT

(W.× (BG))GT

G← G.×
B

T(W.×X)

BT(W.× (BG))
,

(4)

where operators .× and X

Y
denote element-wise multiplication and

division, respectively. The update rules are repeated until the algo-

rithm converges.



4. SIGNAL RECONSTRUCTION ANDWEIGHT

SMOOTHING

The above section described the model parameter estimation stage

of the algorithm. In signal analysis the estimated parameters can be

used as such, but for example in audio coding applications a signal

needs to be reconstructed from the parameters.The synthesis proce-

dure requires generating the phases for the reconstructed magnitude

spectrogramBG, applying inverse DFT in each frame, and combin-

ing the frames by overlap-add.

An example of an algorithm that can be used to generate the

phases has been proposed in [13]. Our main focus in this study is

in the magnitude spectrogram modeling and in order to prevent the

artefacts caused by the phase reconstruction from affecting the eval-

uation, we use the phase spectrogram estimated from the original

signal, as illustrated in Figure 1.

The NMF cost function derived in the previous section does not

take into account the synthesis procedure, i.e., it assumes that the

magnitude spectrogram of the synthesized signal equals X̂ in (1). In

practice, the overlap-add synthesis procedure affects the quality in

the sense that an error produced in a frame is spread to the neigh-

boring frames where it may become audible. Specifically, the phe-

nomenon becomes prominent if a quiet frame is followed by an in-

tense one where fair amount of error is produced. In audio coding

the phenomenon is called pre-echo.

We approximate the effect of the synthesis procedure by assum-

ing that the modeling error [E]k,t of the magnitude spectrograms in

frame t is divided into frames t−1, t, and t+1 by weights h−1, h0,

and h1, respectively. We use values α, 1−2α, and α for the weights,
where the amount of spreading defined by the parameter α is depen-
dent on the shape of the window function. We also assume that the

errors produced in adjacent frames are independent from each other,

so that the errors (represented by energies) are additive. In practice

the spreading depends on the lengths and relative positions of the

windows of the synthesis filter bank and the analysis filter bank in

NMR, but for simplicity we restrict ourselves to the above approxi-

mation. The spread error is given as

1

T

T
X

t=1

1

B

1
X

τ=−1

K
X

k=1

[W]k,t[E]k,t−τhτ ,

which can be formulated as

1

T

T
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t=1

1

B

K
X

k=1

[W′]k,t[E]k,t,

where [W′]k,t =
P

1

τ=−1
[W′]k,t+τhτ . Thus the effect of the syn-

thesis filterbank can be taken into account by filtering the weights

W in time. The simulation results show that the overall quality is

slightly improved by the spreading.

5. SIMULATION AND RESULTS

The proposed NMF algorithm was tested by applying it to various

styles of audio signals and measuring the NMR of the synthesized

signals. The test set consisted of 10-second monaural excerpts from

following categories (number of entries in brackets): classical music

(16), drum patterns (20), western pop music (24), solo instruments

(20), solo singing (10) and speech (10), equaling to total of 100

samples. The speech samples have a 16 kHz sampling frequency,

whereas the rest of them have a 44.1 kHz sampling frequency.
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Fig. 2. NMR of the tested NMF algorithms as the function of the

rank of factorization

Each test sample was processed using the method illustrated in

Figure 1. We used Kaiser-Bessel derived window function [3, p 171]

in analysis and synthesis, since it was found to produce the best per-

formance among various tested window functions. We used 50%

overlap between adjacent windows. The synthesized signals were

evaluated with NMR criterion described in PEAQ and the average

NMR over the whole test set was calculated. The scaling parameter

Lp was set to 40 dB.

The tested NMF algorithms were EUC, KLD, ISD and proposed

NMRL. The weighting method from [11] is denoted as NMRO. The

masking estimation for NMF was done using a 42.7ms window, but

the hop size was set equal to the NMF hop size. The number of

iterations was chosen by calculating NMR after each iteration to de-

termine the rate of convergence for a subset of the test signals. The

experiments showed that EUC and NMRL needed more iterations to

converge. The number of iterations was set to 200 for KLD and ISD

and 400 for EUC and NMRL.

The results of different ranks of factorization with a 20 ms

window are shown in Figure 2. Results indicate that the proposed

method enables on average 1.9 dB better NMR than the best refer-

ence method. The test was also repeated for 40ms window and the

results were very similar, the advantage of the proposed method be-

ing again approximately 1.6 dB. Few demonstrative test signals are

available at http://www.cs.tut.fi/sgn/arg/nikunen/demo/icassp2010/.

Increasing the hop size will reduce the amount frames per sec-

ond. From audio coding point of view this decreases the amount

of gains to be represented. The number of frequency indices for

each source inB is half of the window length, since the DFT length

equals the window length and only positive frequencies are retained.

We restrict the hop size to be 50% of the window size, and there-

fore longer windows will result to longer DFTs, which need to be

encoded as well. We consider each parameter to be represented as

a particle, and study the effect of the frame length and the rank of

factorization when constraining a fixed amount of particles per sec-

ond. The total amount of particles per second in a decomposition

is P = (Z + K/S)R, where Z denotes the number of frames per
second,K is the number of positive DFT coefficients, S is the signal
length in seconds and R is the rank of factorization.
We fixed the amount particles per second to 3000, and deter-

mined the parameters by selecting a certain rank of factorization and

searching for the shortest possible window that did not exceed the

particle rate. The results with different ranks of factorization are
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Fig. 3. NMR as the function of the window length and the rank of

factorization when 3000 particles per second are used

shown in Figure 3. For this test we used 30-second excerpts where

the total number of samples was 50. The window lengths depend on

the sampling frequency. In the figure they are denoted for the sig-

nals with sampling frequency of 44100 Hz. Considering the average

quality, the range of equally good parameter combinations seems

to be wide for all the NMF algorithms. The quality decreases only

when a too short or a too long window is used. By examining the re-

sults of individual samples it seems that a good combination depends

greatly on the signal to be composed.

Figure 4 illustrates the average NMR as the function of the

spreading parameter α. The average is calculated separately for
drum signals, which contain lot of transients, and thus the pre-echo

phenomenon is assumed to be the largest. It can be seen that with a

suitable value of α, the filtering improves the average quality NMR
of drums by 0.4 dB. For other signals the filtering does not improve

the quality.

6. CONCLUSION

We have proposed a method for minimizing the noise-to-mask ra-

tio using non-negative matrix factorization. We have formulated the

noise-to-mask ratio calculated on bark-band signal representation as

a cost function for linear-frequency NMF. Simulation experiments

show that the proposed method allows better quantitative percep-

tual quality than the reference methods. The proposed method for

spreading the masking patterns in time enables a better quality for

signals with plenty of transient sounds. The overall results show im-

provement of audio quality in benefit for proposed method and it

could be plausible for future object-based audio coding applications.
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