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Abstract

This paper proposes a state-based labeling for acoustic pat-
terns of speech and a method for using this labelling in noise-
robust automatic speech recognition. Acoustic time-frequency
segments of speech, exemplars, are obtained from a training
database and associated with time-varying state labels using the
transcriptions. In the recognition phase, noisy speech is mod-
eled by a sparse linear combination of noise and speech exem-
plars. The likelihoods of states are obtained by linear combina-
tion of the exemplar weights, which can then be used to estimate
the most likely state transition path. The proposed method was
tested in the connected digit recognition task with noisy speech
material from the Aurora-2 database where it is shown to pro-
duce better results than the existing histogram-based labeling
method.

Index Terms: noise robustness, automatic speech recognition,
sparse representations

1. Introduction
Most of automatic speech recognition (ASR) technologies are
based on hidden Markov models (HMMs), which model a time-
varying speech signal using a sequence of states, each of which
is associated with a distribution of acoustic features. While
HMMs reach a relatively high performance in good condi-
tions, they have problems in modelling wide variances in natural
speech signals, such as speech in natural environments which is
often interfered by environmental noises.

Recently, some studies [1–6] have aimed at ASR using
sparse representations of speech. In them, a time-frequency
representation of speech is as a weighted linear combination
of speech atoms. Benefits of the existing systems range from
improved recognition accuracy to an easy incorporation of ro-
bustness to additive noises. Some of these systems construct
the dictionary of atoms to be used in the sparse representation
from exemplars of speech, which are realizations of speech in
the training data, spanning multiple time frames [1].

When the weights of the sparse representation are used di-
rectly in the recognition, a fundamental problem is the associa-
tion of higher-level information with the atoms in the dictionary
to enable the recognition. Sivaram et al. [3] trained a neural
network to map the weights of the atoms directly to phoneme
classes. Sainath et al. [4] associated each atom with one pho-
netic class, and recognition was done by finding the phoneme
class with the highest sum of weights. Van hamme et al. [5] used
a dictionary consisting of both acoustic information and higher-
level phonetic information. Schullet et al. [6] used the index of
the speech atom with the highest weight as an additional fea-
ture for their Dynamic Bayesian Network recognizer. In our
earlier work [1] we did exemplar-based ASR, where each ex-
emplar was associated with a state histogram which expressed

the occurrence count for each HMM-state within the duration
of the exemplar. With the state transcription of the dictionary
obtained by forced alignment, likelihoods were then calculated
as the weighted sum of exemplar likelihoods.

With exemplars spanning multiple frames, it becomes in-
creasingly difficult to accurately model the time-varying infor-
mation. For example the histogram-based representation [1]
does not carry information about ordering of the states within
an exemplar, and it is unable to represent fine-level temporal in-
formation. This can lead to erroneous recognition, especially in
the case of repeated phonemes and in short utterances.

This paper proposes an exemplar-based ASR system where
the higher-level information about each exemplar is encoded
with a state label matrix. The state label matrix of each ex-
emplar represents the state activity of the exemplar as a func-
tion of time. The state activities are calculated separately for
overlapping segments of speech, and the state likelihoods for
a whole utterance are obtained as a weighted sum of overlap-
ping exemplars. We also propose a new method to obtain the
likelihoods of silence states by estimating the speech activity
from the exemplar weights. We evaluate the proposed method
on the AURORA-2 noisy connected digit recognition task, where
it is shown to produce better results than the existing histogram-
based labeling method.

2. Sparse representation of noisy speech
The proposed approach operates in the magnitude spectrogram
domain, with the term magnitude spectrogram referring to the
square root of energy as the function of time and frequency.
The magnitude spectrogram describing a clean speech segment
S is a B × T dimensional matrix (with B frequency bands and
T time frames). To simplify the notation, the columns of this
matrix are stacked into a single vector s of length D = B · T ,
so that the entry S(b, t) corresponds to the entry s(b+ tB). Top
panels of Figure 1 illustrate two examples of exemplars.

We model an observed speech segment as a linear, non-
negative combination of clean speech exemplars as

j , j =
1, . . . , J denoting the exemplar index. These stacked vectors
are magnitude spectrograms describing speech segments ex-
tracted from a training database. We write:

s ≈

J
X

j=1

x
s
ja

s
j = A

s
x

s
s.t. x

s ≥ 0 (1)

where xs is a J-dimensional weight vector and the J exemplars
as

1 as
2 . . . as

J are grouped into a speech exemplar matrix As

as As = [as
1 as

2 . . . as
J ]. Prior research has shown [7] that xs

can be extremely sparse. That is, only a few nonzero entries
suffice to represent s with sufficient accuracy. The weights are
restricted to non-negative values, a restriction which has turned
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Figure 1: Two exemplars of length T = 25 representing two different
realizations of the digit “two”. The horizontal axes indicate the time
in frames. The top panels illustrate the magnitude spectra, with a dark
color indicating a higher value. The lower panels illustrate a part of the
state label matrices explained in Section 3.1. The state indices [68, 83]
are the 16 states underlying the digit “two”. The digit in the left panels
has a longer duration, and therefore it does not reach the higher state
indices that the right exemplar does. The histogram-based method [1]
uses the state occurrence histograms of these label matrices.

out to be very critical in audio analysis algorithms based on the
linear model for the magnitude spectrogram [8].

Noisy speech signals are modelled by including a dictio-
naryAn which contains noise atoms, so that we get

s ≈ [As
A

n] [xs
x

n] (2)

= Ax s.t. x
s
,x

n
,x ≥ 0 (3)

where xn is the K-dimensional weight vector of the noise ex-
emplars and the whole speech + noise exemplar dictionary ma-
trixA has dimensionalityD×L, where L = J +K, and vector
x consists of the weights of the speech and noise exemplars.

2.1. Finding the weights

In order to obtain x, we look for values which are able to repre-
sent the noisy speech y with the modelAx, while using only a
small number of non-zero entries in x. We do this by minimiz-
ing the cost function

d(y,Ax) + ||λ. ∗ x||1 s.t., x ≥ 0, (4)

where the first term measures the mismatch between the noisy
observation and the model by the generalized Kullback-Leibler
(KL) divergence:

d(y, ŷ) =
D

X

d=1

yd log(
yd

ŷd

) − yd + ŷd, (5)

which has been found out to produce good results in audio spec-
trogram modeling [8].

The second term of (4) is the L1 norm of the weight vector
weighted by element-wise multiplication (operator .∗) by vector

λ = [λ1 λ2 . . . λL]T, which leads to cost
PL

l=1 xlλl. The
term penalizes non-zero entries of x, controlling the degree of
sparseness of the resulting x. The cost function (4) is minimized
using the multiplicative updates routine described in [1].

2.2. Sliding window approach for time-continuity

Describing (noisy) speech as a linear combination of exemplars
is only a valid approach for relative short speech segments. In
order to decode utterances of arbitrary lengths, we adopt a slid-
ing window approach as in [1]. In this approach, we divide an
utterance in a number of overlapping, fixed-length segments.
We then find a sparse representation for each segment.

Consider a noisy speech utterance Yutt represented as a
magnitude spectrogram of size B × Tutt. We slide a window
(observed speech segment)Y, a matrix of size B × T , through
Yutt using a window shift of one frame.

At each window position, the spectrogram is reshaped into
an observation vector yw, similarly as was done for speech and
noise exemplars above. Herew denotes the index of the window
position, and it ranges from 1 toW = Tutt−T +1, the number
of windows in the utterance. For each yw, we obtain the sparse
representation weight vector xw as described above.

3. Classification using state-labeling
In this section we propose a hybrid exemplar-based/HMM
method for recognizing the words in the observed utterance,
based on the speech exemplar weights obtained in the previous
section, and a state label matrix associated with each exemplar.
The states in our system have a similar role as in conventional
HMM recognizers, but we use a exemplar-based method for es-
timating the likelihoods of the states.

3.1. Speech state likelihoods

Each frame t = 1, . . . , T in each speech exemplar as
j is la-

belled with a state label qjt ∈ [1, Q], where Q is the total num-
ber of states. Given the canonical transcriptions of the training
data from which the exemplars are extracted, the labelling is ob-
tained by using a forced alignment with a conventional HMM
recognizer. The training data used to obtain the labelling is pre-
sented in Section 4.

Using the frame-by-frame state labelling of the exemplars,
we encode the labelling of each exemplar as

j with label matrix
Lj . Lj is a sparse, binary matrix of dimensions Q × T , the
entries having values [Lj ]q,t = δ(q, qjt), where δ is the delta
function. Figure 1 illustrates two examples of exemplars and
their corresponding state label matrices.

Denoting the speech exemplar weights calculated for win-
dow w by xs

w,j , j = 1, . . . , J , j being the exemplar index,
we calculate state likelihood matrix Lw in window w as the
weighted sum of exemplar label matrices as

Lw =
J

X

j=1

Ljx
s
w,j (6)

The columns of Lw are denoted with vectors lw,τ , t =
1, . . . , T . State likelihood vectors combined over overlapping
windows are obtained by summing the likelihoods of the frames
of all the windows that overlap, taking into account the exact
temporal positions of the frames. The combined state likelihood
vector lutt

τ for each frame τ = 1, . . . , Tutt is given as

l
utt
τ =

min(T,τ)
X

τ=max(1,τ−Tutt+T )

lτ−t+1,t (7)

Figure 2 illustrates an example of a likelihood matrix where
the frame likelihood vectors are the column vectors. In our pre-
vious approach [1] we used histograms of state labels instead of
dynamic state label matrices. The method proposed in this pa-
per produces sharp likelihoods paths along with the likelihood
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(a) Histogram based labelling
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(b) Time-dependent labelling

Figure 2: Two examples of likelihood matrices obtained using sparse classification. The left figure shows likelihoods obtained with the histogram-based
labeling proposed in [1]. The right figure corresponds to the proposed method. Darker colors indicate a higher likelihood, and digits can be recognized
by their continuous paths along the diagonal. The horizontal axis represent time. The left right vertical axis shows the digit labels, with ‘Z’ representing
‘zero’ and the label ‘sil’ representing silence. The left vertical axis shows the underlying states indices. The utterance spoken is ‘16688’

matrix, whereas the histogram-based method produced wider
paths.

3.2. Silence likelihoods

The likelihoods of silence states cannot be reliably estimated
from noisy utterances using the method described above be-
cause of the following reasons. First, the signal model (1)
does not require exemplars containing silence to represent seg-
ments without speech activity. Second, the weighted combina-
tion of exemplars may contain exemplars consisting of speech-
to-silence transitions, so that silence states get a non-zero like-
lihood during speech.
In [1], we artificially boosted the silence state likelihood in

each window by a value derived from the sum of the exemplar
weights times an empirically derived constant. The constant
proved difficult to optimize and give rise to numerous insertion
and/or deletion errors. In this work, we propose an improved
method for estimating the silence state likelihoods.
The silence state likelihood estimates are derived from the

speech activity rw that is measured for each window w by the

sum of speech exemplar weights, rw =
PJ

l=1 xs
w,j . The mea-

sure is normalized between 0 and 1 over each utterance, so that
0 corresponds to silence and 1 to full speech activity. For each
frame τ we use the speech activity rτ measured in window w
centered around frame t. The adjusted activity measure r̂τ is
obtained by applying a shifted and scaled logistic function

r̂τ =
1

1 + exp(−αrτ + β)
(8)

to sharpen the distinction between speech and silence areas. Pa-
rameters α and β were optimized using development data (see
Section 4) for each window length separately.
At each frame, the speech state likelihoods are multiplied

by a common factor so that their sum equals r̂τ . Similarly, si-
lence states are scaled as a group until they add up to 1 − r̂τ .
Consequently, the original ratio between speech and silence
likelihoods is replaced by one defined by r̂, and the likelihoods
in each frame sum to unity.

3.3. Finding the most likely state transition path

After obtaining the state likelihoods for the entire utterance, we
use the Viterbi algorithm to find the state sequence that max-
imises likelihood. With the state labels obtained from a forced

alignment with a conventional HMM-based recognizer, we use
the Viterbi back-end of that same recognizer to carry out the
Viterbi search.

4. Experiments

For our recognition experiments we used material from test-
sets ‘A’ and ‘B’ of the AURORA-2 corpus [10]. Testset ‘A’
comprises 1 clean and 24 noisy subsets, containing four noise
types (subway, car, babble, exhibition hall) at six SNR values,
20, 15, 10, 5, 0 and −5 dB. Testset ‘B’ contains four different
noise types (restaurant, street, airport, train station). Each sub-
set contains 1001 utterances with one to seven digits ‘0-9’ or
‘oh’. To reduce computation times, we used a random, repre-
sentative subset of 10% of the utterances (i.e. 400 utterances
per SNR level). Acoustic feature vectors consisted of Mel fre-
quency magnitude spectra, spanning K = 23 bands with a
frame shift of 10 ms and a frame length of 25 ms.

For each window length we created a dictionary of 4000
noise and 4000 clean speech exemplars by randomly selecting
exemplars from the noise and clean speech in the multicondi-
tion training set. The multicondition training set of AURORA-2
contains 8440 utterances with the same noises as in testset ‘A’,
at SNR values SNR = 20, 15, 10, 5 dB. The spectrograms were
reshaped to vectors and subsequently added as the columns of
the dictionary A as described in Section 2. The dictionary A
was normalized by fixing the Euclidean norm to unity along
both dimensions. Finally, each observation y was scaled using
the normalization matrices applied toA.

HMM-state based labels of the exemplars were obtained via
a forced alignment with the orthographic transcription using the
HMM-based recognizer described in [11]. Viterbi decoding was
done using the back-end of this, and the same (noise robust)
decoder was also used for our baseline recognition experiments.
Digits were described by 16 states with an additional 3-state
silence word, resulting in a Q = 179 dimensional state-space.

We carried out recognition experiments at three window
lengths: T ∈ {10, 20, 30} frames. Recognition accuracies
were averaged over the four noise types at each SNR level.
The speech decoding system was implemented in MATLAB. To
obtain results with histogram-based labeling we used the same
configuration as in [1].

Silence likelihood parameters were optimized for each win-
dow length by maximising recognition accuracy on a develop-



Table 1: Word recognition accuracy at several window lengths and SNR’s. The first row displays the baseline accuracy as obtained by a noise robust
recognizer [9] that is based on missing data technique. The rows denoted by ‘HB’ denote results obtained using histogram-based labeling, the rows
denoted by ‘TD’ represent results obtained using the proposed time-dependent labeling.

SNR [dB] clean 20 15 10 5 0 -5

baseline 99.7 97.9 95.5 91.4 82.6 62.1 17.1

HB
T=10 95.5 93.8 92.7 90.2 83.8 69.5 41.0
T=20 93.5 92.3 91.9 88.8 83.8 72.0 49.3
T=30 89.5 88.4 88.0 85.5 82.6 74.9 55.8

TD
T=10 96.2 95.3 94.4 92.1 84.7 71.2 39.6
T=20 96.6 95.8 94.8 92.7 88.8 78.1 53.1
T=30 94.7 93.4 93.3 92.2 89.9 79.5 56.7

(a) Test set ‘A’

SNR [dB] clean 20 15 10 5 0 -5

baseline 99.7 95.3 91.2 84.3 70.4 40.2 12.2

HB
T=10 95.5 93.7 90.4 84.6 73.5 50.6 21.2
T=20 93.5 91.6 88.6 80.8 69.1 45.1 23.3
T=30 89.5 87.2 85.2 80.4 71.8 54.8 32.4

TD
T=10 96.2 94.7 93.6 87.9 78.4 57.1 27.4
T=20 96.6 95.3 93.7 89.9 82.7 63.1 35.7
T=30 94.7 93.5 93.2 90.1 85.7 67.5 37.6

(b) Test set ‘B’

ment set created from unused testset ‘A’ and ‘B’ material. The
development set consists of 100 utterances from each SNR and
each noise type, 4800 utterances in total.

5. Results and Discussion

From the results in Table 1 we can deduce that the use of the
new time-dependent labeling, in combination with the new si-
lence likelihood calculation, leads to substantial improvements
in recognition accuracy. With the exception of a single condi-
tion, SNR -5 dB on testset ‘A’ with T=10, the results improve
for across conditions by up to 18% absolute at SNR 0 dB, T=20
on testset ‘B’.

The results at T=20 and T=30 have benefited the most from
the use of time-dependent labeling. The reason for this is that
with increasing the length of the exemplar, it becomes increas-
ingly difficult to accurately model the state information in ex-
emplar using a single histogram. Since the time-dependent la-
belling models the state changes over time within the exemplar,
the length of the exemplar no longer poses a disadvantage for
decoding. Although the window length T=30 still achieves the
highest accuracies at SNR 10 dB and lower, T=20 now performs
even better than T=10 at higher SNRs.

The decrease in accuracy at high SNR’s, compared to the
baseline noise robust recognizer [9] based on missing data tech-
nique, is due to a number of reasons, such as the limited num-
ber of exemplars in the dictionary. Preliminary research shows
that this drop in performance can be relatively easily be avoided
by several approaches, one of which the combination of likeli-
hoods with those obtained with a conventional recognizer. As it
is, the method has great potential since we can observe that the
proposed method works much better for SNR’s below 10 or 15
dB., depending on the testset, with differences of up to ≈ 40%
at SNR -5 dB. Moreover, the proposed time-dependent label-
ing allows extending the basic model (1) to convolutive speech
bases [12], which results in more compact, shift-invariant dic-
tionaries.

6. Conclusions

We proposed a state-based labeling for speech exemplars span-
ning multiple frames to model the time-varying speech infor-
mation within exemplars. Using these labeled exemplars, we
did noise-robust exemplar-based ASR by decomposing noisy
speech as a linear combination of speech and noise exemplars.
The weights of the linear combination of exemplars were then
used together with the state-labeling to provide noise-robust
state likelihoods. Experiments on AURORA-2 revealed the state-
based labeling works up to 18% better than a histogram-based
labeling method previously used.
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