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ABSTRACT

We describe the underlying probabilistic generative signal model of

non-negative matrix factorisation (NMF) and propose a realistic con-

jugate priors on the matrices to be estimated. A conjugate Gamma

chain prior enables modelling the spectral smoothness of natural

sounds in general, and other prior knowledge about the spectra of

the sounds can be used without resorting to too restrictive techniques

where some of the parameters are fixed. The resulting algorithm,

while retaining the attractive features of standard NMF such as fast

convergence and easy implementation, outperforms existing NMF

strategies in a single channel audio source separation and detection

task.

Index Terms— acoustic signal processing, matrix decomposi-

tion, MAP estimation, source separation

1. INTRODUCTION

Time-frequency energy distributions are of central importance in au-

dio signals analysis; particularly, the magnitude spectrogram repre-

sentation displays the magnitude of the time-frequency coefficient

xν,τ as a function of frequencies ν and time indices τ . In recent

years, one audio modelling approach has focused on non-negativity

of the spectrogram matrix X = {xν,τ} and enforcing a factorisation

as X = TV where both T and V are matrices with positive entries

(see [2, 3, 4], and references therein). Here, T can be interpreted as

a codebook of spectra, called basis vectors, and V is the matrix of

their gains in each frame. The success of the model stems from the

fact that entities of natural sounds can rather well be approximated

as a product of stationary spectrum and time-varying gain. These en-

tities include, for example, individual tones of musical instruments.

A basis vector and its gains can represent, for example, the contribu-

tion of all the tones of a certain musical instrument having the same

pitch, or all the tones of a percussive musical instrument. An ad-

vantage of these methods is computational attractiveness due to fast

converging iterative matrix factorisation techniques [5].

A problem with the standard NMF objective is that the proba-

bilistic interpretation is not explicit and consequently basis vectors

and gains are not well modelled, and as we will show later, are as-

sumed to be independent a-priori for all entries of T and V. Es-

pecially for music signals, due to the physical properties of musical

instruments and quasi-periodic structure of music, one could clearly

design more informative priors. For example, due to presence of note

events that have a constant pitch, gains in adjacent time-frequency

atoms tends to be correlated. Similarly, due to harmonicity and con-

stant timbre, basis vectors tend to have typically peaks at harmoni-

cally related frequency indicies.
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Existing approaches have tried to model prior knowledge about

basis vectors by initializing an inference algorithm with a set of ba-

sis vectors corresponding to harmonic spectra [3], assuming that this

would enable more robust inference. Alternatively, one can learn

a set of basis vectors from a training corpus where each source is

present in isolation, and then keep the basis vectors fixed and esti-

mate their gains [6]. This latter approach produces good results when

the spectral characteristics of the training data are equal to those of

the target data. In practice, however, the exact characteristics of the

target signal are often not known, and any mismatch between train-

ing and target data decreases the quality of the obtained solution.

One remedy is adapting all basis vectors but introducing regulari-

sation terms that encode some prior knowledge, such as enforcing

temporal continuity. This strategy has been shown to be effective us-

ing a heuristic approach where a cost function which penalizes large

differences between the gains of adjacent frames [4].

Our goal in this paper is twofold. First we describe in detail the

underlying probabilistic generative signal model of the NMF and

the nonnegative update equations as a quasi gradient optimisation

strategy. Consequently, given the probabilistic model, we can im-

pose various prior structures. Here, we use a Gamma chain prior [1]

on the basis vectors T and gains V. The resulting algorithm out-

performs existing NMF strategies and opens up the way for a full

Bayesian treatment for model selection.

The paper is organized as follows: Section 2 reviews shortly the

objective of non-negative matrix factorisation and the related opti-

mization algorithm. Section 3 presents the probabilistic generative

model behind the NMF, and extends it to allow priors for the parame-

ters. Section 4 presents simulation results and Section 5 conclusions.

2. NON-NEGATIVE MATRIX FACTORISATION

In NMF, the goal is to find entrywise non-negative matrices T and

V such that

(T∗,V∗) = arg min
TV

D(X||TV) (1)

where X is an entrywise non-negative matrix and D could be Eu-

clidian distance, or divergence defined as

D(X||Y) =
X

ν,τ

[X]ν,τ log[X]ν,τ/[Y]ν,τ − [X]ν,τ + [Y]ν,τ

Here we use the divergence since it has been found to produce better

results in audio signal analysis [4]. Since X is fixed, we can use the

divergence function

d(x, y) = −x log(y) + y (2)



and write the equivalent optimisation problem

(T∗,V∗) = arg min
TV

X

τ,ν

d([X]τ,ν , [TV]τ,ν) (3)

In general, this optimisation problem is not convex with respect to

both T and V. Therefore finding the global optimum cannot be

guaranteed by any optimisation method. However, the problem is

convex with respect to T and V separately, which allows for finding

of locally optimal solutions.

Because of their computational effectiveness and simplicity, the

multiplicative updates proposed in [5] have been extensively used to

solve the problem (3). The convergence proof in [5], which essen-

tially hinges upon bounding terms log
PI

i=1 tν,ivi,τ of the objective

by a variational bound, can be interpreted as follows: for fixed non-

negative parameters xν,τ and tν,i, ν = 1, . . . , F , i = 1, . . . , I , and

variables vi,τ which are restricted to non-negative values, the func-

tion

c =

F
X

ν=1

d(xν,τ ,

I
X

i=1

tν,ivi,τ ) (4)

is non-increasing under simultaneous update of all vi,τ , i = 1, . . . , I
using the rule

vi,τ ← vi,τ

PF
ν=1 tν,ixν,τ/(

PI
i′=1 tν,i′vi′,τ )

PF
ν′=1 tν′,i

(5)

The rule has been applied to solve (3) by keeping first T fixed and

applying (5) to update V, then keeping V fixed and updating T,

and repeating the updates until the values converge. In practice, this

variational approach has been found to be efficient in estimating V

and T, since it automatically obeys the non-negativity restrictions.

3. POISSON OBSERVATION MODEL

In the sequel, we illustrate that the objective (3) can be derived start-

ing from a probabilistic model1. Assume that the magnitude at each

time-frequency atom si
ν,τ produced by the ith source is Poisson dis-

tributed:

si
ν,τ ∼ PO(si

ν,τ ; tν,ivi,τ ), (6)

where vi,τ is the gain of the ith basis vector in frame τ and PO is

the Poisson distribution defined as

PO(x; λ) = e−λλx/Γ(x + 1). (7)

Here, Γ(x) denotes the gamma (generalised factorial) function. The

Poisson distribution is defined only for discrete x, but in practise

the accuracy of x does need to be limited by having a large integer

scale. We assume that the total magnitude of the observed signal

xν,τ in each time-frequency point is the sum of the magnitudes of

individual sources2, i.e., xν,τ =
PI

i=1 si
ν,τ . The sum of indepen-

dent Poisson-distributed random variables is also a Poisson random

variable with intensity parameter equal to the sum of individual in-

tensity parameters. Therefore,

p(xν,τ |tν,1:I , v1:I,τ ) = PO(xν,τ ;
I

X

i=1

tν,ivi,τ ), (8)

1Such as an observation has been made before in many studies, but here
it is crucial to formulate the mathematical details.

2We note that this assumption is physically unrealistic, since in general
for two superinposed sources ξ1 and ξ2, the magnitude of the superposition
x = |ξ1 + ξ2| can not be written as the superposition of the magnitudes of
individual sources, i.e. x 6= |ξ1| + |ξ2|.

where tν,1:I denotes the νth column of T and v1:I,τ the τ th row of

V, respectively. Assuming that each time-frequency point is statis-

tically independent conditional on T and V, the entire model can be

denoted using matrix notation by

p(X|T,V) =
Y

τ,ν

e−[TV]ν,τ [TV]
[X]ν,τ
ν,τ

Γ([X]ν,τ + 1)
(9)

The maximum likelihood solution is given by

(T∗,V∗) = arg max
T,V

log p(X|T,V)

where

log p(X|T,V)

=
X

ν,τ

−[TV]ν,τ + [X]ν,τ log([TV]ν,τ )− log(Γ([X]ν,τ + 1))

=+ −
X

ν,τ

d([X]ν,τ , [TV]ν,τ ) (10)

Here =+ denotes equal up to irrelevant constant terms (i.e. f ∝
g ⇔ log f =+ log g). We see that this objective is identical to the

objective (3) optimised by NMF.

3.1. Gain prior p(V)

In the following, we propose that both the basis vectors and gains

are unobserved random variables which are to be estimated from the

data. We assume that the prior factorises as p(T,V) = p(T)p(V).

To model continuation across time, we will use a Markov chain on

gains. A suitable prior, that guarantees that the gains are strictly non-

negative, and positively correlated (i.e., slowly varying in time) can

be constructed by a so called Gamma-chain [1]. Here G(y; a, b) is

the gamma distribution defined for y > 0 as

G(y; a, b) = ya−1b−ae−y/b/Γ(a), (11)

A Gamma chain is constructed by using auxiliary variables zi,τ as

follows.
zi,1 ∼ G(zi,1; a + 1, (ab)−1)

vi,τ |zi,τ ∼ G(vi,τ ; a, (zi,τa)−1)

zτ+1,i|vi,τ ∼ G(zτ+1,i; a + 1, (vi,τa)−1)

Here, a is a coupling parameter that affects the affinity between the

gains of adjacent frames. When a is large, adjacent frames are cou-

pled more strongly. The auxiliary variables are needed to ensure

positive correlation and conjugacy, a technical condition that leads

to closed form fixed point equations as in standard NMF. The above

Gamma chain is a single parameter version of the model presented

in [1] where the value az = a + 1 is used in the distribution of the

auxiliary variables. The resulting model is a collection of indepen-

dent Gamma chains for the gains of each source i.
The relevant terms in the log-prior function are given as

log p(V,Z) =+
I

X

i=1

a log(zi,K+1)− zi,1ab

+

I
X

i=1

K
X

τ=1

2a[log(vi,τ ) + log(zi,τ )]− vi,τzi,τa− zi,τ+1vi,τa

=+−

I
X

i=1

"

d(a, abzi,1) +

K
X

τ=1

d(a, vi,τzi,τa) + d(a, vi,τzi,τ+1a)

#

(12)where we define [Z]i,τ ≡ zi,τ .



3.2. Basis vector prior p(T)

In this paper, we assume a prior where each entry of the basis vector

matrix is assumed to be independently drawn from a Gamma distri-

bution:

p(tν,i) = G(tν,i; αν,i, β
−1
ν,i ) = t

αν,i−1

ν,i β
αν,i

ν,i e−tν,iβν,i/Γ(αν,i)
(13)

The hyperparameters αν,i and βν,i of the model can be selected in-

dividually for each basis vector t1:F,i. For example, β1:F,i can be

selected such that typical basis vectors have peaks at harmonically

related frequencies. We assume p(T) =
QI

i=1

QF
ν=1 p(tν,i) and

consequently, the logarithm of the prior can be written as

log p(T) =+
I

X

i=1

F
X

ν=1

(αν,i − 1) log(tν,i)− tν,iβν,i

= −

I
X

i=1

F
X

ν=1

d(αν,i − 1, tν,iβν,i) (14)

3.3. Inference

Given the model, the joint posterior distribution is given by Bayes’

rule p(Z,V,T|X) ∝ p(X|V,T,Z)p(Z,V,T) which factorises to

p(X|V,T)p(Z,V)p(T). The MAP state can be found as

arg max
Z,V,T

{log p(X|V,T) + log p(Z,V) + log p(T)} (15)

We substitute the terms in (15) with the expressions in (10), (12),

and (14). Since the log-posterior is now written as a sum of the

divergence function defined in (2), the MAP estimator can be de-

rived directly by applying the rule (5) on the sum of the terms (10),

(12), and (14). To simplify the notation, let us define mν,τ =

xν,τ/(
PI

i=1 tν,ivi,τ ) for all ν = 1, . . . , F and τ = 1, . . . , K . The

update rule (5) for each of the parameters is given as

tν,i ← tν,i
(αν,i − 1)/tν,i +

PK
τ=1 vi,τmν,τ

βν,i +
PK

τ ′=1 vi,τ ′

(16)

vi,τ ← vi,τ
2a/vi,τ +

PF
ν=1 tν,imν,τ

a(zi,τ + zτ+1,i) +
PF

ν′=1 tν′,i

(17)

zi,τ ←

8

>

<

>

:

1/(v1,i + b) τ = 1

2/(vi,τ + vτ−1,i) 1 < τ < K + 1

1/vi,τ τ = K + 1

(18)

It can be seen that the update rules differ from the basic NMF updates

[5] only by additive terms in the numerator and denominator, which

are caused by the priors.

The MAP estimation algorithm works in an iterative fashion,

first updating all the basis vectors using (16), then all the gains using

(17), and (18), and repeating the updates until the algorithm con-

verges. According to the proof [5], the value of the posterior dis-

tribution (15) is guaranteed to be non-decreasing under each of the

updates.

By setting b = 0, the gain prior becomes independent of the

overall level of the gains. Thus, unlike the cost term in [4], the tem-

poral continuity objective implemented by the Gamma chain does

not require fixing the scale of the parameters. However, to ensure

the numerical stability of the algorithm, in each iteration we scale

the variance of the gains of each source to unity, and compensate

this by re-scaling the basis vectors and auxiliary variables.

4. SIMULATION EXPERIMENTS

The effect of the proposed priors is shown in two studies where the

basis vector priors and gain priors are tested separately.

Fixed basis vectors

Basis vectors estimated from the mixture signal, Gamma priors
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Fig. 1. Gains of the bass drum basis vector estimated using three

different NMF algorithms. The bass drum onset times are marked

with crosses and snare drum onset times with circles, respectively.

The proposed method (bottom plot) is able to estimate gains where

the interference caused by other sources is smaller than in the other

algorithms.

4.1. Basis vector priors

In the first study we examine the benefit of the basis vector prior by

an example signal of a drum pattern consisting of bass drum, snare

drum, and hi-hats. The gain prior is not used here. The magnitude

spectrogram of the signal was factorised into three sources (I = 3)

using three NMF algorithms. The first algorithm, basic NMF, es-

timates the basis vectors and gains blindly from the mixture signal

by minimizing the divergence. The second algorithm uses fixed ba-

sis vectors, which were trained for each source using material where

the source was present in isolation but the instruments used to pro-

duce the sounds were not identical to those in the mixture. The third

algorithm is the proposed method which uses Gamma priors for the

basis vectors. We set the shape parameter αν,i of the prior of all the

basis vectors equal to 1, and the scale parameters β−1
ν,i equal to the

fixed basis vectors trained for the second algorithm.

The gains were estimated using all the three algorithms sepa-

rately. Figure 1 illustrates the gains corresponding to the bass drum

basis vector for three different algorithms. All the algorithms pro-

duce large peaks at correct bass drum hits. However, the first and

second algorithm also produce smaller erroneous peaks correspond-

ing to the snare drum hits. Because the sounds in the material used

to train the basis vectors are not identical to the sounds in the mix-

ture, the second algorithm patches the mismatches by representing

parts of snare drum spectra by bass drum basis vectors. On the other

hand, because a part of the snare drum spectra can be represented

with a bass drum spectra, the blind NMF algorithm is not able to

learn the basis vectors accurately enough. The proposed algorithm

circumvents these problems and produces gains where snare drum

hits do not affect the excitations of the bass drum basis vector.



Table 1. Average detection error rates and SDRs of the tested algo-

rithms. The best result in each column is highlighted in bold.

algorithm det. error rate (%) SDR (dB)

all pitched drums all pitched drums

EUC 28 28 30 6.6 7.6 4.5

DIV 26 28 23 7.6 9.0 4.7

DIV-SQ 24 25 22 8.5 9.8 6.0

GAMMA 25 28 20 10.1 12.3 6.0

4.2. Gains

The effect of the Gamma chain prior was evaluated quantitatively in

an unsupervised sound source separation task where random acous-

tic mixtures of tones of musical instruments were separated into

sound sources. Basis vector priors were not used in this study. 300

random mixtures were generated by selecting random musical in-

struments and pitches from an acoustic database described in [4].

Random amount repetitions, timings, durations, etc. were allotted

for the tones according to the procedure described in [4].

The baseline algorithms include the basic NMF algorithms based

on the minimization of the Euclidean distance between and the diver-

gence between the magnitude spectrograms. These are denoted by

EUC and DIV in the following. The NMF algorithm [4] where tem-

porally continuous gains were favored by using a cost term which

is the squared difference of the gains of adjacent frames is denoted

by DIV-SQ, and the proposed Gamma chain algorithm is denoted

by GAMMA. Different values of a were tested and the one which

produced approximately the best results was used in the simulations.

Basis vector priors were not used in this evaluation.

In the simulations, each mixture was separated into sources by

using all the algorithms. At the moment there is no reliable method

for the estimation of the number of sources in this framework, and

therefore we tested each of the algorithms separately with 5, 10, 15,

and 20 basis vectors. Each source was reconstructed as ŝi
τ,ν =

xτ,νvτ,iti,ν/(
PI

i′=1 vτ,i′ti′,ν). The quality of the separation was

evaluated by comparing the separated sources to the original sources.

Each separated source was assigned to an original source by using

the signal-to-distortion ratio (SDR) between them as a distance mea-

sure as described in [4]. If an original source was not assigned sep-

arated sources, the source is said to be undetected. The detection

error rate was calculated as the ratio of the total number of unde-

tected sources and the total number of sources. The quality of the

separated sources was measured by calculating the SDR between

each separated source and the corresponding original source. Only

a single separated source per an original source was used to avoid

over-fitting (see [4]). The SDR was averaged over all the sources.

The averages were calculated also separately for pitched instrument

sources and percussive sources.

4.3. Results

The average detection error rate and SDR are shown in Table 1. The

results for DIV, EUC, and DIV-SQ are slightly different from those

presented in [4], because of the slightly different source reconstruc-

tion method. The proposed method allows better average detection

accuracy and SDR than the basic NMF algorithms. It produces ap-

proximately equivalent average detection error rate to the DIV-SQ

method, the performance being slightly worse for pitched instru-

ments and slightly better for percussive instruments. The SDR of

pitched instruments obtained with the proposed method is signifi-

scale of a

d
et

ec
ti

o
n

er
ro

r
ra

te
(%

)

scale of a

S
D

R
in

d
B

0 1 10 102 103 1040 1 10 102 103 104
4

6

8

10

12

14

20

25

30

35

40

45

50

Fig. 2. The effect of the coupling parameter a on the average detec-

tion error rate and average SDR. The solid line is the average of all

sources, the dashed line is the average of pitched instruments, and

the dotted line is the average of percussive instruments.

cantly better than the one obtained with the other methods.

The effect of the value of a is illustrated in Figure 2. The case

a = 0 corresponds to the DIV algorithm. It can be seen that increas-

ing the value of a increases the detection accuracy of percussive in-

struments and the SDR of all the instruments until a certain point,

after which the quality decreases.

5. CONCLUSIONS

This paper proposes a Bayesian extension to the NMF where the en-

tries of the unknown matrices are considered as unobserved random

variables. We use a Gamma Markov chain prior for the gains and

Gamma prior for the basis vectors. These conjugate Gamma pri-

ors enable finding the maximum likelihood solution of the parame-

ters by extending the simple and efficient multiplicative updates of

the original NMF algorithm, where the likelihood is guaranteed to

be non-increasing under each update and therefore the algorithm is

guaranteed to converge. The prior structures (both on gains and basis

vectors) help to overcome some problems and enable better quality

in one-channel source separation than the existing NMF algorithms.
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