
MODELING MUSICAL SOUNDS WITH AN INTERPOLATING STATE MODEL

Anssi Klapuri, Tuomas Virtanen, and Marko Helén

Institute of Signal Processing, Tampere University of Technology
Korkeakoulunkatu 1, 33720 Tampere, Finland

phone: +358 3 3115 2124, fax: +358 3 3115 4954, email: {klap,tuomasv,heln}@cs.tut.fi
web: www.cs.tut.fi/∼klap/

ABSTRACT
A computationally efficient algorithm is proposed for modeling and
coding the time-varying spectra of musical sounds. The aim is to
encode individual data sets and not the statistical properties of the
sounds. A given sequence of acoustic feature vectors is modeled
by finding such a set of “states” (anchor points in the feature space)
that the input data can be efficiently represented by interpolating
between them. The achieved modeling accuracy for a database of
musical sounds was approximately two times better than that of a
conventional “vector quantization” model where the input data was
k-means clustered and the input data vectors were then replaced by
their corresponding cluster centroids. The computational complex-
ity of the proposed algorithm as a function of the input sequence
length T is O(TlogT).

1. INTRODUCTION

This paper proposes an algorithm for modeling and coding the time-
varying spectra of musical sounds. In particular, we focus on mod-
eling individual data sets, not the statistical properties of the sounds.
This has applications in structured audio coding (object-based mu-
sic coding) and in sound source recognition.

Many musical sounds are very poorly modeled using a con-
ventional state model where each state generates its characteristic
spectral energy distribution and time-varying spectra are modeled
by switching between the states. On the contrary, most musical
sounds can be represented very efficiently by interpolating between
spectra that are taken from appropriate temporal positions. Several
examples of this can be found in sound synthesis.

In modeling speech signals, the limitations of e.g. hidden
Markov models (HMM) are well known. Improvements towards
addressing the context-dependent nature of observations include
e.g. triphone models and segment models [1], [2], [3]. The spec-
tral energy distribution of musical sounds is generally more slowly-
varying than that of speech sounds and the limitations of the con-
ventional state models are even earlier encountered. As an exam-
ple, consider the power envelope of a piano sound at three sub-
bands as illustrated in the left panel of Fig. 1. The input data (solid
line) consists of three-dimensional feature vectors that encode the
rough spectral energy distribution as a function of time. The con-
ventional “vector quantization” approach where the input data is
replaced by a sequence of quantized vectors (i.e., discrete “states”,
see the dashed line) would require a very large number of states to
represent the data accurately. A drawback of the segment models
[1], in turn, is that they are better suited for modeling the statistical
properties of (speech) signals and increase the model complexity,
i.e., the amount of stored parameter data. Triphone models are not
always well matched to music signals.

The right panel of Fig. 1 illustrates the proposed interpolating
state model. The amount of stored model data is the same as in the
left panel (four different model vectors, i.e., state vectors), yet the
model achieves much better fit to the data. The occurrence times
of the four model vectors are indicated as vertical lines, with the
number of the occurred state at the x-axis, and the original data
is then represented by interpolating between each two consecutive
state vectors. The data-driven interpolation model proposed by Sun

in [4] for the statistical modeling of speech signals is closely related
to the present model but the author did not propose an algorithm for
estimating the state vectors (anchor points) of the model.

In this paper, a computationally efficient algorithm is proposed
for estimating the parameters of the interpolating state model which
will be more exactly defined in Sec. 2. Whereas globally opti-
mal parameters for this model are computationally intractable, the
method finds a suboptimal solution. Extensive simulation exper-
iments were carried out which show that the proposed model ap-
proximately halves the modeling error of a conventional “vector
quantization” approach where the input data is k-means clustered
and the input data vectors are replaced by the corresponding cluster
centroids. The time-complexity of the proposed method is propor-
tional to O(Tlog(T)K2D), where T is the length of the input data
sequence, K is the desired number of states between which the input
data is interpolated, and D is the dimensionality of the data.

2. MODEL FORMULATION

The input data to be modeled is a sequence of feature vectors x(i)
which have been extracted in successive time frames i = 0, . . . ,T−1
of an acoustic signal. The dimensionality of the feature vectors is
denoted by D and a matrix X = [x(0), . . . ,x(T−1)]T of size (T×D)
is used to denote the complete data set to be modeled.

The basic idea of our model is to find a limited number of “state
vectors” (anchor points) in the feature space so that the original data
can be efficiently approximated by interpolating between these. The
proposed representation can be most conveniently described as a
state model. There are K� T states, each of which corresponds
to a distinct D-dimensional state vector s(k). For convenience, the
state vectors are collected into a matrix S = [s(0), . . . ,s(K−1)]T.

Transitions from a state to another do not occur instantly, but
during a certain period of time. The output of the model is generated
at the transitions between the states, as a linear interpolation of the
state vectors at the two ends of the transition. Figure 2 illustrate this
situation. During the transition, the model moves with a constant
speed towards the next state and, when that is reached, the model
immediately starts moving towards another state. The occurrence
times of the states in their pure form are called nodes where, mo-

0 0.5 1 1.5 2
1

2

3

Time (s)

F
re

qu
en

cy
 b

an
d

1 122 3 4 4 1 41
1

2

3

F
re

qu
en

cy
 b

an
d

Time axis (state occurences marked)

Figure 1: Left: Power envelope of a piano sound at three subbands
(solid line) modeled with k-means clustering (dashed line). Right:
The same envelope modeled with an interpolating state model (line
connecting the circles). The vertical lines indicate state occurences.

1 2

(1−w)s(1)+ws(2)s(1) s(2)

Figure 2: Data generation in an interpolating state model.

mentarily, the output corresponds exactly to one state vector. The
durations of the transitions may be arbitrary.

Note that transitions between all state pairs have to be allowed.
For example, the sound of a transverse flute was found to loop
around a same state sequence during the sustained vibrato portion
of the sound. Allowing the transitions back to the previous states
greatly reduces the number of states needed for modeling.

The nodes n = 0, . . . ,N− 1 are characterized by a time stamp
t(n) ∈ [0,T− 1] and the number of the state that occurs at the
node, q(n) ∈ [0,K− 1]. The nodes are always kept in ascending
temporal order, i.e., t(n) < t(n + 1), and the number of nodes N
satisfies K ≤ N ≤ T. One node is always positioned in the be-
ginning and in the end of the data sequence, i.e., t(0) = 0 and
t(N−1) = T−1. For convenience, we define t = [t(0), . . . ,t(N−1)]
and q = [q(0), . . . ,q(N−1).

The model is completely specified by the three data structures
t, q, and S. The output of the model at time i between two nodes,
t(n) ≤ i ≤ t(n + 1) is a linear interpolation of the state vectors that
occur at the two nodes:

x̂(i) = (1−wn(i))s(q(n))+ wn(i)s(q(n + 1)), (1)

where

wn(i) =
i− t(n)

t(n + 1)− t(n)
. (2)

It should be noted that the model is completely deterministic,
contrary to e.g. hidden Markov models or stochastic segment mod-
els [1]. No probability distributions are applied.

3. ALGORITHM FOR PARAMETER ESTIMATION

A remaining problem is to estimate the model parameters t, q, and
S given the input data X and the desired number of states K so as to
minimize the sum of squared error between the original data X and
the output of the model, X̂ , X̂ = [x̂(0), . . . , x̂(T−1)]:

e =
T−1

∑
i=0

D−1

∑
d=0

(
Xi,d − X̂i,d

)2
. (3)

A basic version of the parameter estimation algorithm is first
described in Secs. 3.1–3.3 and then the efficient version in Sec. 3.4.

3.1 Least-square error solution for a given state sequence
To begin with, consider the situation where the state sequence (as
defined by t and q) is given in advance. In this case, optimal state
vectors which minimize (3) can be solved in a closed form using the
linear least squares approach ([5], Chapter 8).

The solution can be formulated in the present context as fol-
lows. Let W be a (T×K) matrix of weights where each row i,
t(n)≤ i≤ t(n + 1), contains only two non-zero values:

Wi,k =





1−wn(i) for column k = q(n)

wn(i) for column k = q(n + 1)

0 otherwise
. (4)

Then, the least squares solution for the state vectors is [5]:

S = (W TW)−1W TX . (5)

Next, consider a situation where only a subset of all the state
vectors are being solved and the other states are kept fixed (i.e.,
are already known). Let us denote by K the set of states that are
being updated. First, all columns k for which k /∈K are removed
from W . Then a (T×D) matrix Y is defined where each row i,
t(n)≤ i≤ t(n + 1) is defined as

y(i)T = x(i)T−I(n)(1−wn(i))s(q(n))T−I(n+1)wn(i)s(q(n+1))T,
(6)

where the indicator function I(n) is defined counterintuitively as

I(n) =

{
0 if q(n) ∈K
1 if q(n) /∈K

. (7)

The matrix Y represents a version of the input data sequence where
the effect of the fixed states is compensated for.

Finally, the rows i, t(n)≤ i≤ t(n+1), for which q(n) /∈K and
q(n+1) /∈K can be removed both from W and Y to get matrices W̃
and Ỹ , respectively. The least-squares solution for the state vectors
of the states k ∈K can then be written as

S̃ = (W̃ TW̃)−1W̃ TỸ , (8)

where S̃ contains only the states k ∈K . Note that the size of the
square matrix (W̃ TW̃) depends on the number of unknowns (size of
the set K) and cannot be singular due way the matrix is composed.

3.2 Iterative algorithm to find all the model parameters
A problem with the above-described least squares solution is that
there are approximately KT different configurations for the vectors
t and q, i.e., different state sequences that can occur within the
time interval [0,T−1]. As testing all these configurations for error
minization is not feasible, an iterative algorithm is proposed which
finds a suboptimal solution. The processing steps are the following:

1. The algorithm begins by initializing a distinct state vector to
all the data points of the original data so that, in the beginning, there
are K = T states and N = T nodes with the state vectors s(k) = x(k)
for k = 0, . . . ,K− 1, and the node sequence t(n) = n, q(n) = n for
n = 0, . . . ,N−1.

2. During the iteration, the number of states K is reduced by
performing simple atomic operations one-by-one so that, at each
step, the added modeling error (“cost”) is minimized. Note that
during the runtime of the algorithm, K and N are variables which
decrease monotonically in value until K reaches the desired number
of states K, denoted by Ktarget in the following for clarity.

One of the following atomic operations is performed at each
iteration step to reduce the number of state vectors:

(a) Delete state. Delete a state and all nodes associated with it.
All states which have nodes as immediate neighbours of a deleted
node are updated (recomputed using (8)) so as to minimize the error
in the neighbourhood of the deleted nodes. The other state vectors
are kept fixed. The states containing temporally the first or the last
node cannot be deleted.

The left panel of Fig. 3 illustrates a simple case of state dele-
tion. In this example, the state six is being deleted and the node
associated with it is marked with an asterisk. The states four and
five which occur as immediate neighbours of the deleted node are
updated in order to minimize the error over the time span that is
marked with a solid line in the figure. The right panel of Fig. 3 illus-
trates a more general case of state deletion where the deleted state
(six) has several associated nodes. The states occurring as neigh-
bours to the deleted nodes (four, five, and seven) are updated. Note
that one of the updated states (five) has several associated nodes
(including the one at the time t(n) = 70).

Repeating only the delete state operation until K = Ktarget re-
sults in a model where each state occurs exactly once (has one as-
sociated node) and state transitions occur only from a state to the
next state. In order to introduce arbitrary state transitions, another
atomic operation is needed.

16 20 24 30 40 44 50

1

2

3

4

5

6

t(n)

q(
n)

16 20 24 30 40 44 50 54 60 65 70

1

2

3

4

5

6

7

t(n)

q(
n)

Figure 3: Left: A simple state deletion case. The node of the deleted
state is marked with an asterisk and the nodes of the updated states
are marked with arrows. Right: a more general case.

(b) Merge state. Merge two states k1 and k2. All nodes asso-
ciated with either of the two states are associated with k1 after the
operation. An optimal state vector is computed for the merged state
k1 using (8) and the other state k2 is deleted. As a result, the number
of states is decreased by one.

The above atomic operations are performed one at a time to
reduce the model order until the desired order Ktarget is reached.
Important in doing this is to choose such an atomic operation at each
step that the resulting cost (added modeling error) is minimized.

Repeating the delete and merge operations one-by-one leads to
a model with arbitrary state transitions. However, in practical ex-
periments two additional atomic operations turned out to be useful.
These are more “garbage collection” type of operations but make a
substantial improvement in the actual modeling result.

(c) Delete node. It is useful to be able to remove individ-
ual nodes that are associated with states that have several nodes.
The delete node operation deletes a node n associated with a state
q(n) = k. After the deletion, the state k and the states occurring as
immediate neighbours of the node n are updated (a maximum of
three states). If a state has only one associated node, its deletion
requires the delete state operation.

(d) Move node. Move an individual node one time index to-
wards the past (t(n) ← t(n)− 1) or towards the future (t(n) ←
t(n)+ 1). The state q(n) is updated after the operation.

3.3 Keeping track of the cost of the atomic operations
In order to keep track of the cost of different operations (and to
choose the best at each step), the following data structures are in-
troduced. Deletion and merging costs for the states k = 1, . . . ,K are
stored in the vectors csdel(k) and csmerge(k). Along with the latter,
a vector psmerge(k) is needed where the optimal merge partner is
stored for each k. Node deletion and node moving costs are stored
in the vectors cndel(n) and cnmove(n) for n = 1, . . . ,N. Along with
the latter, a vector dnmove(n) is needed which indicates whether a
move towards the past or towards the future is better for the corre-
sponding node. Initializing the cost vectors is rather straightforward
since in the beginning, each state has only one associated node.

During the iterative algorithm—that is, after performing any of
the four atomic operations, we need to update the cost vectors for
the states and nodes that have been affected by the operation. The
vectors csdel(k) and csmerge(k) have to be updated for the states that
have associated nodes as immediate neighbours to the nodes of the
states that were updated during the previous atomic operation. The
vectors cndel(n) and cnmove(n) have to be updated for the nodes that
occur as such neighbours.

The costs are computed as follows:
(a) The costs csdel(k) are approximated by testing to delete the state

k and all its associated nodes and by computing the resulting er-
ror (3) without performing any updates for the remaining states.
This is compared to the error before the deletion to calculate the
cost of the operation. It should be noted that this gives an upper
bound for the error: if the deletion is later realized, the states oc-
curring as neighbours of the deleted state are updated, leading
to an added modeling error which is ≤ csdel(k).

(b) The costs csmerge(k) are calculated by computing Euclidean dis-
tance between state k and all the other state vectors, testing to
merge the state k with M closest states,1 one at the time, and by
comparing the resulting error with that before merging. After
finding the best merging partner for the state k, the correspond-
ing cost is stored in csmerge(k) and the partner in psmerge(k).

(c) The costs cndel(n) are approximated by testing to delete the node
n and by computing the error in (3) without performing any up-
dates for the state vectors. This gives an upper bound for the
cost (cf. (a) above).

(d) The costs cnmove(n) are computed by testing to move the node
n one step to both directions and by computing the resulting
modeling error without any state updates. This gives an upper
bound for the cost (cf. (a) above).
It should be noted that the operations (c) and (d) are performed

only in the case that they reduce the modeling error. If this condition
is not satisfied, the smallest value in the two vectors csdel(k) and
csmerge(k) is searched for, and the corresponding atomic operation
is performed.

3.4 Computationally efficient implementation
The computational efficiency of the above-described algorithm is
already practically applicable, but the method becomes quite slow
when the input data consists of the order of thousands of data vec-
tors. In this subsection, we describe a mechanism which reduces the
time-complexity of the algorithm to O(TlogT). That is, the com-
putation time as a function of the input data sequence length T is
proportional to TlogT when all other factors are kept fixed.

The basic idea of the computational improvement is to divide
the input data sequence into temporally consecutive segments called
groups. In the beginning, the number of the groups, G, is selected so
that G is a power of two and each group g contains more than Ktarget
but no more than 2 ·Ktarget data vectors. The above-described itera-
tive algorithm is then applied within each group so that merge part-
ners have to come from within the same group and search for the op-
timal atomic operation is limited to the states and nodes within the
group (State or node deletion at a group boundary still causes state
updates in the neighbouring group as usual.) When all the groups
have been processed so that they contain exactly Ktarget states, pairs
of neighbouring groups (0 and 1, 2 and 3, etc.) are joined to form
temporally longer groups with exactly 2 ·Ktarget states. These are
then processed until K = Ktarget is again reached. The process is
continued until all the data vectors are joined into a single group
and it is processed to contain exactly Ktarget states.

The above procedure significantly improves the computational
efficiency of the algorithm and has only a negligible effect on the
the resulting modeling error. An intuitive explanation for the com-
putational improvement is that the number of states within groups g
is always within the limits Ktarget and 2 ·Ktarget. As a consequence,
the number of unknowns in (8) is limited.

One more constraint has to be added to ensure the O(TlogT)
complexity: the number of delete node and move node operations
within each group has to be limited to Ktarget during the life-time of
the group. After reaching the limit, these operations are disabled.
This has some minor effect on the accuracy of the resulting model.

The complexity of the method with respect to all the three im-
portant parameters is O(TlogTK2D + K3). However, since K is
always less than or equal to T, only the first term is of practical im-
portance. The complexity of the matrix inversion in (8) alone can
be O(K3). However, this worst-case (of the order K unknowns) can
occur only T/K times during the runtime of the algorithm.

An intuitive explanation for the fact that the grouping mech-
anism does not significantly affect the modeling accuracy is that,
since the complete data set has to be modeled with a total of Ktarget
states, this amount of states is enough for modeling each subset of
the data. This observation was practically validated in simulations,
as described in Sec. 4.

1M = 5 is a free parameter of the algorithm.

4. SIMULATION RESULTS

Simulation experiments with musical instrument samples were car-
ried out to validate the proposed method. Acoustic material con-
sisted of samples from the McGill University Master Samples col-
lection and of independent recordings for the acoustic guitar. There
were altogether 32 different musical instruments, comprising brass
and reed instruments, strings, flutes, mallet percussion instruments,
and the piano. Different playing techniques were included where
applicable (e.g. plucked and bowed violin). The total number of
samples was 1666, with an average duration of 2.7 seconds (vari-
ance 3.2s). Each sample represented an individual musical note.

Feature vectors x(i) were extracted from the acoustic data as
follows. First, discrete Fourier transforms were calculated in suc-
cessive 23 ms time frames which were Hanning-windowed and
overlapped 50%. In each frame, fifteen triangular-response band-
pass filters were simulated that were uniformly distributed on the
Mel frequency scale between 20 Hz and 10 kHz. The power of the
signal at the subbands was calculated and subjected to a logarithmic
compression to arrive at a perceptually meaningful representation of
the spectrum. The compressed subband levels in time frame i were
stored to the data vector x(i).

4.1 Reference method: k-means clustering
One important goal of this paper was to investigate if the described
interpolating state model can achieve a better modeling accuracy
than the conventional “vector quantization” approach (see Introduc-
tion) with the same model order. Among the latter approaches, we
chose k-means clustering algorithm to act as a point of comparison
for the proposed algorithm. K-means clustering partitions input data
vectors into K clusters so as to minimize the sum of squared dis-
tances between the input data points and their corresponding cluster
centroids µk: ekmeans = ∑K

k=1 ∑i∈Sk
|x(i)− µk|2. The cluster cen-

troids are then used in place of the input data vectors to approximate
them. Here we used the implementation of the k-means clustering
algorithm in the Matlab Statistical Toolbox.

Computational complexity of the k-means algorithm is
O(TKDI), where T is the input data sequence length, K is the num-
ber of clusters, D is the dimensionality of the data, and I is the
number of iterations performed during the clustering. In practice,
the number of iterations required is directly proportional to T [6].

4.2 Results
The left panel of Fig. 4 shows the modeling error of the proposed
method and that of k-means clustering as a function of the model
order K. In the figure, the sum-of-squared-error criterion is used
for both models and these are normalized by the sum of the squared
input data. The absolute numerical range of the error is not very
informative since the input data do not have a zero mean.

If not otherwise mentioned, all the results for the interpolating
state model are computed using the computationally efficient ver-
sion of the algorithm as outlined in Section 3.4.

The right panel of Fig. 4 shows the ratio of the modeling error
of the proposed method to that of k-means clustering as a function
of the model order K. The ratio is around 0.5 for all model or-
ders, meaning that the proposed model leads to approximately twice
smaller amount of modeling error than k-means clustering.

Figure 5 shows the ratio of the error of the proposed method to
that of k-means clustering for individual instruments. The proposed
method is particularly advantageous for freely decaying (plucked,
struck) sounds and, on the other hand, sounds that exhibit only little
temporal variation are well modeled by both methods.

Finally, the accuracy of the computationally efficient version
of the proposed algorithm was compared to the baseline version
described in Sections 3.2–3.3. It turned out that, on the average, the
less efficient version of the method further reduces the amount of
error by a modest factor of about 0.8. For different instruments, the
factor varies between 0.7 and 0.9. However, the baseline method is
substantially slower for large datasets and thus not very practical.

3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

Model order (K)

M
ea

n
sq

ua
re

 e
rr

or

3 10 15 20 25 30

0.48

0.5

0.52

0.54

Model order (K)

R
at

io
 o

f e
rr

or
s

Figure 4: Left: Modeling error of the proposed interpolating state
model (crosses) and that of the k-means clustering (circles). Right:
ratio of the two errors as a function of the model order.

0 0.2 0.4 0.6 0.8 1

clarcontra

oboe

englishhor

saxsop

saxalto

saxtenor

saxbar

saxbass

tuba

tromboneal

trombonete

trombonete

tromboneba

trumpetbac

trumpetc

frenchhorn

frenchhorn

Ratio of errors
0 0.2 0.4 0.6 0.8 1

violin

cello

cello

bass

bass

piccolo

piccolo

flute

flute

flutealto

flutebass

flutebass

bassoon

bassooncon

clarinetbb

clarineteb

clarbass

Ratio of errors
0 0.2 0.4 0.6 0.8 1

vibes

vibes

marimba

viola

violin

cello

bass

viola

violin

cello

bass

guitar

piano

viola

viola

violin

Ratio of errors

Figure 5: Ratio of the modeling error of the proposed method to that
of k-means clustering for different musical instruments (K = 5).

5. CONCLUSIONS AND FUTURE WORK

A computationally efficient algorithm was presented for modeling
musical sounds with an interpolating state model. In addition to
proposing the estimation algorithm, one of the main interests of this
this paper was to investigate if an interpolating state model leads to
substantially better modeling accuracy than the conventional vector-
quantization oriented (clustering) approaches. The simulation re-
sults showed that the proposed model approximately halves the
modeling error of the k-means clustering method, thus motivating
further development of algorithms for this model class. Future work
will focus on statistical modeling of the parameter distributions and
on using the model for sound source recognition.

REFERENCES

[1] M. Ostendorf, V. Digalakis, and O. A. Kimball. From HMMs
to segment models: A unified view of stochastic modeling for
speech reconition. IEEE Trans. on Speech and Audio Process-
ing, 4:360–378, 1996.

[2] L. Deng, P. Kenny, Lennig M., and P. Mermelstein. Model-
ing acoustic transitions in speech by state-interpolation hidden
Markov models. IEEE Trans. on Signal Processing, 40(2):265–
271, 1992.

[3] A-V. I. Rosti. Linear Gaussian models for speech recognition.
PhD thesis, Cambridge University, 2004.

[4] D. X. Sun. Statistical modeling of co-articulation in continuous
speech based on data driven interpolation. In Proc. IEEE Int’nal
Conf. on Acoust., Speech and Signal Processing, 1997.

[5] S. M. Kay. Fundamentals of statistical signal processing: esti-
mation theory. Prentice-Hall, New Jersey, 1993.

[6] I. Davidson and A. Satyanarayana. Speeding up k-means clus-
tering by bootstrap averaging. In Proc. IEEE Data Mining
Workshop on Clustering Large Data Sets, Florida, 2003.

