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ABSTRACT

Sound source separation at low-latency requires that each in-
coming frame of audio data be processed at very low de-
lay, and outputted as soon as possible. For practical pur-
poses involving human listeners, a 20 ms algorithmic delay
is the uppermost limit which is comfortable to the listener.
In this paper, we propose a low-latency (algorithmic delay
 20 ms) deep neural network (DNN) based source sepa-
ration method. The proposed method takes advantage of an
extended past context, outputting soft time-frequency mask-
ing filters which are then applied to incoming audio frames
to give better separation performance as compared to NMF
baseline. Acoustic mixtures from five pairs of speakers from
CMU Arctic database [1] were used for the experiments. At
least 1 dB average improvement in source to distortion ratios
(SDR) was observed in our DNN-based system over a low-
latency NMF baseline for different processing and analysis
frame lengths. The effect of incorporating previous temporal
context into DNN inputs yielded significant improvements in
SDR for short processing frame lengths.

Index Terms— Source separation, Deep neural networks,
Low-latency

1. INTRODUCTION

Sound source separation aims to recover the individual sounds
within a mixture composed of sounds originating from sev-
eral sources. Some of the most common uses for such a tech-
nology are in speech recognition [2], music transcription [3],
speech de-noising, [4] and hearing aid applications [5]. Al-
though all of these applications can employ source separation
in online processing, hearing aid use is perhaps unique in the
strictness of the constraint for very low processing latency,
since significant listener discomfort can arise as audio delays
exceed 20 ms, and it has even been shown that delays as low
as 3 ms are detectable [6]. With this application considered,
there is a strong motivation for developing source separation
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approaches which are able to improve the quality of sound for
very low frame lengths.

There are two popular approaches to source separation:
compositional model based approaches [7], such as non-
negative matrix factorisation (NMF) or the somewhat equiv-
alent probabilistic latent component analysis (PCLA) and
deep neural network (DNN) based methods. The composi-
tional methods decompose complex acoustic mixtures into a
linear mixture of simpler sub-units or components, based on
inherent structure. Deep neural networks, on the other hand,
are essentially non-linear models capable of learning com-
plex non linear input-output mappings, with the relationship
between the two being embedded in the weights stored within
the hidden layers. DNN-based techniques are becoming
widespread in their application to source separation problems
and have been found to perform better than compositional
model based approaches, e.g., in [8], [9].

For low-latency source separation, a supervised, dictionary-
based approach was proposed in [10], where short mask
frames were generated based on the factorisation of longer
past context data to predict weights for a separation filter in
the difficult scenario of single-channel speech separation. A
similar approach can be used for the formation of training
and input vectors in a DNN-based separation, which provides
greater opportunities for non-linearities present in data to be
modelled.

This work specifically addresses the use of DNN-based
separation in scenarios where low processing latency is im-
portant, e.g., in hearing-aid applications. Here we use a DNN
that takes spectral feature vector inputs derived from the
the acoustic mixture signals as inputs and predicts time-
frequency mask filters corresponding to the constituent
sources. We propose that including an extended previous
temporal context in DNN input, which leads to improvement
in separation performance for very short processing frame
lengths and latencies. We also study the effect of the du-
ration of this incorporated temporal context on separation
performance and compare the results with a NMF baseline.

The paper is organized as follows: Section 2 describes the
proposed method. It is followed by Section 3 which describes



Fig. 1. A schematic illustration of the proposed source sep-
aration approach. Feature vectors are formed from greater
temporal context than only the current frame for predicting
mask filters

the acoustic material used, metrics used for evaluation, and
experimental settings and results. Section 4 concludes the pa-
per with a discussion and some insights about the work.

2. PROPOSED NEURAL NETWORK BASED

SOURCE SEPARATION

In a general spectrally-based source separation approach with
DNNs, spectral features derived from an acoustic mixture of
data are used as input vectors to the DNN. Source-separation
time-frequency masks are then predicted at the output. These
mask filters are applied to the mixture spectrum to obtain in-
dividual source spectra for reconstruction of separated source
estimates. In our approach, we divide an incoming time-
domain signal into blocks for processing. To ensure low la-
tency, processing is performed on short blocks referred here
as the processing frame. The latency is determined by the
length of this frame, since all samples must be buffered before
a discrete Fourier transform (DFT) can be applied to obtain
the spectral representation. We propose that a larger previ-
ous temporal context can be utilized to generate network in-
puts corresponding to the current processing frame. This ex-
tended temporal context is referred here as the analysis frame.
Hence, spectral features derived from analysis frame are then
fed to DNN input predict the source separation masks for the
processing frame. This process is shown in Figure 1.

2.1. Input features

Spectral features corresponding to the current analysis frame
are generated via a short-time Fourier transform (STFT). We
use a window length equal to the processing frame length and
50 % overlap in this work. As the analysis frame is longer
than processing frame, this produces a set of feature vectors
which are then concatenated to give a longer analysis fea-
ture vector for each processing frame. We will now elabo-

rate upon the process of generating targets for neural network
training, i.e., the time-frequency masks corresponding to the
constituent sources.

2.2. Mask outputs

The proposed supervised speech separation approach aims
to estimate a suitable time-frequency mask, which when ap-
plied, can improve separation and intelligibility of speech sig-
nals in the mixture, similarly to in [11]. The mask used in our
approach is a soft time-frequency mask and is defined as,

M(t, f) =
|S1(t, f)|

|S1(t, f)|+ |S2(t, f)|
(1)

where t is a an index for a particular processing frame and f
is the bin index from the discrete Fourier transform (DFT). S1

and S2 are STFT feature vectors of corresponding constituent
speech signals. Mask values are bounded between [0, 1] en-
suring numerical stability and forming a suitable choice as an
output target for training of neural networks through back-
propagation.

For each processing frame, target outputs for training
DNNs are obtained in accordance with Equation 1. While
training, the DNN network weights are tuned by presenting
it with features corresponding to analysis frames and targets
corresponding to processing frames. The aim is to capture the
relevant features from the training data to produce the correct
mask output estimates on unseen examples.

A single frame of mask output, and hence the minimal
latency of the processing in a spectral constant-frame-based
processing strategy is limited by the length of the DFT used.
In order to keep the algorithmic latency of the system low,
the processing frames and applied masks need to be kept ac-
cordingly short, since the DFT can not be computed before
all samples required have been buffered.

2.3. Source reconstruction

The complex STFT spectra of separated sources, Sest1 and
Sest2 from mixture Y (t, f) are obtained using the estimated
mask, M(t, f) in the following manner,

Sest1 = M(t, f) ⇤ Y (t, f) and
Sest2 = (1�M(t, f)) ⇤ Y (t, f)

(2)

where ⇤ denotes element-wise multiplication. Time-domain
source estimates from these complex spectra are recon-
structed on-line by applying inverse discrete Fourier trans-
form (IDFT) and overlap-add processing. Note that phase of
the mixture spectra is being used for source reconstruction.

Equation 2 involves multiplication in frequency domain,
and hence it should be ensured that the applied masks incor-
porate zero padding to avoid circular convolution. Hence,
prior to applying STFT during feature extraction, time do-
main signals are zero-padded.



Table 1. Comparison of NMF and DNN separation metrics for 5 and 10 ms processing frame lengths.

Analysis frame length Metric NMF 5 ms DNN 5 ms NMF 10 ms DNN 10 ms

5 ms
SIR 5.4 6.9 - -
SAR 7.7 9.5 - -
SDR 2.7 4.5 - -

10 ms
SIR 6.7 8.3 6.6 7.9
SAR 8.0 9.4 8.1 9.6
SDR 3.5 5.3 3.5 5.1

20 ms
SIR 7.2 8.4 7.5 8.3
SAR 8.0 9.5 8.2 9.4
SDR 3.9 5.5 4.2 5.3

40 ms
SIR - - 7.6 8.4
SAR - - 8.4 9.4
SDR - - 4.3 5.4

3. EVALUATION

This section describes the metrics used in evaluation, dataset
used, experimental settings and finally the results obtained.
For the baseline, we used NMF with 10000 basis atoms with
generalized KL-divergence metric. Larger dictionaries have
been shown to give better separation performance owing to
their ability to better model the sources present in the mix-
ture, e.g. in [12], [10]. The chosen NMF configuration is the
best performing NMF as reported in [10], and thus serves as
a good baseline for the proposed DNN-based system, as is at
the limit of achievable performance with a basic dictionary-
based NMF implementation.

3.1. Acoustic material

The CMU Arctic dataset [1] was used to generate acoustic
mixtures for evaluating the DNN-based speech separation
approach. Five pairs of speakers consisting of three male and
two female speakers were chosen. The speakers were: US-

awb, US-clb, US-jmk, US-ksp, and US-slt. In total, there were
two male-male, two male-female, and one female-female
mixture sets. For generating training data for each speaker,
32 utterances were chosen at random from the database’s ut-
terance set A. A training set of 1024 mixtures was generated
for each speaker pair by summing all possible permutations.
Test data was formed of utterances from CMU Arctic set B
to ensure that training/validation and test sets were disjoint.
It consisted of 10 utterances for each speaker and all possible
permutations, i.e., 100 test mixtures were generated for each
pair. In instances where one of the utterances being added
was shorter than the other, the shorter utterance was zero
padded. All utterances had a sampling rate of 16 kHz. The
same set of acoustic mixtures which were used for training
DNNs were also used for generating dictionaries for NMF

baseline.

3.2. Metrics

The separation performance of the proposed approach was
evaluated using BSS-EVAL toolkit [13]. It consists of three
measures: Source to Interference Ratio (SIR), Source to Arti-
facts Ratio (SAR), and Source to Distortion ratio (SDR). SIR
and SAR denote the interference and artifacts suppression in
the separated speech signals, whilst SDR is a measure of the
overall separation performance. While evaluating, the origi-
nal time domain signals along with the corresponding sepa-
rated signals were used to compute these metrics.

3.3. DNN architecture and training

For training DNNs, Keras neural networks library [14] was
used. Separate DNNs were trained for all five speaker pairs.
To select a reasonably performing model, different values of
model hyperparameters, i.e., number of hidden layers and
number of neurons were experimented with. The DNN archi-
tecture consisting of three hidden layers, each having 250 hid-
den neurons was finally used on the basis of its performance
on validation data. A sigmoid activation function was used
for neurons both in hidden as well as output layers. Mean
squared error (MSE) was used as the cost function along with
Adam optimization method [15]. The network was trained
with learning rate of ⌘ = 0.001 along with decay rates �1 =
0.9 and �2 = 0.999, which are the default parameters for
Adam optimizer provided in [15]. In order to reduce overfit-
ting, dropout regularization [16] and batch normalization [17]
were experimented with. Batch normalization, in addition to
ensuring faster convergence, also yielded better performance
on the validation set and was chosen over dropout as the reg-
ularization method. Note that batch normalization was used
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Fig. 2. DNN separation SDRs obtained with the proposed method for different analysis frame lengths.

between each hidden layer after application of sigmoid acti-
vations. Additionally, early stopping method [18] was used
while DNN training, stopping the training process when no
improvement in validation loss was observed continuously for
20 epochs.

3.4. Test conditions

For each speaker pair, evaluation metrics described in Sec-
tion 3.2 were calculated for the NMF baseline and DNNs.
Processing frame lengths of 5, 10, and 20 ms were investi-
gated. Longer processing frame lengths are not suitable when
it comes to low-latency applications, e.g., in hearing aid sys-
tems. Additionally, for each processing frame length, the ef-
fect of incorporating past contexts was studied. Specifically,
the effect of utilizing analysis frame lengths of 5, 10, 20, 40,
80, and 160 ms were investigated.

3.5. Results

The separation performance metrics were computed for the
five speaker pairs, and averaged across speakers to yield the
final metrics. Figure 2 shows the separation performance
of DNN for different analysis frame lengths. It was ob-
served that incorporating previous temporal context improves
the separation performance for 5 ms and 10 ms processing
frames. The improvement in performance was most sig-
nificant for the shortest processing frame, i.e., 5 ms. As
longer temporal context is incorporated, these improvements
become less significant with the maximum improvement ob-
served for analysis frames 2-4 times the processing frame
length. No improvement in separation performance was ob-
served for extended temporal context with 20 ms processing
frame length. The separation performance of DNN-based
method was found to be better than the NMF baseline for
all values of analysis and processing frame lengths. Table 1

compares DNN and NMF performance for 5 and 10 ms pro-
cessing frames for 5, 10 and 20, and 40 ms analysis frames.
It can be seen that the DNN-based method consistently out-
performs its NMF counterpart by at least 1.5 dB for 5 ms
processing frame, and by at least 1 dB for 10 ms processing
frame , in terms of SDR.

4. CONCLUSION AND DISCUSSION

In this paper, a DNN-based method for single channel source
separation has been proposed for low-latency applications.
We show that it gives a better separation performance than
state-of-the-art low-latency NMF baseline. Incorporation of
previous context has been shown to improve the performance,
with the improvement being most significant for very short
processing frame length, i.e., 5 ms. This observation is con-
sistent with the findings reported in [10].

It should be noted that for large analysis frame lengths, the
dimensionality of DNN input feature vectors also increases.
In such situations, the DNN architecture used here might be
suboptimal and increasing number of hidden neurons or hid-
den layers might help in improving separation performance.
Moreover, increasing the amount of training data would also
help in improving separation performance. This study uti-
lized conventional feed-forward DNN architecture. Use of ar-
chitectures capable of modelling temporal dependencies, e.g.,
Long Short Term Memory (LSTMs) [19] are expected to fur-
ther improve separation performance.
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