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ABSTRACT

This paper proposes methods for acoustic pattern recog-
nition in dynamically changing noise. Parallel model
combination and vector Taylor series model compen-
sation techniques are used to adapt acoustic models
to noisy conditions are applied together with a time-
varying noise estimation algorithm. The noise estima-
tion produces biased noise estimates and therefore we
propose methods to accommodate the compensation to
the bias. We apply the methods in robust voice activity
detection, where frame-wise speech/non-speech classi-
fier is first trained in clean conditions and then tested
in and adapted to non-stationary noise conditions. The
simulations show that a model compensation with the
time-varying noise estimator improves clearly the accu-
racy of voice activity detection.

1. INTRODUCTION

Mobile communication devices can be used in environ-
ments with highly varying background noise conditions.
Many devices apply voice activity detection or auto-
matic speech recognition algorithms, which performance
is significantly affected by the noise. Dynamic noise
conditions are especially difficult for these algorithms,
because it is not possible to train the algorithms before-
hand to match the noisy conditions. Therefore, the al-
gorithms must be compensated so that they match the
new noise conditions. Algorithm adaptation to noisy
conditions can be split into two separate stages: noise
estimation and model compensation.

Previous approaches estimate the noise spectrum
during noise-only segments in speech, such as pauses in
speech, and therefore need a voice activity detector [1].
However, when the level of the noise is high, the activ-
ity detection is difficult to perform robustly. Recently,
algorithms (see for example [2], [3] and the review in
[4]) have been proposed to update the noise spectrum
continuously, even during speech segments. This can
be achieved by tracking the minimum of the spectrum,
which can then be used as an estimate of the noise, be-
cause of the sparsity of the speech spectrum. Section 2
presents briefly the noise estimation algorithm used in
our study.

Adaptation to noisy conditions can be done by ei-
ther subtracting the noise estimate from the noisy fea-
tures, or compensating the noise in the model that de-
scribes the features. Model compensation techniques
have proved to be a superior alternatives to feature sub-
traction in many cases. Parallel model combination
(PMC) [5] and vector Taylor series (VTS) approaches

[6, 7] use a model of clean speech as the starting point
and then adapt this model to fit a new noise environ-
ment, as explained in Section 3. PMC and VTS have
been widely used in robust speech recognition.

The original versions of PMC and VTS do not com-
pensate the models continuously to fit the dynamic noise
conditions. Furthermore, their performance relies on the
noise estimate obtained during speech pauses indicated
by a voice activity detector.

The proposed method applies a noise estimation al-
gorithm that produces an estimate of the noise spec-
trum in every frame. This allows the speech models
compensated with PMC or VTS methods to be time-
varying. The noise estimate is biased in speech seg-
ments, and therefore in Section 4 we propose a method
to compensate the bias. In Section 5 the model com-
pensation scheme is applied to robust voice activity de-
tection. Simulation experiments in Section 6 show that
the compensation method outperforms the basic PMC.
When the bias is taken into account, both compensation
methods produce results which are significantly better
than those obtained without compensation or with a
stationary noise estimate.

2. NON-STATIONARY NOISE
ESTIMATION

We use the noise estimation algorithm by Rangachari
and Loizou [4]. The basic idea behind the algorithm
is that the spectrogram of speech is sparse, and local
minima of the spectrum in a window of multiple frames
can be used as an estimate of the noise spectrum.

An overview of the algorithm is provided below. The
algorithm operates on power spectrum calculated in 64
linearly spaced frequency bands, and the calculations
are done for every frequency bin k = 1, . . . , 64 in every
frame t.

1. Calculate temporally smoothed power spectrum
x̂(t, k) by filtering the power spectrum of the ob-
served noisy signal x(t, k) with a first-order recursive
filter.

2. If x̂(t, k) is smaller than the current estimate of the
noise power spectrum minimum xmin(t − 1, k), re-
place xmin(t, k) with x̂(t, k), else use a first-order
recursive filter to calculate a new estimate for
xmin(t, k)

3. Calculate the ratio between the smoothed power
spectrum x̂(t, k) and the current estimate of the min-
imum xmin(t, k) and threshold it to make a decision
between speech present and speech absent.



50 100 150 200 250

−5

−4

−3

−2

−1

0

1

2

Frames

Lo
g−

en
er

gy

 

 

Speech
Observed value
Estimated noise

Figure 1: Example of a signal log-energy and the esti-
mated noise log-energy within a frequency band. The
signal-to-noise ratio of the signal is 5 dB.

4. Calculate the speech presence probability by
smoothing the speech present/absent decision in
time.

5. Calculate a frequency dependent smoothing factor
using the speech presence probability.

6. Update the noise spectrum estimate xn(t, k) by first-
order recursive filtering the observed power spectrum
x(t, k) using the estimated smoothing factor.

Details of the algorithm can be found in [4]. The adap-
tation time of the algorithm to new noise conditions is
about 0.5 s.

The rest of the paper operates with log-energies
n(t, i) calculated on 10 mel-frequency bands. The es-
timated noise spectrum is decimated to mel scale i =
1, . . . , 10 by windowing the bands with triangular win-
dows and calculating the log-energy from the windowed
bands. An example of observed log-energies and the
corresponding noise estimates is illustrated in Figure 1.

Time-varying mean µn(t, i) and variance σ2
n(t, i) of

the noise log-frequency features are calculated as

µn(t, i) = δµn(t − 1, i) + (1 − δ)n(t, i)

σ2
n(t, i) = δσ2

n(t − 1, i) + (1 − δ)[n(t, i) − µn(t, i)]2,

where δ = 0.9 is a smoothing parameter.

3. MODEL COMPENSATION

In model compensation the models estimated for clean
speech are adapted to match the noisy conditions us-
ing an estimate of the noise statistics. The distributions
of features are modeled with Gaussian mixture models
(GMMs) and in both methods used here, PMC and VTS
approaches, the basic idea is to modify the means and
variances of the GMMs so that they model the distribu-
tions of the noisy features.

3.1 Parallel model combination

In PMC, the log-normal approximation [8, pp. 47-48]
assumes that the sum of normally distributed speech
and noise is also normally distributed. The means and

variances of the noise corrupted GMMs are calculated by
assuming that speech and noise are additive in the power
spectral domain and matching the first two moments of
the noisy distribution with the sum of the moments of
the speech and noise distributions.

We perform the compensation separately for each
Gaussian in the speech model GMMs. In the following,
the compensation is presented for an individual Gaus-
sian. Let us denote the original clean speech model
mean and variance by subindex s, the estimated noise
distribution parameters by subindex n, and the result-
ing noisy speech model parameters by subindex y.

First, the clean speech model means and variances
are transformed from the log to the linear power spec-
trum spectrum domain as

µ̂s(t, i) = exp(µs(t, i) + σ2
s (t, i)/2) (1)

σ̂2
s (t, i) = µ̂2

s (t, i)[exp(σ2
s (t, i)) − 1]. (2)

The same transformation is applied also to the noise
means and variances. The noisy speech model parame-
ters in the linear power spectrum domain are obtained
as

µ̂y(t, i) = µ̂s(t, i) + µ̂n(t, i)

σ̂2
y(t, i) = σ̂2

s (t, i) + σ̂2
n(t, i).

The log-normal approximation assumes that the sum
of two log-normally distributed variables is also log-
normally distributed, therefore the means and variances
of the noisy speech model in the log-spectral domain are
obtained as

µy(t, i) = log(µ̂y(t, i)) −
1

2
log

(

σ̂2
y(t, i)

µ̂2
y(t, i)

+ 1

)

(3)

σ2
y(t, i) = log

(

σ̂2
y(t, i)

µ̂2
y(t, i)

+ 1

)

. (4)

3.2 Vector Taylor series

Vector Taylor series (VTS) approach [9] models the
noisy speech features y(t, i) as

y(t, i) = s(t, i) + g(s(t, i), n(t, i)), (5)

where s(t, i) is the clean speech feature and
g(s(t, i), n(t, i)) is an environmental function de-
pending on the clean speech and noise. Contrary to
the original VTS formulation [9], the effect of the
transmission channel is omitted here, because in our
case the training and testing channels for speech are
identical. The environmental function is approximated
with the VTS and the approximation is then used to
calculate the corrupted speech model. Similarly to the
PMC, the compensation is done individually for each
Gaussian in the speech models.

The zeroth-order VTS expressions for the mean and
variance vectors are [9, p.83]

µy(t, i) = µs(t, i) + g(s0(t, i), n(t, i))

σ2
y(t, i) = σ2

s (t, i),
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Figure 2: Clean speech log-energy and the estimated
noise log-energy within a frequency band. During
speech activity the noise estimate is biased.

where s0(t, i) = µs(t, i) is the VTS expansion point and

g(s0(t, i), n(t, i)) = ln(1 + en(t,i)−s0(t,i)).

Similarly, the first-order VTS expression [9, p.84] for the
means and variances results to

µy(t, i) =[1 + g′(s0(t, i), n(t, i))]µs(t, i)

+ g(s0(t, i), n(t, i))− g′(s0(t, i), n(t, i))s0

σ2
y(t, i) =[1 + g′(s0(t, i), n(t, i))]2σ2

s (t, i),

where

g′(s0(t, i), n(t, i)) = −

1

1 + exp(s0(t, i) − n(t, i))
.

We also tested the method [7] that uses noise means
µn(t, i) and variances σ2

n(t, i), instead of point-estimates
n(t, i). This approach produced similar results as the
method used here, and therefore we use the above com-
pensations.

4. NOISE BIAS SUBTRACTION

A problem in the time-varying noise estimator is that
it produces non-zero values even when applied to clean
speech signals. In other words, the noise estimate is
biased. The noise estimate n̂(t, k) in the linear power
spectrum domain is considered to be composed of two
parts as

n̂(t, k) = n̂b(t, k) + n̂e(t, k), (6)

where n̂b is the noise bias and n̂e is the environmental
noise. The bias in the noise estimation algorithm is
illustrated using a clean speech signal is in Figure 2.
Only the environmental noise, but not the bias should be
used in the compensation. We tested three alternative
techniques to compensate the bias.

The first approach models the bias with a single
Gaussian, which is then subtracted from the speech
model using PMC. First, we train mean and variance for
the noise estimated clean speech training data of each

model class (to be explained later). The bias mean and
variance are transformed to linear-frequency domain ac-
cording to equations (1)-(2) and then the subtraction
is done in the linear-frequency domain for every GMM
component as

µ̂z(t, i) = µ̂s(t, i) − µ̂b(t, i) (7)

σ̂2
z (t, i) = σ̂2

s (t, i) + σ̂2
b(t, i), (8)

where µ̂b(t, i) and σ̂2
b(t, i) are the linear mean and vari-

ance of the bias model.
We call this result the noise-bias-subtracted GMM

and denote the corresponding parameters with a
subindex z. The noise-bias-subtracted GMM is trans-
formed back to log-frequency domain according to equa-
tions (3)-(4), and the model compensation is done using
noise bias-subtracted GMMs.

Second, we tested using more than one GMM com-
ponents to model the bias. In this case the estimation
of the noise bias subtracted GMM becomes ambigu-
ous. We tested a method were the noise bias subtracted
GMM had MN components, where M is the number of
clean speech and N the number of noise bias GMM com-
ponents, respectively. The noise bias subtracted GMM
is calculate separately for every Gaussian in the noise
bias model.

The third option, which produced the best results at
least in the case of PMC, was to subtract all the noise
bias GMM components from each clean speech GMM
component. Thus, the linear domain parameters are
obtained according to Eq. (7), but µ̂b(t, i) and σ̂2

b(t, i)
are now the sums of all the noise bias GMM means, and
variances, respectively. This approach retains the num-
ber of GMM components in the speech models. In our
simulations we obtained good results by using 5 noise
bias GMM components.

In the case of all the bias compensation methods,
the obtained noise bias subtracted GMMs are used as a
starting point for the environmental noise compensation
instead of the original clean speech models. In prac-
tice, this means replacing the mean µs(t, i) and variance
σ2

s (t, i), i = 1, . . . , I, vectors in the PMC and VTS al-
gorithms with the corresponding noise bias subtracted
versions µz(t, i) and σ2

z (t, i), i = 1, . . . , I.

5. APPLICATION TO ROBUST VOICE
ACTIVITY DETECTION

We apply the proposed method in noise-robust voice
activity detection targeted to a communication de-
vice and applications where there can be a significant
amount of user-produced noise, for example breathing
[10]. The user-produced noise has specific character-
istics for which we have to train a model in order to
perform robust voice activity detection (VAD).

The proposed VAD algorithm is a hidden Markov
model (HMM) consisting of speech and non-speech
states, whose state emission distributions are modeled
with GMMs, which parameters are trained beforehand
using material of both classes. In the training phase
we also train two bias GMMs using noise estimated
from clean material of both classes. The bias GMMs of
each class are subtracted from the corresponding orig-
inal GMMs to obtain noise bias subtracted GMMs for



Figure 3: Block diagram of the used VAD algorithm.

both classes. The acoustic material used to train the
VAD is explained in Section 6.

The frame-wise processing is illustrated in Figure 3.
The input signal is processed in 16 ms frames that do not
overlap. Noise estimation is performed using the algo-
rithm explained in Section 2. The observed noisy speech
and estimated noise features are log-energies within 10
mel-frequency bands which overlap by 50%.

The noise features or the noise means and variances
work as an input to the model adaptation block, were
it is used to adapt the original clean speech and non-
speech GMMs with PMC or VTS approach to match
the noisy speech and non-speech distributions.

Given an observed feature vector, the noisy speech
and non-speech GMMs are then used to calculate the
likelihoods for the two classes. Finally, the class likeli-
hoods work as an input to the two-state hidden Markov
model, where state transition probabilities are used to
obtained the probabilities of speech and non-speech
state for the current frame, given the probabilities of
the previous frame.

6. SIMULATIONS

Simulations using acoustic material corresponding to
the final usage situations of the communication device
were conducted. The device is used in physically de-
manding situations and the microphone is located di-
rectly in front of the speaker’s mouth, which results in
high-level breathing noise (see [10] for an illustration of
a signal).

Signals from five different speakers were recorded,
the total amount of data being 43 minutes. The per-
centage of speech in the signals is 2-20% depending on
the speaker. The recorded signals were manually la-
beled into speech and noise segments with a tempo-
ral resolution of 10 ms. A 5-component clean speech
GMM was trained using the speech frames to model
the emission probability density function (pdf) of the
speech state in the VAD HMM, and similarly a 5-
component non-speech GMM was trained using non-
speech frames to model the non-speech state emission
pdf. The expectation-maximization algorithm was used
to train the GMMs.

The recorded speech signals did not have environ-
mental noise, but in the testing we used four differ-
ent types of noise signals which were mixed with the
speech signals. The noise signals are from the study [11],
and they include construction site and bus environments
noise. The signals were mixed to obtain signal-to-noise

ratio of 5 dB.

6.1 Methods

The following methods were tested:

• “No compensation” means that the models are not
compensated but the clean speech and non-speech
models are used to classify the noisy signals.

• PMC is the proposed VAD algorithm that uses the
PMC as the model adaptation method. The method
was tested with and without noise bias subtraction
(NBS).

• VTS is the proposed VAD algorithm that uses the
zeroth-order VTS approach as the model adaptation
method. The method was also tested with and with-
out noise bias subtraction (NBS).

• STATIONARY is the original PMC algorithm that
estimates a stationary noise model from the begin-
ning of the noise signal before mixing it with the
speech signal and uses this model to adapt the clean
speech model to a noisy speech model.

The noise bias model was a 5-component GMM, trained
separately for speech and non-speech frames. The sub-
traction was done by subtracting all the Gaussians in the
bias GMM from the corresponding speech/non-speech
model, as explained in Section 4.

In VTS, we used point-estimates of the noise n(t, i)
instead of mean and variance, since it resulted in slightly
better results. We used the zeroth-order VTS, because
it produced better results than the first-order VTS.

6.2 Evaluation

The performance evaluation of the VAD algorithm
was done using a leave-one-out cross-validation method
where the signal of one speaker was regarded as a test set
and the rest as the training set. The GMMs of speech
and non-speech states were trained using the clean sig-
nals and the annotations in the training set. The noise-
corrupted test signal was processed using each tested
VAD algorithm, which produce speech/non-speech de-
cision for each frame.

The classification accuracy was measured by com-
paring the classifications to the annotated speech activ-
ity. The following four measures were used to judge the
classification accuracy:

• Sensitivity gives the percentage of the frames cor-
rectly classified as speech from all the speech frames
in the signal

• Specificity gives the percentage of the frames cor-
rectly classified as noise from all the noise frames in
the signal

• Positive predictive value gives the percentage of the
frames that actually are speech from all the frames
classified as speech

• Negative predictive value gives the percentage of the
frames that actually are noise from all the frames
classified as noise

The speech/non-speech decision was tuned so that the
average sensitivity was always 97% or higher and the
specificity as high as possible. Having an average sensi-
tivity of 97% retains the intelligibility of the speech and



Algorithm Sens. Spec. PPV NPV

No compensation 97.0 37.5 20.7 98.7

PMC without NBS 97.1 27.8 18.1 97.9

PMC with NBS 97.0 45.4 22.2 98.8

VTS without NBS 97.2 48.1 24.6 99.1

VTS with NBS 97.3 46.2 24.1 99.1

STATIONARY 97.0 24.0 18.2 98.3

Table 1: VAD algorithm results (%), construction site
noise

Algorithm Sens. Spec. PPV NPV

No compensation 97.1 37.4 20.8 98.7

PMC without NBS 97.3 21.7 17.1 97.6

PMC with NBS 97.0 45.1 22.3 99.0

VTS without NBS 97.0 56.2 28.3 99.1

VTS with NBS 97.1 56.7 28.6 99.1

STATIONARY 97.0 33.9 19.9 98.6

Table 2: VAD algorithm results (%), bus noise

also facilitates direct comparison between the different
methods.

6.3 Results

The results are illustrated in Tables in 1 and 2. All
proposed dynamic model compensation methods except
PMC without NBS improve the performance in com-
parison with the case where no compensation is done.
Taking into account the noise bias in PMC improves
clearly its performance. Clearly the best results are ob-
tained with VTS. The noise bias does not have a big
effect in its performance. This might be because the
proposed noise bias subtraction methods are motivated
by the processing principles of PMC. The stationary
noise model method performs clearly worse than the
non-stationary noise compensation methods.

7. CONCLUSIONS

We have proposed a method to compensate acoustic
models to non-stationary environmental noise. We ap-
ply a noise estimation algorithm, and then compensate
the clean acoustic models with the time-varying noise
estimate. Parallel model combination and vector Tay-
lor series methods were tested in the compensation. A
method to compensate the bias of the noise estimator
was found to be necessary at least in the case of par-
allel model combination. The developed methods were
tested in robust voice activity detection, where acous-
tic models trained on clean speech and non-speech were
adapted to noisy signals. The proposed non-stationary
model compensation methods were found to be succesful
in comparison with the stationary compensation. The
best results were obtained with the vector Taylor series
compensation.
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