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ABSTRACT

Sound event detection and sound localization or tracking have his-
torically been two separate areas of research. Recent development
of sound event detection methods approach also the localization
side, but lack a consistent way of measuring the joint performance
of the system; instead, they measure the separate abilities for detec-
tion and for localization. This paper proposes augmentation of the
localization metrics with a condition related to the detection, and
conversely, use of location information in calculating the true pos-
itives for detection. An extensive evaluation example is provided
to illustrate the behavior of such joint metrics. The comparison to
the detection only and localization only performance shows that the
proposed joint metrics operate in a consistent and logical manner,
and characterize adequately both aspects.

Index Terms— Sound event detection and localization, perfor-
mance evaluation

1. INTRODUCTION

Sound event detection and sound localization or tracking are tradi-
tionally two different areas of research, as they deal with completely
separate aspects of identifying sounds: one aiming to find the cor-
rect label and temporal position of sounds, the other aiming to find
the correct spatial and temporal position. Recent research addresses
localization and detection of sound events within the same system
[1, 2, 3, 4]; however, for lack of a better measurement method,
the localization and detection performance are evaluated separately
[5, 6]. This is a paradoxical solution for evaluating performance of
a system in which the two are modeled and predicted jointly.

Sound event detection metrics measure the ability of the sys-
tem in finding the correct sound events or the amount of errors the
system makes. The sound events are organized in classes defined
by their labels, and evaluation measures if the detected events at a
given time are assigned to the correct class. Different metrics serve
different purpose, and generally the selection of a performance mea-
sure is dictated by the application [7, 8]. Most often used are error
rate and F1-score, calculated in fixed length segments of typically
1 second [9], but metrics that consider sound event instances are
also available [10]. Similar metrics are used for example in poly-
phonic music transcription [11], speech recognition and speaker di-
arization. These metrics have no means of representing location
information for the detected sound; as a consequence, localization
errors—sounds with incorrect position but correct label-would be
considered correctly detected.
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Figure 1: Example reference and predicted sound events and loca-
tions. Circles denote reference sounds, rectangles system output.

On the other hand, localization performance is commonly as-
sessed through statistical analysis of the instantaneous angular or
positional localization errors between the system output and the
reference. Purely localization systems have generic source models
with no class information. In the case of multi-source localization
[12], evaluation can be based on an average instantaneous local-
ization error after a minimum distance assignment has been made
between the reference positions and the estimates, e.g. with the
Hungarian algorithm [13]. Tracking systems do associate identities
to sources, but only for the purpose of forming continuous loca-
tion estimates, i.e. a track, for each source, therefore unrelated to
to the signal content or sound class. For example if a sound event
stops being active after being tracked with a certain identifier, and
re-appears after a long time, a new identity can be assigned to its
new track without any penalty on the performance of the system. If
multiple tracks occur simultaneously and identities are swapped be-
tween them, the metrics should be able to strike a balance between
localization accuracy and maintaining temporal association of lo-
calization estimates with the appropriate reference tracks [14, 15].
Evaluation is more complex in the case of multi-source tracking,
and suitable metrics are still a topic of research [16].

We illustrate joint localization and detection for one time frame
in Fig. 1: the reference annotation contains three sound events be-
longing to classes dog, car horn and child, while the system pre-
dicts two: dog and cat, each at their respective reference and pre-
dicted positions. Sound event detection aims to find the sound
events in this frame and label them correctly, and its evaluation con-
sists in comparing the labels of the reference and predicted sound
events. This results in one true positive (reference “dog”, predic-
tion “dog”), one false positive (prediction “cat”, no reference “cat’)
and two false negatives (reference “car horn”, “child”, no prediction
for these classes). Sound event localization aims to find the sound
events at correct spatial positions, and the evaluation considers only
the spatial errors between the closest sound sources. This results in
two error measurements (“dog”-“dog” and “child”-“cat”). In con-
trast, sound event localization and detection requires both the labels
and the locations to be correct, therefore it would only consider the
“dog”-“dog” pair as correct localization and detection.
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Figure 2: Evaluation of detection, localization, and their joint measurement, with two different sound events active at the same time. Circles
denote reference sounds, rectangles system output. For simplification, only one spatial dimension is used in the illustration.

In this paper, we formulate a procedure for joint measurement
of localization and detection performance. We start with the frame-
based formulation, then consider the generalization to a segment-
based version. Segment-based evaluation is used in sound event de-
tection to alleviate the effect of onset/offset subjectivity in the refer-
ence annotations, therefore we present a similar way of measuring
joint localization and detection. We approach the joint measure-
ment from both detection and localization perspectives, and formu-
late location-sensitive detection metrics that count correct and er-
roneous detection cases within certain spatial error allowance, and
class-sensitive localization metrics that measure the spatial error be-
tween sound events with same label. We show that the proposed
metrics behave consistently and characterize adequately both as-
pects, in comparison with localization or detection only metrics.

The paper is organized as follows: Section 2 introduces the
metric and presents the frame-based formulation, and Section 3 de-
scribes its generalization to segment-based measuring. Section 4
uses an example system for illustrating how the proposed metrics
behave, and Section 5 presents a more general discussion of their
characteristics. Finally Section 6 presents conclusions and future
work.

2. PROPOSED METHOD

Localization and detection of sound events imply detection of a
sound event with correct label at the correct temporal position and
correct spatial location, as given by reference annotation. For mea-
suring the localization and detection performance, we propose com-
paring both label and location at the same time when deciding if the
system output is correct. This effectively means taking into account
only the spatial errors between sounds that belong to the same class,
and counting all other reference or predicted ones as errors.

Fig. 2 illustrates the different evaluation cases, with Fig. 2.c
showing the labels and locations of two sound sources in consecu-
tive frames. Sound event detection evaluation, illustrated in Fig. 2.a,
checks only the event labels, for presence or absence of events be-
longing to the same class. Intermediate statistics are counted as
true positives (7P, reference and predicted event active at the same
time), false positives (FP or insertions I, reference inactive, pre-
dicted active), false negatives (FN or deletions D, reference active,
predicted inactive); one true positive and one true negative appear-
ing at the same time count as a single substitution error S, and N
is the total number of reference events. Common sound event de-
tection metrics include precision, recall, F-score and error rate, and
they are calculated based on the total counts T'P, F'P, F'N, and D,
I, S, N respectively:
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For the same case, spatial errors will be measured by pairing the
closest detected and reference sounds irrespective of their label, as
illustrated in Fig.2.b. For the illustrated case, the method in [15]
would count one swap error when the tracks intersect, and con-
tinue the optimal pairing afterwards. For a single pair, the spatial
error can be expressed as an angular distance 6 between directions-
of-arrival (DoA) or Euclidean distance d between actual positional
estimates, depending on the localization output of the system:

0 = arccos(Uyef - Uso), d = ||Xret — Xsol| 3)

where u is a unit vector pointing to a DoA, and x is a Cartesian
position vector.

The proposed method is illustrated in Fig. 2.c, and includes
both detection and localization criteria. Location-sensitive detec-
tion metrics can be calculated by counting true and false positives
and negatives, and class-sensitive localization metrics can be calcu-
lated by measuring the spatial error between the detected and refer-
ence sound events with same label. In multi-instance cases, with po-
tentially multiple prediction and reference events of the same class,
one of the established tracking metrics could be used for the associ-
ations; however, this case is not yet within the scope of our work.

Location-sensitive detection: For detection evaluation, we
consider allowing a small error in location, so that if a sound is
localized approximately at its reference location, it is considered
correctly detected. We therefore measure the spatial error between
the predicted and reference events with same label, and count a true
positive only when its label is correct and its location is within a
threshold 6 or d from its reference location, calculated according to
(3). The detection criterion is included through the label use, and
the localization criterion through the spatial error threshold.

The intermediate statistics are defined as in sound event detec-
tion [10], with the only modification for the true positive: in order
to be considered a true positive, the spatial error for a detected event
must be within the given threshold from the reference. If the pre-
dicted event is further than this threshold, the event is detected at
a different location, therefore produces a false positive, while the
undetected reference event produces a false negative. With multiple
classes, these errors are likely to be counted towards substitution
errors, therefore resulting in a single penalty for the pair. Once the
intermediate statistics are obtained from the comparison of the sys-
tem output with the reference, any metric defined for sound event
detection can be calculated, e.g. F1-score, ER, etc.

The drawback of such a metric is that it discards information on
the actual value of the spatial error, which is in fact very important
in the sound localization and tracking research, so from the tracking
point of view, expressing system performance based on the true and
false positives and negatives is unsuitable.
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Class-sensitive localization: To evaluate more closely local-
ization, we want to keep detailed information on the spatial errors.
Inclusion of the detection criterion into the original localization
metric is straightforward: we only calculate the spatial errors be-
tween sounds with the same label in each frame. Furthermore, as
there is no threshold for the true positives, all intermediate statis-
tics are counted as in detection. System performance can then be
presented in terms of average spatial error with its corresponding
detection performance-to indicate how much of the total number of
test cases this spatial error characterizes.

3. GENERALIZATION TO DIFFERENT TIME SCALE

For practical reasons, sound event detection is often evaluated us-
ing segment-based metrics. Segment-based metrics allow evalua-
tion with a temporal resolution independent of the resolution of the
system, and alleviate the effect of onset/offset subjectivity in refer-
ence annotations. However, extending the formulation of this joint
measurement for detection and evaluation to an arbitrary segment
length is not trivial, because segment-based metrics require esti-
mating one activity indicator (event active or inactive) and its cor-
responding spatial error within the segment.

Consider the case in Fig. 2.c. If all the illustrated consecutive
frames form a segment, according to [10], both sound events are
correctly detected within this segment, because both system output
and reference have both A and B sound events active within this
segment. The question is: how to apply the localization criterion?

One possibility is to calculate the average position of the sound
within the evaluation segment, then calculate the spatial error be-
tween the average locations of the predicted and reference events.
This can be accomplished by calculating the mean Cartesian DoA
U or position vector X within the segment for the corresponding
predicted or reference event:

Ly,
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where L,, are the number of reference points or system output esti-
mates inside the segment. In consequence, the location information
is transformed to a more coarse time resolution, as illustrated in
Fig. 3. If errors exist in the prediction, the average location of the
detected sound and that of the reference are calculated using dif-
ferent number of points, i.e. based on the amount of information
available for each. The spatial error for each segment is then calcu-
lated between the two estimates.

A more tracking-oriented way is to calculate the average lo-
calization error within this segment for all pairs of reference and
predicted events, frame-by-frame:

Ky K
ésegm(n) = Z HZ/K'I’L7 dsegm(n) = Z dl/Kn, (5)
i=1 i=1

where 0, and d; are the frame-based spatial errors according to
Eqn. 3, and K, is the number of frames with true positives in the
n-th segment. This is a more accurate estimation of the spatial error
than using the average location, as it includes only the true positives
and the errors are calculated based on the reference and the system
output in exactly the same time frames.

Once the spatial and detection information is transformed to
segment-based resolution, all the previously described frame-based
metrics can be applied: we can measure the spatial error between
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Figure 3: Location estimate as average DoA within the segment;
spatial error for the segment is calculated based on the averages

Segment 1 Segment 2

the predicted and reference events for the class-sensitive localiza-
tion, or use a threshold for counting the true positives and evaluate
it as location-sensitive detection.

4. EVALUATION

We consider the baseline system provided for DCASE 2019 Chal-
lenge Task 3: Sound Event Localization and Detection [17]. The
system consists of a convolutional recurrent neural network that
maps the input magnitude and phase components of a spectrogram
into two outputs: temporal activity of sound classes in the dataset
(sound event detection) as a multi-class multi-label classification
task, and spatial trajectory when the respective sound class is active
(DoA trajectory estimation) as a multi-output regression task. The
system is trained on the TAU Spatial Sound Events 2019 - Micro-
phone Array dataset provided for the same DCASE task !. An early
stopping criterion of 25 epochs was used to halt training if the stand-
alone detection and localization performance did not improve. The
best results were obtained after about 75 epochs of training.

We present detailed results in Tables 1 and 2 using TAU Spa-
tial Sound Events 2019 - Microphone Array dataset[18]. The
dataset was synthesized using spatial room impulse responses (IRs)
from five indoor locations, at 504 unique combinations of azimuth-
elevation-distance, and stationary sound sources from 11 event
classes [17]. For comparison with the official DCASE task, we
measure spatial error as directional error DE, calculated as the aver-
age of frame-wise angular distances [6]. Additionally, we evaluate
the same system using another dataset [19] that contains the same
sound events, but uses simulated IRs [20], and sources are moving
in varying velocities in complete azimuth and elevation angles?.

Table 1 presents the class-sensitive localization performance.
We include performance at different stages during training, to ob-
serve the metrics behavior within the system. For comparison, the
table includes the DCASE baseline performance for localization
only, DE;,, and the frame recall FR, which is the accuracy of the
system in detecting the correct number of sources [6]. During train-
ing, all measured aspects improve as the system learns to predict
better the location and labels for sound events. Frame-based di-
rectional error DE;, is 30.8, increasing to a class-sensitive DEcy,
of 34.3 when both localization and detection criteria are included—
which means that DE, includes some pairings that are wrongly la-
beled events. Evaluated in 1 s segments, DE¢, calculated based on
average location within the segment (AL_seg method in Table 1) is
only slightly smaller than DE¢, calculated using average spatial er-
ror within the segment (SE_seg method), showing that even though
different, the two approaches reach very similar conclusion.

Table 2 presents the location-sensitive detection performance
for different angular error thresholds 6, using a segment of 1 s;

Thttps://doi.org/10.5281/zenodo0.2599196
Zhttps://doi.org/10.5281/zenodo.2636586
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20ms frame Class-sens. loc., 0.5s segment Class-sens. loc., 1s segment

Loc. (baseline) Class-sensitive loc. AL _seg SE _seg AL _seg SE _seg
Epochs | DE, FR. DEcL Fcr DEcL Fcr DEcL Fcr DEcL Fcr DEctL Fcr
5 69.4 72.8 79.7 67.4 81.8 68.8 81.8 68.6 82.1 69.6 82.1 68.9
25 42.1 82.0 48.0 78.6 50.7 78.5 514 78.3 51.0 78.5 51.9 78.2
75 30.8 84.0 343 80.9 36.3 80.0 37.5 79.9 36.7 79.7 38.1 79.3

Table 1: Class-sensitive localization performance: average directional error (degrees) and F-score (%) for different segment sizes

Det. (baseline) AL _seg SE_seg

EpOChS ERD FD 9 ERLD FLD ERLD FLD
10 | 1.02 1.2 1.03 03

20 | 099 45 1.01 2.5

> 0.48 S 30 | 0.95 9.0 097 7.1
40 | 090 147 | 092 133

10 | 092 119 | 0.98 5.6
20 | 0.74 31.1 | 0.78 26.2
& =5 IR 30 | 0.61 450 | 0.63 434
40 | 054 542 | 0.54 54.2

Table 2: Location-sensitive detection performance in 1 s segments

DCASE baseline performance for detection is included for com-
parison as error rate ERp and F-score Fp. We observe the same
consistent behavior in the measured performance, with the system
improving during training. When a smaller threshold is imposed,
naturally, a smaller number of true positives results in a lower F-
score Frp and higher error rate ER;p. Here also, the two ap-
proaches for estimating the segment-based localization error result
in similar performance.

To gain more insight into the proposed metrics, we compare the
class-sensitive localization and location-sensitive detection perfor-
mance for similar angular error values (highlighted in Tables 1 and
2). In 1 s segments, DEcy, is 36.7 and 38.1, so we compare the
corresponding Fcr, of 79% (Table 1) with Foy, for a threshold 6
of 40 (Table 2), which is about 54%. The large difference shows
that Fc 1, takes into account many sounds that are detected very far
away from the reference location, but the system also detects some
sounds very precisely, bringing the average spatial error to under
40 degrees. In fact, only 54% of the predicted events are within 40
degrees from their reference, not 79% as indicated by Fcr..

For the dataset with moving sources, the proposed metrics and
all variants exhibit similar behavior as for stationary sources. Table
3 presents results of the fully-trained system evaluated in 1 s seg-
ments. Calculated performance is similar for the two approaches
of estimating segment-based location, and measured performance
is higher for a more permissive threshold. DE¢, of around 12 is
comparable to the threshold of 10, with Fz. p showing that only 63
of the 95% F¢ 1, consists of events detected within 10 degrees from
their reference position. The much better performance compared to
Tables 1 and 2 is due to the lower complexity of the dataset.

5. DISCUSSION

The proposed measures combine two different ways of evaluation,
therefore the segment-based formulation may seem questionable.
One consequence of the change of time resolution from frames to
the segment-based evaluation is allowing extreme cases where de-
tection in a single frame within the segment drives the decision.
However, similar cases are accepted in the segment-based evalua-
tion of sound event detection, under the assumption that they hap-

Class-sensitive localization Location-sensitive detection
AL _seg SE_seg AL _seg SE_seg
DEct For | DEcr For 0 | ERcp Frp | ERzp Frp

10 | 0.37 63.2 | 0.37 63.2
20 | 0.18 83.6| 0.21 8I.1
127953 113 953 30 | 0.13 89.8| 0.15 873
40 | 0.10 92.1| 0.13 89.7

Table 3: Performance metrics in 1 s segments, moving source

pen only at the onset/offset times, and for large amount of data this
should not have a considerable effect on the calculated performance.
With a similar judgment to the localization and detection, the esti-
mated spatial error in a segment can be based on a single correctly
predicted output, and subsequent decisions are based on that.

Regarding the different estimation approaches for the segment-
based spatial error, the one calculated based on average location
hides much of the actual error, which is counter-intuitive for a lo-
calization measurement. In this respect, calculating directly the av-
erage error within the segment is more natural, as it follows closely
the location changes. On the other hand, this imposes a frame-wise
comparison before the actual evaluation, which is counter-intuitive
to evaluating the performance at a coarser time resolution. The main
difference between the two is the use of false positives in estimation
of the average location, which means that the differences will be
small when sources are not moving (average location of reference
is the same as in each frame) and when the system is very good
(predicted locations follow closely the reference). As observed in
our multiple experiments, this difference is indeed rather small.

As a general recommendation, the metric for performance mea-
surement should be chosen based on the aspect that needs to be em-
phasized. For characterizing the system in terms of spatial errors,
DEc and Fc are useful to indicate the average spatial error and
detection performance. As mentioned, DE¢, hides the actual dis-
tribution of the spatial errors, so if detection within a certain extent
of spatial error is required, Fr,p or ERy p with the given threshold
0 provides a better characterization of performance.

6. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel approach to jointly evaluate the local-
ization and detection performance of systems aimed at sound event
localization and detection®. Different experiments showed that the
proposed measures behave consistently, and they can be used for
joint evaluation at any temporal resolution. The extension of these
joint measures to event-based measurements was not yet consid-
ered, as event-based metrics are still quite rarely used in sound event
detection due to the onset/offset uncertainty. Nevertheless, such ex-
tension is planned for future work, to evaluate localization and de-
tection correctness of individual event instances.

3https://github.com/sharathadavanne/seld-metric
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