
Abstract
A data-adaptive sound source separation system is pre-

sented, which is able to extract meaningful sources from
polyphonic real-world music signals. The system is based
on the assumption of non-negative sparse sources which
have constant spectra with time-varying gain. Temporal
continuity objective is proposed as an improvement to the
existing techniques. The objective increases the robustness
of estimation and perceptual quality of synthesized signals.
An algorithm is presented for the estimation of sources.
Quantitative results are shown for a drum transcription
application, which is able to transcribe 66% of the bass and
snare drum hits from synthesized MIDI signals. Separation
demonstrations for polyphonic real-world music signals can
be found at http://www.cs.tut.fi/~tuomasv/demopage.html.

1  Introduction
Sound source separation has several applications, for

example editing, analysis and automatic transcription of
music. While humans are able “hear out” sounds from com-
plex mixtures, computer modelling of this function has
proven to be very difficult.

Sound source separation systems can be roughly divided
into two categories: in data-adaptive techniques there is no
knowledge of the sources, so that they are estimated from
the data. Model-based separation systems have a parametric
or statistical model of the sources, and instead of estimating
the signals itself, the parameters are estimated. Both
approaches have their advantages and disadvantages. The
fundamental idea of estimating sources from the data is very
appealing, but for polyphonic real-world signals the per-
formance of for example independent component analysis
(ICA) alone is usually poor. To increase the robustness of a
data-adaptive system one can place restrictions for the
sources, which moves the system towards a model-based
system. It can be assumed that a good separation system has
the good sides of both data-adaptive and model-based tech-
niques, being able to adapt to the input data while preserv-
ing the robustness of model-based methods.

For one-channel audio signals the usual approach of
ICA systems is to project the time-domain input signal into
the frequency domain and assume that the spectra of sources
is constant from frame to frame. In earlier papers the estima-

tion of mixed signals has been done for example by assum-
ing independence and orthogonality of source spectra
(Casey and Westner 2000) and sparseness of the sources
(Plumbley, et al. 2001). The sparseness of sources means
that the sources are inactive most of the time

Temporal coherence is one of the main features that
human auditory system uses in grouping spectral compo-
nents (Bregman 1990). It has been one of the most difficult
phenomena to model computationally. The usual approach
is to estimate parameters individually in each frame and
connect the frames so that the temporal continuity is maxi-
mized. In this paper, a data-adaptive separation system is
proposed in which the temporal continuity between frames
is achieved by using a cost function which favors temporally
smooth signals, so that the continuity objective is used
already in the core algorithm instead of postprocessing. The
sources are assumed to be sparse and non-negative, and their
spectra constant with time-varying gain. Non-negativity of
spectra and gains is a necessary assumption since the esti-
mation is done using power spectra.

For sparse non-negative sources there does not exist an
unmixing matrix, multiplying by which the sources could be
obtained. Instead, a specific separation algorithm was devel-
oped, which finds the optimal sources under the assump-
tions made. The algorithm has been designed using ideas
taken from non-negative matrix factorization (Lee and
Seung), which was combined with sparse coding by Hoyer
(2002). The separation algorithm was implemented in Mat-
lab and tested on different kinds of real-world music signals.
The algorithm is able to extract at least some sources from
most real-world music signals. The experiments show that
the temporal continuity assumption increases the robustness
of separation.

The experiments suggested that one application area
could be separation of drums. Based on the proposed sepa-
ration algorithm, an automatic drum transcription system
was designed. Simulations were carried out to monitor the
behaviour of the system. The results show that the system
can produce applicable results in sound source separation
and automatic drum transcription.

2  The Separation Algorithm
The block diagram of the separation system is illustrated

in Figure 1. At first, the time-domain input signal x(t) is
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Figure 1. Block diagram of the separation system.
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divided into frames and the power spectrum is calculated
within each frame using the discrete Fourier transform
(DFT). The spectrogram is weighted according to the fre-
quency response of the human auditory system, as explained
in the Section 2.3. Once the sources are estimated, the
weighting is compensated by inverse weighting. Finally, the
estimated sources can be synthesized separately.

As explained in the Introduction, the system is based on
the assumption that the spectral shape of sources is constant
over time, only the gain being time-varying. Therefore, each
sound source n is characterized by its power spectrum

, and the time-varying gain . The number of
sound sources is N, and the sources are assumed to sum lin-
early, so that the model of the input signal can be written as:

, (1)

where is the power spectrum of the input signal in
frame t, is the gain of the nth source in frame t and

is the power spectrum of the source n. is the
error spectrum.

In this paper, notation is used to refer to the ele-
ment (i,j) of matrix X. Let the number of frames be T and the
number of discrete frequencies be F, so that the input spec-
tra and the error spectra can be denoted by T by F matrices:

. The spectra of the sources is denoted by a
N by F matrix S: and the time-varying gains
by a T by N matrix A: . Now Equation 1 can be
written as

(2)
The matrix X is called input data matrix, A mixing

matrix, and S source matrix. Since the input data, gains and
power spectra of the sources are non-negative, also the ele-
ments of corresponding matrices are restricted to non-nega-
tive values:

(3)

2.1. Cost functions
The source matrix S and mixing matrix A are unknown.

The system takes the power spectrogram X as an input. The
estimation of sources and mixing matrix is based on mini-
mization of cost function, which minimizes the reconstruc-
tion error while preserving the sparseness and temporal
continuity assumptions. The cost function is given by:

, (4)
where the functions g, h, and c and scalars , , and

are the terms and weights for optimization of recon-
struction, sparseness, and temporal continuity, respectively.

The reconstruction error is minimized using the cost
function

, (5)

where the norm operator is the sum of squared elements.
It is assumed that the sound sources are inactive most of

the time. In our model this means that the elements of A
have a high probability of being zero. Some sparse coding
systems assume sparseness of the source matrix, but since
the mixing and source matrices can swapped by

, the same optimization methods
can be used for both objectives. Sparseness in achieved by
minimizing a cost term (Hoyer 2002):

(6)

Temporal continuity is achieved by minimizing cost
term

(7)

Absolute value of the gain difference between frames is
used instead of a squared difference, because the absolute
value operator preserves rapid changes better than the
squared sum. For example, a gain transition from zero to a
constant level is quite common in music signals. The square
operator tends to smooth these transitions, since the optimal
parameters for the square operator are the ones which have
equal difference in each frame. The absolute value operator
is better since all the transitions which increase the gain
monotonically are equal in this case.

The cost function is not well-defined yet, since for any
and the error functions h and c can be minimized by

selecting , , and . The cost
function is made well-defined by fixing the norm of each
column equal to unity:

, for all . (8)

Weights , , and are used to balance the
cost functions.

In the optimization algorithm, the gradient of the cost
function with respect to the mixing matrix A is needed. The
gradient is given by:

, (9)
where the gradients , , and  are:

(10)

2.2. Optimization algorithm
The number of desired sources N has to be set by hand.

The objective is to find A and S which minimize the cost
function of Equation 5, with the restrictions given in Equa-
tions 3 and 8.

In optimization, a combination of multiplicative step
and projected gradient descent seemed to be the most effi-
cient. The algorithm has similarities to the one proposed by
Hoyer (2002), except that A is assumed sparse instead of S,
line search is used to estimate the optimal step size, and the
scaling of A is compensated by rescaling S.

The algorithm is the following:
1. Initialize A0 and S0 with white noise. An absolute

value is taken element-wise so that Equation 3 holds and the
columns of A are scaled to unity norm so that the Equation 8
holds.

2. Update S using a multiplicative rule (Lee and Seung):

, (11)
where .* and ./ are element-wise multiplication and division,
respectively.

3. Update A using the steepest descend method:

, (12)
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where is the gradient of e with respect to A at point (Ak,
Sk+1) and the optimal step size is estimated using a
line search, in which the effect of steps 4 and 5 is taken into
account.

4. Set all negative elements of Ak+1 to zero
5. Scale the columns of Ak+1 to unity norm. Compensate

by rescaling the rows of Sk+1 so that the product Ak+1Sk+1

does not change.
Repeat steps 2 to 5 until a stopping criterion is reached.

In our implementation the weights of cost functions are cho-
sen to compensate the scale of the input signal X and the
number of sources, so a fixed tolerance can be used: if the
decrease of the cost function is smaller than the fixed toler-
ance, the iteration is terminated.

The cost function is non-increasing at each iteration.
Update rule for S has been proven to be non-increasing by
Lee and Seung (2001) and in the steepest descend algorithm
the step size is chosen so that the cost function is non-
increasing, steps 3-5 taken into account.

Naturally the convergence of the algorithm depends on
the signal content and parameters. In our simulations the
typical length of signals was about 20 seconds and the
number of separated components ranged from two to ten.
Frame size of 2048 samples and overlap factor 0.5 was used,
so that the typical number of frames was about 900. The
DFT length was same as the frame size. The frequency
range was limited to 5kHz, so that only 233 frequency lines
of the spectrum were used. With these parameters the algo-
rithm takes about 50 to 500 iterations to reach the stopping
criterion, which takes a couple of minutes on a regular PC.

2.3. Perceptual weighting
The described cost function g in Equation 5 does not

take into account the characteristics of human auditory sys-
tem. Music signals have most of their energy on low fre-
quencies and the described separation algorithm without
perceptual weighting tends to model only the lowest fre-
quency components.

The frequency response from outer to inner ear can be
considered to be signal-independent. Instead of calculating
the norm between the input data X and estimate AS, the
terms should be weighted by the frequency response of the
ear. This can be implemented using a matrix multiplication:

, (13)
where W is a F-by-F diagonal matrix in which the diagonal
element (W)f,f corresponds to the response at frequency f. As
the response is the same for the input data and modelled
data, the error function can now be written as:

. (14)
Since the operation is linear, it can be implemented by

preprocessing and postprocessing steps. In the preprocess-
ing step the input data matrix X is multiplied by W, which is
compensated in the postprocessing step by multiplying sep-
arated sources S by . Using this procedure W does not
need to be taken into account in the optimization algorithm.

2.4. Synthesis
Once the components have been separated from the sig-

nal, they can be synthesized separately. The spectrogram of
a component n is given by:

. (15)

A time-domain signal can be synthesized using inverse-
DFT and overlap-add. We tried to create a random initial
phase, which was updated from frame to frame as an inte-
gral of frequency. However, best results were obtained by
storing the phase of the original mixed spectogram and by
using that for every separated component.

3  Multiple Components per Source
Unlike assumed in the signal model, the power spectra

of natural sounds is not usually constant over time. A time-
varying spectrogram can be modelled as a weighted sum of
several components. The components are analysed using the
described algorithm, and then clustered into sound sources.
This kind of approach has been earlier used by Casey and
Westner (2000). In clustering they used the symmetric Kull-
back-Leibler (KL) distance between the probability func-
tions of the component spectra.

Our approach is to use the independence of time-vary-
ing gains in clustering the components. The classic defini-
tion of independence is that the joint density of variables is
the same as the product of marginal densities. A measure for
independence is the KL divergence between the joint den-
sity and product of marginal densities. The densities are
estimated using the histograms of time-varying gains and
the KL divergence is used a distance measure in clustering.

In real-world polyphonic signals the number of sources
is usually quite large. Computationally practical number of
source components is pretty low, less than ten, so that the
true amount of sources is usually larger than the number of
separated components. Therefore, the clustering is needed
only if the number of sources in the input data is low. This
kind of data is for example signals which contain only the
drum track. For these signals the clustering worked well,
being able to produce better sound quality than with only
one component per source.

4  Application to Automatic Drum
Transcription

The presented separation algorithm is able to separate
different kinds of signals, the results depending on the sig-
nal. For most polyphonic signals one of the separated com-
ponents is usually a drum sound. To demonstrate the
performance of the separation algorithm, an automatic drum
transcription system was implemented on the basis of the
separation system. The transcription part was kept very sim-
ple so that the effect of the separation system could be stud-
ied as well as possible.

Since the bass and snare drums are present in most
pieces of popular music, the transcription was evaluated
using only these. Another reason is their suitability for the
separation algorithm: bass and snare occur usually often and
their energy is large enough so that the algorithm is able to
adapt to their spectra. Hi-hats, which may occur even more
often, have much weaker energy and their separation proved
to be a more difficult task.

The transcription procedure is the following:
1. The spectrogram of the time-domain input signal is

calculated. The proposed algorithm is used to separate seven
most prominent components. This was found to be a good
choice for the number of sources.

2. Find bass and snare sounds among the separated com-
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ponents. This is done by calculating a distance between sep-
arated spectrum and the template spectra of bass and snare
drums. The templates were automatically selected from the
separated components of test signals during the transcrip-
tion. The distance between a separated spectrum Sn(f) and a
template spectrum Rm(f) is given by:

, (16)

where n is the index of extracted component, and
is the index of either bass or snare drum tem-

plate. is a small positive constant which is used to make
the logarithm robust for small spectrum values.

3. Detect onsets of the found bass and snare compo-
nents. The detection is based on the time-varying gains of
the components. A frame contains an onset, if there is a
large positive change in the gain, and no large gain in the
preceding frame:

(17)

where Tn is the set of onset frames of component n, and an is
the maximum positive change between frames:

. (18)

is a threshold of detection between zero and unity. For
test signals the optimum value of  was about 0.2.

4. The onset frame indices t are transformed into onset
times. The result of transcription is onset times for bass and
snare drum.

The transcription system was tested using signals which
were synthesized from MIDI. Synthesized signals were
used, because the correct drum score could be obtained from
the original MIDI file, and no time-consuming annotation
was needed.

The test set was 100 signals which were randomly
selected 20 second excerpts from a collection of 279 Gen-
eral MIDI (GM) files, which were mostly Western popular
music. Excerpts which contained less than ten bass or snare
drum hits were rejected. The signals were synthesized using
the Timidity software synthesizer. Half of the signals were
used in the optimization of the parameters, and half to evalu-
ate the performance of the transcription system. The original
locations of bass and snare drum hits were stored to allow
evaluation of the transcription. There is two bass drums and
two snare drums in the GM drum kit, but no distinction was
done between those, so that there was only one correct bass
drum track and one correct snare drum track.

The signals were transcribed using the described sys-
tem. The transcription was evaluated using the following

procedure: for each bass/snare hit in the original file, tran-
scribed bass/snare hits are sought which are at most 32 ms
distance from the original hit. The hits for which a pair can
be found are counted as correct transcriptions. Original
drum hits for which pair is not found are counted as dele-
tions, and transcribed hits for which pair is not found are
counted as insertions. Once this evaluation has been done
for all the signals, the overall error rate z is given by:

, (19)

where Nc is the number of correct transcriptions, Nd is the
number of deletions and Ni is the number of insertions. The
threshold 32 ms is about 70 percent of the frame length of
the separation system. The frame length sets the output reso-
lution for the transcription system. The maximum allowed
error 32 ms is usually audible in rhythm tracks. To get more
accurate timing, one should for example perform onset anal-
ysis on the original time-domain signal (Klapuri 1999).

The number of bass and snare hits in the 50 test signals
was 2784. The number of correct transcriptions was 2163,
number of insertions 489 and number of deletions 621, so
that the error rate was 34%. The error rate for bass notes
only was 27% and for snare notes only 43%. The histograms
of error rates of each test signal for bass and snare are illus-
trated in Figure 2. For snares the error rates range more
evenly, while for basses the transcription is perfect for most
of the signals. When a more strict 20 ms threshold is used in
the review, the overall error rate was still 37%.

5  Conclusions
The presented data-adaptive sound source separation

system is able to extract meaningful sound sources from
real-world polyphonic music signals. The proposed tempo-
ral continuity objective enhances the robustness of the sys-
tem and increases the perceptual quality of separated
signals. An optimization algorithm was presented to find the
source signals using the assumptions made. An automatic
drum transcription system was implemented on the basis of
the separation algorithm. Future work includes automatic
selection of the number of sources and application of the
algorithm to different areas of music analysis.
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Figure 2. Histograms of the error rates of individual signals
for bass (upper plot) and snare (lower plot) transcription.
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