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Abstract

Recognition and classification of speech content in everyday

environments is challenging due to the large diversity of real-

world noise sources, which may also include competing speech.

At signal-to-noise ratios below 0 dB, a majority of features may

become corrupted, severely degrading the performance of clas-

sifiers built upon clean observations of a target class. As the

energy and complexity of competing sources increase, their ex-

plicit modelling becomes integral for successful detection and

classification of target speech. We have previously demon-

strated how non-negative compositional modelling in a spec-

trogram space is suitable for robust recognition of speech and

speakers even at low SNRs. In this work, the sparse coding

approach is extended to cover the whole separation and clas-

sification chain to recognise the speaker of short utterances in

difficult noise environments. A convolutive matrix factorisation

and coding system is evaluated on 2nd CHiME Track 1 data.

Over 98% average speaker recognition accuracy is achieved for

shorter than three second utterances at +9 ... -6 dB SNR, illus-

trating the system’s performance in challenging conditions.

Index Terms: speaker recognition, noise robustness, composi-

tional models, sparse coding, non-negative matrix factorization

1. Introduction

Speech processing systems intended for real-world environ-

ments must be able to cope with signals corrupted by a large va-

riety of interferences, including reverberation and additive noise

[1, 2]. Both speech and speaker recognition require assessing

small details of vocalisations, which becomes increasingly dif-

ficult when a majority of spectro-temporal features is contami-

nated by competing sound sources. Loud audio events and non-

stationary noise can mask large areas of spectro-temporal con-

tent in any feature representation. Especially, non-target speak-

ers introduce additional phonetic content, which is inherently

problematic for recognition and difficult to separate from ac-

tual target speech. Therefore practical systems should be made

robust against many levels and types of signal degradation.

As one common case of robust speech processing, recognis-

ing speakers from short utterances contaminated by noise and in

presence of room reverberation is a rather challenging task and

has been of interest in several recent studies [3, 4, 5, 6]. In deal-

ing with short duration utterances in test phase, employing du-

ration sensitive transforms [7, 8] and uncertainty estimation and

propagation [3, 9] are state-of-the-art techniques to compensate

for adverse effects of limited data on recognition performance.

There are several strategies to attain robustness against ambient

noise and reverberation. Despite the fact that conventional and

state-of-the-art speech enhancement techniques introduce arti-

facts, employing signal-level enhancement has shown to be ef-

fective in improving speaker recognition in noisy environments

[5, 10, 11]. Extracting spectral features that represent reduced

mismatch between clean and noisy speech proved to be essential

in handling noise and reverberation [4, 12]. Feature-level en-

hancement using uncertainty-of-observation techniques [6, 13]

or vector Taylor series [14] aids in robust speaker modelling

and recognition. Training multiple parallel models for each

noise condition [15] or employing informed score calibration

[16] brings further robustness against interferences. However,

at low SNRs, explicit modelling of individual sound sources and

separation of target speech become increasingly important.

Sparse models have gained popularity in several branches

of signal processing, including recognition of images [17], mu-

sic genres [18], sound events [19], and generalised components

of audio [20]. Sparsity-based speaker recognition algorithms

have also been proposed [21, 22, 23, 24, 25, 26], although typi-

cally the main principle has been achieving robustness by low-

rank modelling, not explicit factorisation to source components.

Meanwhile, compositional models, especially non-negative ma-

trix factorisation (NMF), have been used for speech enhance-

ment and robust automatic speech recognition (ASR), motivated

by simultaneous modelling of multiple additive sources such as

speech and noise [27, 28, 29, 30]. Most often the algorithms are

used to enhance features for external ASR back-ends. However,

in recent years there has been increasing success with sparse

coding or classification (SC), where speech signal content is de-

rived directly from sparse component weights without returning

to a spectral or time-domain feature representation [27, 29, 31].

In [32] we presented a system, where NMF activation

weights are used for speaker recognition using conventional

vector classification schemes. In [33], a classifier taking place

within the non-negative framework was proposed, producing

speech state likelihoods for ASR. In this work, the NMF-

based learning and classification algorithm is applied to speaker

recognition, exploiting the factorisation model’s temporal in-

formation and non-negativity for significantly higher robustness

than previous vector classifiers. Results are evaluated on GRID-

based Track 1 of the 2nd CHiME Challenge, where one speaker

out of 34 candidates speaks a short,<2.7 s utterance in difficult,

non-stationary noise conditions down to -6 dB SNR [34].

The convolutive sparse coding approach is introduced in

Section 2. Our experimental setup is described in Section 3.

Results, discussion, and further ideas are given in Section 4,

whereafter we conclude in Section 5.

2. Convolutive modelling and mapping

2.1. Matrix convolution

The framework is based on matrix convolution, here denoted by

operator ⊛. The central element is an L×W activation matrix

X, which reflects the non-negative weights of L atoms over W
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Figure 1: The proposed convolutive training and recognition procedure: a) Activations (X) are solved for each training spectrogram,

b) Mapping matrices (B) are learnt jointly from training activations in the speaker space, c) The observation spectrogram is factored,

d) Speaker magnitude estimate over time (Ẑ) is computed with matrix convolution and summed to vector ẑ for recognition.

time indices. In aB-dimensional spectrogram space, aB×Tutt

observation matrixY covering the Tutt frames of an utterance is

approximated by matrixΨ as a convolution between activations

X and a three-dimensional basis array A comprising L atoms,

each a B × T spectrogram patch,

Ψ = X⊛A

=

T
∑

t=1

At

→(t−1)

X .
(1)

Each B × L matrix At contains the t
th columns of all atoms.

Operator → shifts X right in an L × Tutt zero-padded matrix

starting from its leftmost position in a convention, where acti-

vations are permitted up to time index W = Tutt − T + 1 so

that all resulting spectral content fits inΨwithout cropping. All

spectrogram data is also non-negative.

In the spectral factorisation stage,X is solved with a matrix

factorisation algorithm for fixed A andY arrays as

Xopt = argmin
X

[

d(X⊛A, Y) + c(X)
]

, (2)

the target function comprising a spectral estimate distance d

between the observation and its estimate, and an optional cost

function c for the structure of X. For audio spectrograms,

generalised Kullback-Leibler (KL) divergence and weighted L1

norm have been found suitable and commonly applied for these

purposes, respectively [20]. Solving takes place with iterative

updates, which can be found for different cost functions in lit-

erature [35, 36]. Solving components of these problems is re-

ferred to as non-negative matrix deconvolution (NMD).

2.2. Learning speaker mapping with deconvolution

To apply the model to speaker recognition, activations X are

computed using a joint set of speech bases from all speaker can-

didates to be considered. In noisy conditions, a noise basis is

also included. Because the multi-frame atoms model a lot of

speaker-dependent spectro-temporal content, largest activation

weights can typically be seen in atom indices corresponding

to matching speakers. Indeed, simply observing the most ac-

tive speaker-dependent sub-basis acts as a basic classifier with

reasonable baseline results [32]. However, not all atoms are

equally discriminative. Some of them may match other speak-

ers or noise patterns, producing spurious activation weights.

To improve the accuracy, we have previously used various

classifiers for activation vectors x, produced by averaging X

matrices of training and evaluation utterances over time [32].

Notable improvements were observed over baseline maximum

activity scoring. Nevertheless, these classifiers still have their

shortcomings. They discard all temporal information of acti-

vations, and do not exploit the model’s inherent non-negativity.

Therefore we propose a new learning and classification scheme,

reflecting earlier work on phonetic state mapping in ASR [33].

Instead of using temporally averaged vectors, mapping

from activations X to S speakers is learnt between S × Tutt

speaker matrices Z and an S × T × L label array B. These

correspond to the spectral model’s Y and A arrays, only with

the spectral space replaced with S-dimensional speaker space

with each index representing one speaker. In Z matrices, only

the true speaker’s row contains non-zero values, thus the algo-

rithm is expected to assign corresponding speaker content to

B for atoms that activate during the target speaker’s utterances.

After a set of X matrices is solved in the spectrogram do-

main for utterances from all speakers, the mappings are learnt

as

Bopt = argmin
B

d(X⊛B, Z) (3)

over the set of X and Z matrix pairs of training files. The pro-

cedure is illustrated in the left half of Figure 1. To emphasise

actual speech regions of training signals, values of the active

row of Z are assigned from frame-level speech signal magni-

tudes of the training utterances.

The following properties apply to learnt B data:

• Each atom-dependent Bl matrix (S × T ) represents the

estimated match to speakers over the atom’s frames.

• All label data is strictly non-negative.

• The model will assign variable amounts of label weight

to atoms, depending on how consistently they get acti-

vated during utterances of specific speakers.

• In an ideal case, computing X ⊛ B would produce a Z

matrix, where only the correct speaker’s row is active.

These coefficients reflect the magnitude of speech.

Therefore the algorithm is consistent with the non-negativity

and temporal sensitivity of the spectrogram factorisation model,

unlike earlier training schemes for vector classifiers.



2.3. Recognition

To recognise speakers with the trained mappings, activations are

again computed for test utterances in the spectrogram domain.

Then we compute Ẑ = X ⊛B from speech activations, which

produces the S × Tutt estimate Ẑ reflecting each speaker’s ac-

tivity over utterance frames as seen in the right half of Figure 1.

Assuming that only one target speaker is active, the straight-

forward recognition method is to sum Ẑ over time to vector ẑ,

and then pick the index of its largest value. However, com-

peting voices and other speech-like interferences may produce

large outlier entries to Ẑ, calling for filtering, compression, or

thresholding steps to favour candidates whose activity is more

consistent over time. In our experiments, square root compres-

sion of Ẑ entries was found to improve the overall robustness.

In multi-speaker scenarios, overlapping and changing speaker

hypotheses should be evaluated over appropriate time intervals.

3. Experimental setup

3.1. Evaluation database

The method was evaluated on 2nd CHiME Challenge Track

1 data, consisting of GRID command utterances over non-

stationary room noise. The original challenge task was robust

keyword recognition within its 51-word vocabulary with full

knowledge of the active speaker’s identity [34, 37]. However, in

this work we use the corpus for speaker recognition, treating the

active speaker’s identity among a closed set of 34 speakers as

the unknown parameter to solve. The corpus is very closely re-

lated to its predecessor used in our earlier experiments [32, 38].

The notable difference is inclusion of a noisy training set in the

2nd CHiME, permitting multi-condition training of models.

The corpus has 500 training utterances for each speaker,

both as noiseless files and with varying levels of noise from

+9 to -6 dB in six 3 dB steps. Development and test sets con-

sist of 600 utterances from mixed speakers, here considered un-

known, repeated over the same six SNRs and always with differ-

ent noise content. The development set is also available without

additive noise. Utterance length ranges approximately from 1.2

to 2.7 s with a mean length of about 1.9 s. All audio is sampled

at 16 kHz stereo and has room reverberation [34].

3.2. Factorisation framework

The system setup was effectively identical to our earlier work

[32, 38], only updated for the 2nd CHiME corpus. For each

speaker, we used 300 clean training utterances to generate 250

speech atoms, each a 40×25 template in a 40-dimensional mel-

spectral space with 25 consecutive frames, averaged to mono.

Frame length was 25 ms and frame shift 10 ms, standing for

approximately 250 ms of temporal context in the atoms. The

other 200 training utterances per speaker and development/test

sets were represented as spectrogram matrices Y.

Utterances were factored with NMD, using the 34 concate-

nated speaker-dependent bases for a total of 8500 speech atoms

and also 250 noise atoms sampled from each utterance’s noise

context when additive noise was present in the set [29, 32]. The

number of NMD iterations was 300. Weighted atom level L1

sparsity constraint was used for X as in earlier work [29, 32].

To learn the B array, a Z matrix was generated for each

training utterance using signal magnitude as the target value on

the row of the speaker’s index. As in ASR experiments, four

NMD iterations with Euclidean d cost were used to solve (3),

only updating the label arrayB over the set of 34 · 200 clean or

Table 1: Speaker recognition accuracy over SNR for the 2nd

CHiME challenge Track 1 test set. Baseline results (Section

3.3) are given in the first block. The second and third block

list results for clean and noisy trained NMD classifiers, respec-

tively. The proposed sparse coding is denoted by ‘SC’.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

Reference methods

i-vector 62.5 57.0 50.7 46.7 40.3 34.5 48.6

GMM-ML 96.7 91.2 88.7 76.2 68.2 60.8 80.3

max. act 99.0 98.2 97.5 93.2 88.5 69.0 90.9

Clean-trained NMD activation classifiers

SLDA 99.7 99.2 98.8 97.3 95.3 85.8 96.0

SC / sum 99.8 99.5 99.2 97.7 96.7 86.0 96.5

SC / compr 99.8 99.7 99.5 97.3 97.2 88.3 97.0

Noisy-trained NMD activation classifiers

SLDA 98.3 98.0 97.7 96.5 94.8 88.3 95.6

SC / sum 100.0 99.8 99.3 98.2 98.3 93.5 98.2

SC / compr 100.0 99.8 99.7 98.8 98.0 95.0 98.6

noisy training utterances [33]. Recognition was performed by

finding the index of maximum value in temporally summed ẑ

vectors (‘SC / sum’). As an alternative to suppress large outliers

from loud non-target events, the Ẑ matrix bins were first square

root compressed before temporal summing (‘SC / compr’).

3.3. Reference systems

The following baseline systems were used for comparison:

• i-vector classification [10, 39]

• Maximum likelihood estimation with Gaussian mixture

models (GMM-ML) [40]

• Maximum total activation weight of speaker-dependent

bases in the convolutive factorisation (max. act) [32]

• Sparse linear discriminant analysis (SLDA) from tempo-

rally averaged NMD activation vectors [32]

The first baseline is an i-vector based system used for a NIST

SRE’12 submission [10]. The system is trained using previ-

ous NIST SRE corpora. In training the probabilistic linear dis-

criminant analysis (PLDA) transform, short and noisy segments

are included to help PLDA in capturing variabilities caused by

noises as well as utterances with variable duration. In train-

ing speaker templates, the extracted features from training ut-

terances are pooled together. For the second baseline, Gaus-

sian mixture models with 64 components were trained for each

speaker with a maximum likelihood criterion (GMM-ML) [40].

Two further baselines were derived from the same activa-

tion matrices as the proposed method. Maximum activity is

computed directly from test factorisations by using the largest

total Xweight of speaker-dependent bases for scoring with no

further training. SLDA models were trained from temporally

averaged activations using 500 non-zero components as in [32].

4. Results and Discussion

4.1. Results

Results for baseline and proposed methods are listed in Table 1.

Correct recognition rate is reported for each SNR of the 2nd

CHiME Track 1 test set and as averages over all noise levels.

Despite minor deviations in individual SNR scores, the

main trends of performance are easily observed. The i-vector



based system represents a rather poor performance, which can

be mainly attributed to extremely short test utterances (effec-

tive speech duration of ∼1 s after voice activity detection). The

GMM-ML system is mostly accurate in clean conditions, but

loses quality over increasing noise levels. All methods derived

from the NMD system surpass more conventional baselines by

a clear margin. A major factor is explicit modelling of speech

and noise components, whose speech-only activations provide

significantly more reliable input for classification.

The new sparse coding approach outperforms direct maxi-

mum activation scoring and SLDA of averaged vectors from the

same NMD system. Noisy-trained SLDA does not reach perfect

accuracy at clean conditions due to larger variability in train-

ing, but it turns more robust in noisy conditions. Conversely,

all proposed SC variants were 100% accurate for clean devel-

opment data, thus for this method noisy training produced uni-

formly better results than clean training. Some improvements

are achieved by applying additional compression to Ẑ matrices

before summing. Overall, the highest average recognition rate

is 98.6% with even the -6 dB case yielding 95.0% accuracy.

While directly comparable results were not found in litera-

ture at the moment of writing, reported average results for the

effectively identical 1st CHiME corpus include up to 72.3% in

[41] using NMF enhancement for a GMM-UBM system, and

up to 94.0% in [42] with uncertainty modelling and self-mixed

multi-condition training for a GMM recogniser. Further results

for the GRID corpus are listed in [43], where a wavelet and

multimodal neural network system achieves 97.5% accuracy for

clean data with emphasis on fast (50 ms) identification.

4.2. Discussion

According to the results, proposed convolutive sparse coding

appears very accurate for robust recognition of speakers from

short utterances in difficult noise conditions. The foremost con-

tributing factors are explicit modelling of speech and noise, and

relatively long temporal context used in the representation of

spectrogram patterns. The system can thus separate and clas-

sify components from additive mixtures based on their spectro-

temporal behaviour over extended periods. Conversely, the total

amount of audio content required for recognition is low, because

a few characteristic patterns suffice for reliable recognition.

Although this particular task is simplified by its small vo-

cabulary, which is easy to model with long templates, we have

already described algorithms for segmentation and recognition

with variable-length units of speech, suggesting that the general

approach is also applicable to large vocabulary tasks [44].

Concerning complexity, all steps of the proposed system

use large-scale linear algebra operations, which are well suited

for parallel computing. The Matlab NMD solver used for these

experiments achieves real-time performance on a GTX 750 Ti

desktop GPU. However, the complexity scales linearly to ba-

sis size, atom length, observation length, and iteration count,

which may differ greatly for other tasks and configurations. On

the other hand, the setup was originally designed for ASR via

sparse coding, which requires discovery of a full phonetic se-

quence rather than just recognising the speaker. Therefore the

setup could probably be simplified for the latter task.

4.3. Extensions and future work

As stated in Section 1, the proposed training and classification

algorithm has its direct counterpart in ASR, if phonetic states

are used as the target matrix instead of speakers. Indeed, ex-

actly the same convolutive model can be used for ASR, even

at the same time by concatenating the speaker and speech state

matrices in learning and recognition. The system will then per-

form speaker-independent ASR and speaker recognition simul-

taneously. This dual functionality appears promising, because

it opens several options for direct classification and model se-

lection in multi-speaker scenarios. Furthermore, the model’s

additivity means that it should be applicable to diarisation of

multiple, potentially overlapping speakers as studied in [45].

For now, it is an open question whether further gains could

be achieved with group sparsity. One such model was proposed

in [38] to favour solutions, where only a few speaker bases

are active per utterance. However, shrinking the solution in

the factorisation stage causes early selection of speakers, which

may turn out incorrect especially when non-target speakers are

present in the input. In an unfavourable case, group sparsity

may attenuate true speakers to such extent that the later recog-

nition step cannot compensate it. As an alternate approach, it

could be viable to compute the Ẑ matrix continuously during

factorisation, and to use the continuity of its speaker estimates

as an additional criterion for optimisation of cost (2).

Overall, reliable speaker recognition in adverse conditions

has its direct applications, but it is also useful in ASR for se-

lecting correct speech models for enhancement and back-end

recognition. We expect to study these options further with the

proposed method.

5. Conclusions

A framework based on convolutive non-negative matrix mod-

elling was presented to perform noise robust speaker recogni-

tion using a sparse coding approach. Spectrogram factorisation

with concatenated long-context speech bases and an explicit

noise model is used to separate and classify speakers using their

characteristic spectro-temporal patterns. The system was eval-

uated on 2nd CHiME Track 1 data, achieving over 98% average

accuracy for short utterances in non-stationary noise at +9 ... -6

dB SNR, also involving competing non-target voices.

The proposed system is fully contained within a non-

negative modelling framework with no additional components

like GMM evaluation. The system has a direct parallel in speech

recognition, permitting joint recognition of speech content and

speakers in complex multi-source scenarios. Potential future

work includes speed optimisations, multi-speaker tasks like di-

arisation, and application to more diverse recognition scenarios.
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