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ABSTRACT
We present an overview of the challenge entries for the
Acoustic Scene Classification task of DCASE 2017 Chal-
lenge. Being the most popular task of the challenge, acoustic
scene classification entries provide a wide variety of ap-
proaches for comparison, with a wide performance gap from
top to bottom. Analysis of the submissions confirms once
more the popularity of deep-learning approaches and mel-
frequency representations. Statistical analysis indicates that
the top ranked system performed significantly better than the
others, and that combinations of top systems are capable of
reaching close to perfect performance on the given data.

Index Terms— acoustic scene classification, audio clas-
sification, DCASE challenge

1. INTRODUCTION

Acoustic scene classification is one major topic within the
area of environmental sound classification and detection, as a
generic classification problem setting the foundation for con-
text awareness in devices, robots and many other applications.
Partly, its popularity within the last few years is due to the in-
ternational evaluation challenge on Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE), the task being
present in each edition. The setup for acoustic scene classifi-
cation in DCASE Challenge is as a supervised, multi-class,
closed-set classification problem, representing therefore an
entry level task that attracts new researchers to the field.

The problem of acoustic scene classification is not really
novel, but it has been brought back to the spotlight within the
last decade. During this time, machine learning approaches
used to solve the problem have changed dramatically, with
deep learning being currently the most popular. Plenty of
work has been done before deep learning, using classical sta-
tistical models like Gaussian mixture models (GMMs) [1],
hidden Markov models (HMMs) [2], and support vector ma-
chines (SVMs) [3]. Often the acoustic features used for repre-
sentation were mel-frequency cepstral coefficients (MFCC),
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as they provide a compact and easy to calculate representation
of the coarse spectrum of a signal, and have repeatedly proven
to be successful in diverse audio classification problems in-
cluding speech and speaker recognition, singer and instru-
ment classification, and many others. Other low level spec-
tral features used for acoustic scene classification include for
example zero crossing rate, spectral centroid, spectral rolloff,
spectral flux, and linear prediction coefficients [2].

Within DCASE Challenge, acoustic scene classification
was a popular task from the beginning, with the highest num-
ber of participants in each of the three past editions. The
development datasets used for it have gradually increased in
size, from a modest dataset containing 10 scene classes each
with 10 examples of 30 s in DCASE 2013 [4] to 15 scene
classes each with 78 examples of 30 s in DCASE 2016 [5], to
15 scene classes each with 312 examples of 10 s in DCASE
2017 [6]. Given the higher amount of data available, the 2016
edition marks a clear transition to deep learning methods, with
22 of 48 submissions using some form of deep learning. Top
performance systems were either ensemble classifiers [7, 8],
or deep learning classification methods, in particular CNNs
[9, 10], with the exception of one NMF-based approach that
ranked second [11].

DCASE 2017 was the third edition of the challenge, and
as such the third time an acoustic scene classification task was
organized. The task was made more difficult by using 10 s
audio segments, much shorter than the 30 s length used in the
previous editions. In addition, a newly recorded evaluation
dataset was used, creating an unexpected mismatch with the
development data.

This paper presents an overview of the systems submit-
ted to DCASE 2017 task 1, with statistical analysis including
confidence intervals and comparison of classifiers using Mc-
Nemar’s test [12]. Combinations of submitted systems are
also evaluated for a complete characterization of the problem
and the systems’ behavior. After this introduction, we con-
tinue by presenting shortly the task description in Section 2,
including the dataset and provided baseline system. Section
3 presents the challenge results, an analysis of the submit-
ted systems and the statistical analysis of their performance.
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Fig. 1. Acoustic scene classification example

Finally, Section 4 presents conclusions and a preview of fu-
ture directions for the acoustic scene classification task within
DCASE Challenge.

2. TASK DESCRIPTION

The task of acoustic scene classification was set up as a
straightforward multi-class supervised classification prob-
lem, with class labels describing the acoustic scene. Labeled
audio examples were provided for training the systems, with
each audio example having a single label. For each test ex-
ample, a system was expected to provide a label from the set
of known labels, as illustrated in Fig. 1.

2.1. Dataset

The task used the TUT Acoustic Scenes 2017 dataset, con-
taining audio recorded in 15 different acoustic scenes; 3-5
minutes of audio was recorded in various locations for the
following acoustic scenes: bus, cafe/restaurant, car, city cen-
ter, forest path, grocery store, home, lakeside beach, library,
metro station, office, residential area, train, tram, and park.

The development dataset has the same content as the com-
plete TUT Acoustic Scenes 2016 dataset, but with original
recordings being split into 10 s segments. The short audio
segments provide less information for the decision making
process in classification, thus increasing the task difficulty
from the previous edition. This length is regarded as chal-
lenging for both human and machine recognition, based on
the study in [2]. The development dataset contains 312 seg-
ments of 10 s per scene class (52 minutes). The evaluation
dataset was recorded in similar locations approximately one
year later than the development data, and contained 108 seg-
ments of 10 s per scene class (18 minutes). A detailed descrip-
tion of the data recording and annotation procedure is avail-
able in [13], while a more detailed description of the TUT
Acoustic Scenes 2017 dataset can be found in [6].

2.2. Baseline system

The baseline system provided for this task uses a multilayer
perceptron architecture (MLP) trained on log mel-band ener-
gies calculated in 40 ms frames with a 50% overlap and 40
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Fig. 2. Acoustic scene classification task accuracies based on
the evaluation set with 95% confidence intervals; top systems,
selected one per participating team.

mel bands. A 5-frame context was used, resulting in a fea-
ture vector length of 200. The MLP had two dense layers of
50 hidden units each, with 20% dropout, and an output layer
of 15 softmax type neurons. Frame-based decisions from the
network output were combined by majority voting to obtain
the final class decision for one 10 s long test audio segment.

The classification accuracy obtained by the system on the
development set using the provided cross-validation setup is
73.8%, with class-wise performance ranging from 57% to
99.7%. Performance on the evaluation dataset is 61%. A
detailed description of the baseline system and its class-wise
performance can be found in [6].

3. CHALLENGE RESULTS

3.1. Submission statistics and ranking

A number of 97 systems were submitted for this task, corre-
sponding to 39 teams and 129 authors. The number of partici-
pating teams is similar to previous edition (34 teams in 2016),
but the number of submissions was much higher because each
team was allowed to submit a maximum of 4 systems, even
though not all of them did so. Most of the submitted systems
outperformed the baseline system. A selection of top systems
performance and 95% confidence interval is presented in Fig.
2. Confidence intervals were calculated as a binomial pro-
portion confidence interval for the classification output being
correct or incorrect with respect to the ground truth. Based on
Fig. 2, it can be seen that the confidence intervals for systems
of neighboring ranks overlap significantly.

3.2. Submissions analysis

A general analysis of the characteristics of the submitted sys-
tems reveals that the most popular classification approach was
the convolutional neural network, with 55 of the 97 submis-
sion being based on a CNN architecture. In some cases the
CNN was used as part of an ensemble, combined with a vari-
ety of techniques such as multilayer perceptron (MLP), recur-
rent neural networks (RNN), support vector machines (SVM),
Gaussian mixture mdels (GMM), and i-vector. Recurrent net-
work architectures were part of 18 systems, some being con-
volutional (CRNN), others LSTM and bi-LSTM. The CNNs
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Table 1. Selected top ranked systems.
Rank System Features Classifier Acc (95% CI)
1 Mun log-mel energies, spectrogram MLP, RNN, CNN, SVM 83.3 (81.5 - 85.1)
2 Han log-mel energies CNN, ensemble 80.4 (78.4 - 82.3)
6 Xing spectrogram, CQT CNN 77.7 (75.7 - 79.7)
8 Hasan MFCC, log-mel energies GMM & CNN, ensemble 74.1 (72.0 - 76.3)
9 Lehner mel-scaled spectrograms, i-vectors i-vector, CNN, ensemble 73.8 (71.7 - 76.0)
10 Park gammachirp energies CNN 72.6 (70.4 - 74.8)
13 Kukanov log-mel energies CRNN 71.7 (69.5 - 73.9)
14 Piczak spectrogram CNN 70.6 (68.4 - 72.8)
14 Yu mel-filterbank features MLP, ensemble 70.6 (68.3 - 72.8)
15 Zhao log-mel spectrogram CNN 70.0 (67.8 - 72.2)
16 Bisot CQT NMF, MLP 69.8 (67.6 - 72.1)
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Fig. 3. Confusion matrix for top ranked system [14]

are used in acoustic scene and generally in audio classification
as a form of image processing, with their connectivity pat-
terns exploiting regions in the time-frequency representations
of signals, therefore being capable of capturing both time and
frequency evolution of signals. On the other hand, RNNs are
much better at capturing the long-term temporal characteris-
tics, with the LSTM variants having very good internal mem-
ory capabilities for processing of time-series. Also MLP and
SVM were popular choices, with 11 systems each, most often
as part of an ensemble of classifiers. All systems in top 10
make use of CNNs in some way, while first non-CNN-based,
ranked 14 and 16, use MLP. Table 1 presents a selection of
top systems and their characteristics, while Fig. 3 shows the
confusion matrix of the top performing system.

Most submissions were based on mel-scale representa-
tions, with log mel energies and MFCCs being used in 27
and 19 systems, respectively. Mel-scale representations are
often used and generally work well in sound classification
problems, their modeling of human perception making them
a comfortable choice when no better assumptions on the data
can be made. Other spectral representation include spectro-
gram and CQT [15], [16] with CQT probably made popular
by previous edition runner-up system. CQT is often used in
music analysis for its exponential frequency resolution and

for preserving the relative positions of harmonics, but its use
for environmental sound analysis is not as clearly motivated.
While in 2016 CQT was used in three systems, this time there
were 13, of which 9 relied solely on CQT, and others used it
in combination with spectrogram or MFCC. There was also
one system based on low-level features that included spec-
tral centroid, rolloff, zero-crossing rate and MFCCs and their
derivatives, ranked only 54, at same level with the baseline.

Many participants made use of binaural audio, with one
third using the two channels separately instead of the aver-
aged audio provided as example in the baseline system. This
was mostly used as a way to obtain more data for the deep-
learning methods, with the different channels having slight
variations in the captured audio. Another new element was
the use of specific data augmentation techniques, unnoticed
in 2016: there was much use of block mixing, pitch shifting,
time stretching, mixing files of the same class, and adding
Gaussian noise, in some cases all the techniques being used in
the same system. A novel and unique method in the challenge
was the augmentation of the dataset using generative adver-
sarial networks (GAN), by the system that also achieved the
best performance [14]. All data augmentation techniques are
motivated by the use of deep learning, for creating more data
and adding more acoustic variability to allow better learning
and generalization.

A comparison of systems performance on the develop-
ment and evaluation datasets reveals that most systems have
a significant drop in performance for the evaluation dataset
(10-20% in term of absolute accuracy). This is likely due to
the mismatch in the data recording conditions, as the evalu-
ation data was recorded one year later at similar or, in some
cases, same locations. The situation was not intentional, be-
ing just a consequence of extending the previously available
data with a new evaluation dataset, but it reveals the ease
with which neural-network based systems overfit the data. As
an observation, augmenting the dataset using GAN seemed
to offer a more consistent performance in conjunction with
the deep-learning methods, the corresponding system having
only a 4% absolute drop in accuracy between development
and evaluation sets. The Pearson correlation coefficient cal-
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culated between the development and evaluation performance
for all systems is 0.42, which can be considered a medium
strength of association between the two. This suggests that
the performance of systems is somewhat consistent, and the
gap in performance is due to data mismatch and not lack of
generalization properties in the systems. Considering only the
best system of each team, the correlation between the devel-
opment and evaluation performance is 0.69, indicating very
strong correlation. Based on this, we can assert that each
team has produced at least one system that generalizes well
for unseen data.

3.3. Statistical analysis of systems performance

The confidence intervals presented in Table 1 show that there
is not a significant difference between performance of closely
ranked systems, with only the top system being set apart from
the others. To understand how much the different systems
take similar or different decisions, the systems were com-
pared in pairs using McNemar’s test [12]. McNemar’s test
for comparing classifiers examines only the cases in which
the prediction of one system is correct, and the prediction of
the second system is wrong, therefore identifying if there is a
difference in systems with respect to the test samples that are
more difficult to classify. For systems with similar accuracy,
this test indicates if the difference is statistically significant.

The null hypothesis for the statistical test is that the two
classifiers being compared perform similarly, while the alter-
native hypothesis is that the difference is statistically signifi-
cant. Figure 4 illustrates the results of this test using a signif-
icance level of 0.05. A red square in the illustration indicates
a pair of systems for which the result does not allow rejecting
the null hypothesis. For this comparison we considered only
the best system of each team, plus the baseline, with the sys-
tems considered in order of their accuracy (team rank order).

As expected, we notice that many systems on neighboring
ranks perform equivalently, with the indicators aligned close
to the diagonal. The top four compared systems show sta-
tistically significant differences, while already between the
fourth and the fifth the difference is not statistically signifi-
cant. These are the same systems presented in Table 1, ranked
1, 2, 6, 8, and 9, with accuracies of 83.3%, 80.4%, 77.7%,
74.1%, and 73.8%, respectively. The second to fifth ranked
submissions all belong to the same authors [17] and have
accuracies from 80.4% to 79.6%, being based on the same
method with very slight variations, with no significant differ-
ence detected using McNemar’s test.

Using the information that the first three systems in our
comparison are significantly different, we calculate the per-
formance of their combined outputs with a majority vote rule.
The obtained performance is only 84.69%, which is not much
higher than the 83.3% accuracy of the top system, meaning
that in many cases two of the three systems still mis-classify
the data. If we investigate the best case scenario between the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Mun (83.3)   1
Han (80.4)   2
Xing (77.7)   3

Hasan (74.1)   4
Lehner (73.8)   5

Park (72.6)   6
Kukanov (71.7)   7

Piczak (70.6)   8
Yu (70.6)   9

Zhao (70.0) 10
Bisot (69.8) 11

Xu (68.5) 12
Amiriparian (67.5) 13

Fonseca (67.3) 14
Waldekar (67.0) 15

Foleiss (66.9) 16
Xu (66.7) 17

Abrol (65.7) 18
Huang (65.5) 19

Yang (65.2) 20
Vij (65.0) 21

Kun (64.2) 22
Duppada (64.1) 23

Zhao (63.8) 24
Dang (63.7) 25

Li (63.6) 26
Rakotomamonjy (62.8) 27

Gong (61.9) 28
Schindler (61.7) 29

Chou (61.5) 30
Jallet (61.2) 31

Baseline (61.0) 32
Vafeiadis (61.0) 33

Biho (60.5) 34
Jimenez (59.9) 35
Hussain (59.9) 36

Phan (59.0) 37
Fraile (58.3) 38
Maka (47.5) 39

Chandrasekhar (45.9) 40

Fig. 4. Output of McNemar’s test comparing classifiers; red
squares mark the pairs for which the null hypothesis that clas-
sifiers perform similarly could not be rejected

three systems, by considering a correct item if at least one
of the systems has classified it correctly, we obtain an accu-
racy of 96.05% - this indicates that most test items are indeed
correctly classified by at least one of the three considered sys-
tems, and the possibility of improving performance by clas-
sifiers fusion exists, if suitable rules for fusion can be found.
The average performance of all 97 systems is 64.33%, while
a majority vote fusion of all systems obtains a performance
of 73.52%. We contrast this with the human performance
obtained on similar data [18], in which average human per-
formance was 54.4% (87 participants), with participants from
Finland, familiar with the recorded soundscape, scoring a bet-
ter accuracy of 60%.

4. CONCLUSIONS

The topic of acoustic scene classification attracts a lot of inter-
est within the DCASE challenge, and this provides an inter-
esting perspective on the current trends for its solutions. Each
year, a large number of submissions are available for com-
parison and statistical analysis, often setting the next popular
feature representation and machine learning technique. In the
2017 challenge, convolutional networks have dominated the
methods, while the mel representations stayed favorite from
previous editions. In contrast to 2016, there was significant
difference in performance between first few top systems, and
most test audio segments were correctly classified by at least
one of them - suggesting that fusion of different features and
methods may achieve close to perfect classification accuracy.
The upcoming challenge raises the difficulty of the acoustic
scene classification task further by employing a more diverse
and much larger dataset, in combination to the short audio
segment duration, opening the way for new approaches.
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