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Abstract

Spectrogram factorisation using a dictionary of spectro-

temporal atoms has been successfully employed to separate a

mixed audio signal into its source components. When atoms

from multiple sources are included in a combined dictionary,

the relative weights of activated atoms reveal likely sources

as well as the content of each source. Enforcing sparsity on

the activation weights produces solutions, where only a small

number of atoms are active at a time. In this paper we pro-

pose using group sparsity to restrict simultaneous activation of

sources, allowing us to discover the identity of an unknown

speaker from multiple candidates, and further to recognise the

phonetic content more reliably with a narrowed down subset

of atoms belonging to the most likely speakers. An evalua-

tion on the CHiME corpus shows that the use of group sparsity

improves the results of noise robust speaker identification and

speech recognition using speaker-dependent models.

Index Terms: group sparsity, speech recognition, speaker iden-

tification, spectrogram factorization

1. Introduction

In several studies it has been reported, how spectrogram factori-

sation using a dictionary of atoms has produced strong results

in separating multiple non-stationary sources frommixed obser-

vations [1, 2, 3]. However, a common assumption is that only

certain sources are active in the mixture — for example, one

known speaker over background noise, or two known speakers.

Under this assumption, only the relevant dictionaries are cho-

sen for the factorisation task, thus reducing problem complexity

and confusion with sources not present in the mixture. In real-

ity, the set of potential sources may be significantly larger than

the number of sources active in the mixture, and the identities of

active sources may not be known beforehand. There is ongoing

research on multi-talker tasks with non-negative matrix factori-

sation (NMF) given as one option, but thus far the performance

of its basic form has not been found satisfactory [4].

It has been shown that activations of dictionary atoms ac-

quired via NMF can act as evidence for both the speaker identity

and the phonetic content of speech [3, 5, 6]. Enforcing sparsity

on the activations improves the classification results [5]. There-

fore the method is referred to as sparse classification (SC). A

straightforward sparsity constraint is to penalise all non-zero

activation weights by adding a weighted L1 norm of all activa-

tions to the cost function to be minimised. The problem of this

approach is that the acquired solution may contain atoms from

any number of sources as long as the distribution of individual

atoms is sparse. The same spectral features may carry a differ-

ent meaning if taken from another source, thereby harming the

classification outcome. If we expect only a limited number of

sources to be active at a time, it would be beneficial to exploit

this knowledge by enforcing corresponding structure on the ac-

tivations, that is, to prefer solutions where activations appear as

groups matching to a few sources at a time.

Group sparsity allows defining groups of dictionary atoms

and constraining the factorisation to use only a small number

of groups with active atoms. The technique has been previ-

ously employed in some applications, including image classifi-

cation [7], music separation [8], DNA sequences [9], and auto-

matic speech recognition [10]. In this paper we propose using

group sparsity in addition to common L1 sparsity to produce

factorisation solutions, where a narrowed down set of speak-

ers is active at a time. Furthermore, we propose an algorithm

which favours the same speakers over the whole duration of an

utterance. Sparse activations are shown to produce improved

speaker and speech recognition results in a task, where an ut-

terance from an unknown speaker must be recognised among

additive noise.

The paper is organised as follows. Section 2 describes the

core concepts of spectrogram factorisation and sparse classifi-

cation. In Section 3 we derive a model and a corresponding

iterative update rule to induce consistent group sparsity in utter-

ances comprising multiple observation windows. Experimental

set-up on CHiME data is presented in Section 4. Results, dis-

cussion and conclusions follow in Sections 5, 6, and 7.

2. Non-negative spectrogram factorisation

Our separation framework is based on representing a mixed ob-

servation spectrogram as a linear, non-negative combination of

atoms— spectrogram segments acquired from sources such as

single speakers or background noise. Each atom is modelled

with a B × T magnitude spectrogram matrix, where B is the
number of frequency bands and T is window length— the num-

ber of consecutive frames in an atom. We model noisy speech

with J speech and K noise atoms, together forming a dictio-

nary (or basis) of L = J +K atoms. If we reshape the atoms

into length B · T vectors as
j (j ∈ [1, J ]) and an

k (k ∈ [1,K])
for speech and noise, respectively, a similarly vectorised obser-

vation y can be estimated as a linear sum

y ≈
J

X

j=1

a
s
jx

s
j +

K
X

k=1

a
n
kx

n
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where xs
j and x

n
k are the activation weights of speech and noise

atoms. The same equation can be given in a matrix form as

y ≈ A
s
x

s + A
n
x

n
(2)



where the columns of matricesAs andAn consist of vectorised

speech and noise atoms, and xs and xn are activation vectors

for speech and noise, together denoted by vector x of length L.

In previous work, we have experimented with two different

methods to model observation spectrogramsY (B×F ), where
the number of frames F is larger than T [11]. The first uses

W = F−T+1 overlapping windows, each factorised indepen-
dently. The second, convolutive model is similar but produces a

joint spectrogram estimateΨ from all window indices simulta-

neously. Both produce an L×W activation matrixX, each of
its columns containing an activation vector for a window index.

The previously used cost function to be minimised consists of

Kullback-Leibler divergence between the observation spectro-

gramY and its estimateΨ

dKL(Y,Ψ) =
X

(y,ψ)∈(Y,Ψ)

y log
y

ψ
− y + ψ (3)

and the L1 norm of X multiplied elementwise by a sparsity

penalty matrix Λ1,

f1 = ||X⊗Λ1||1. (4)

Iterative updates rules to findX for these costs and for both tem-

poral models can be found in earlier work [3, 11]. In this work,

we extend the convolutive model to support group sparsity in

addition to basic L1 sparsity. The same approach for group

sparsity also applies to independent window factorisation.

3. Group sparsity for activation matrices

3.1. Multi-column matrix group sparsity

A generalised form of group sparsity can be achieved by using

a cost function

fg = ||
√

G2X2||1 (5)

on the activation matrixX. HereG is a S×Lmatrix assigning
the L atom indices to S groups with any weights. Square and

square root operations are elementwise. The function measures

weighted L2 norms within groups for each window index, pro-

duces a S ×W matrix of group 2-norms, and sums them over
all groups and window indices. Because in this work we use

group sparsity for selection of groups, that is, denoting basic

membership without further atom weighting, we simplify the

structure by limiting ourselves to assignment matrices of type

G = λgGB, whereGB is a binary matrix denoting atom mem-

bership in groups, and λg is a common weight factor for all

chosen atoms. The simplified cost for binary matrices is

fg = λg||
p

GBX2||1. (6)

However, the given cost function measures group sparsity in-

dependently for each window. Although the columns of X

each become sparse on a group level, they may all have dif-

ferent groups active. In our speech recognition task, we expect

the same speaker to be active over all window indices within a

short observation. Therefore we modify the function to measure

the group L2 norms for summed activity over window indices,

xΣ = X · 1 (1 being an all-one column vector of length W ).
The cost function becomes

fg = λg||
q

GBx2
Σ||1. (7)

3.2. Combined group and atom sparsity

The equations given in Section 3.1 introduce sparsity over

groups, but not over single atoms within a group. Because

we have earlier found atom-level sparsity beneficial in SC-

based speech recognition as well, both are combined for a cost

function that induces sparsity over atoms, yet prefers solutions

where the activations come from a sparse set of groups. The

total cost function for KL-divergence, group sparsity and L1

sparsity is

ftot = dKL(Y,Ψ) + λg||
q

GBx2
Σ||1 + ||X⊗Λ1||1. (8)

3.3. Iterative update algorithm

The total cost function (8) is minimised by initialising all the

entries in the activation matrix X to unity, and then updating it

iteratively with an update rule

X← X⊗
PT
t=1 AT

t

←(t−1)

[Y
Ψ

]

PT
t=1 AT

t

←(t−1)

1 + Λg + Λ1

. (9)

Here each At is a B × L matrix containing frame t of all ba-
sis atoms. Operator← shifts matrix columns left, followed by
truncation toW columns. Estimated utterance spectrogram Ψ

is calculated by

Ψ =
T

X

t=1

At

→(t−1)

X . (10)

with shifting right (→) taking place in a L × F zero-padded

matrix. Matrix Λg defines the group sparsity cost of each atom

and is updated within each iteration based on the activation sum

vector. Its columns are identical and are given as

λg = λgxΣ ⊗ (GT
B(GBx

2
Σ)−1/2). (11)

4. Application to speaker identification and
speech recognition

4.1. CHiME data and feature space

To study the potential of group sparsity in finding a sparse com-

bination of sources, we ran experiments on CHiME data, con-

taining GRID command utterances from 34 speakers over fam-

ily household noises at SNRs ranging from +9 to -6 dB [12].

The utterances follow a linear verb-colour-preposition-letter-

digit-coda grammar. A default language model utilising 250

sub-word states for the 51 word vocabulary is provided. The

data consists of three sets:

• Train: 500 utterances from each speaker without additive

noise (‘clean’)

• Development: a set of 600 utterances from all speakers

combined, repeated over six SNRs

• Test: as development, but with different utterances and

noise content

All audio data, including ‘clean’ sets, has room reverberation.

16 kHz binaural files were used for the experiments. All au-

dio was converted into spectrogram features with B = 40 Mel
scale spectral bands, 25 ms frame length, 10 ms frame shift, and

averaging of the magnitude spectrograms of left and right chan-

nels. The bands were linearly scaled using a fixed scaling based

on speech training data [3]. Atom length T was set to 25 frames

(265 ms).



4.2. Bases and sparsity parameters

We created a 250-atom speech basis for each speaker by mod-

elling the spectrogram context of each state in turn with aB×T
template, based on 300 training utterances per speaker. The

procedure is described in earlier work [3, 6]. The concatenated

8500 (34 · 250) atom speech basis was used to factorise the
remaining 200 training utterances for learning the activation-

state mapping matrices needed for sparse classification, in each

case with factorisation parameters matching the corresponding

test set-up. Mappings were learnt with ordinary least squares

regression. During development and test set recognition, a 250-

atom noise basis was sampled for each utterance from its noise

context and added to the total basis [3].

The binary group sparsity matrix GB (S × L, S = 34,
L = 8500−8750) was simply set to 1 for atoms corresponding
to speaker s, in other words, for entries 1–250 of group (row)

1, entries 251–500 of group 2 and so forth. The noise atoms

at indices 8501–8750, used in all noisy test conditions, did not

belong to any group, i.e., the group sparsity constraint was not

used for noise. L1 sparsity weights in matrix Λ1 were kept

at 0.1 for entries corresponding to speech and 0.85 for noise

as in earlier work. Group sparsity weight λg was set to 0.1

based on development set factorisation. All sparsity weights

were multiplied by the mean of 1-norms of dictionary atoms

to tie the relative weights of KL-divergence and sparsity costs

together.

4.3. Recognition experiments

The 3600 test utterances were factorised using the joint 8750-

atom basis and 300 iterations of the update rule given in Equa-

tion (9). Activation matrices were used for three evaluations:

1. Speaker identification

2. Speech recognition in an external GMM back-end via

feature enhancement

3. Speech recognition by sparse classification, that is, de-

termining the state likelihoods from activation weights

All experiments were run with and without the group sparsity

penalty, all other parameters remaining identical.

Speaker identification was performed using sparse discrim-

inant analysis (SDA) [6, 13]. Considering the fact that there is

only one speaker present in an utterance, we used the summed

activity vector xΣ over an utterance as a feature vector. In order

to make the vector invariant to different utterance lengths, the

vectors were normalised by the number of windows. The fea-

ture vectors from 200 training files per speaker were supplied to

an SDA algorithm to find the sparse directions with maximum

separability between speakers and minimum variability within

speakers. By projecting the 200 vectors from each speaker on

sparse discriminant directions, an average model of a speaker

was made by simply averaging them. The activity vector of

a test segment was also mapped onto SDA directions and dot

scoring was employed as the speaker identification score. The

number of non-zero elements in SDA was set to 500.

For GMM-based speech recognition, we used the CHiME

HTK language model, multi-condition trained GMMs [2], and

feature enhancement as in previous work [3]. True speaker

identity was exploited in GMM selection in the back-end.

Sparse classification was also performed as in earlier work

[3]. Speaker-dependent models were used for Viterbi decoding,

although their contribution is limited to transition probabilities,

which are highly similar for all speakers.

Table 1: Speaker identification rate (%) comparison for no

group sparsity constraint (λg = 0) and with group sparsity
(λg = 0.1) on the CHiME test set.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

λg = 0 99.8 99.3 98.7 95.5 94.3 82.5 95.0

λg = 0.1 99.7 99.3 99.2 96.7 93.7 85.7 95.7

5. Results

Results for speaker identification are shown in Table 1. Rates

without using group sparsity are shown on the first line, and

rates with group sparsity enabled on the second. We ob-

serve 0.7% absolute (14% relative) improvement in the average

score. Individual SNR scores vary to both directions with debat-

able significance considering the 600 utterance set size. More

on factorisation-based speaker identification results including

comparison with GMM baseline can be found in [6].

Table 2 shows the results of speech recognition using

factorisation-based enhancement and a GMM back-end. The

first two rows contain unenhanced baseline scores for the clean-

trained CHiME standard models [12] and multi-condition (MC)

trained models [2]. Results for enhancement with different fac-

torisation models are given in the second part of the table. The

8500-atom multi-speaker basis is employed first with L1 spar-

sity only, and then with group sparsity enabled. To evaluate the

‘oracle’ performance obtainable by perfect speaker discrimina-

tion, the results on the last row use the true speaker’s 250-atom

speech basis and the same 250 noise atoms to enhance the sig-

nals. We notice that adding group sparsity to multi-speaker ba-

sis enhancement produces slight improvements, but only in the

noisy end and by a small margin. Neither variant manages to

match oracle single-speaker enhancement.

Sparse classification results can be found in Table 3. The

same factorisation variants as in enhancement are used for eval-

uation. This time group sparsity improves the multi-speaker

factorisation scores significantly, making them comparable to

oracle single-speaker factorisation and classification.

6. Discussion

The results for speaker identification (Table 1) are not entirely

conclusive. However, the -6 dB condition is of special interest,

because many of its utterances contain loud non-target speech

as their background noise. The 18% relative improvement there

suggests, that sharpening the distribution of speaker activity

manages to remove some interference from non-target speak-

ers. Clean end results are near-perfect to begin with, and there is

little confusion between speakers. Consequently no significant

changes take place there. Due to the novelty of the approach,

further test should be conducted for more conclusive results.

In factorisation-based speech enhancement (Table 2), the

speaker identity and state information of atoms is not used in

any way — only the spectral features. Therefore features from

another speaker are equally valid as long as the spectrograms

match, and group sparsity has a limited effect. Improvements

in the noisy end can probably be attributed to the non-target

background speakers, and the restricted dictionaries’ ability to

reject secondary identities matching to them. Due to stronger

discrimination, such speech is more likely to become modelled

with noise atoms as expected. Again, in the clean end differ-

ences are limited to only a few test files.

In sparse classification (Table 3), state likelihoods are ac-

quired solely from activation weights and atom labelling. Be-



Table 2: Enhancement-based speech recognition scores (%)

over SNRs. Results are shown for clean-trained CHiME base-

line models, multi-condition (MC) trained models without en-

hancement, multi-speaker (MS) enhancement either without or

with group sparsity, and finally enhancement by only using the

true, single speaker’s basis (SS).

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

GMM baseline scores without enhancement

CHiME 82.4 75.0 62.9 49.5 35.4 30.3 55.9

MC 91.3 86.8 81.7 72.8 61.1 54.5 74.7

GMM recognition with MC models and enhancement

MS, λg = 0 92.6 90.3 88.2 84.5 75.6 69.8 83.5

MS, λg = 0.1 92.4 90.4 88.0 85.3 76.2 70.4 83.8

SS 93.0 91.2 90.0 85.2 79.0 72.9 85.2

cause speaker models are trained independently, activations

of atoms from other speakers introduce unreliable factors to

the final likelihoods. Group sparsity reduces such errors by

favouring small sets of active speakers. It is noteworthy that

our multi-speaker basis with group sparsity produces recog-

nition rates closely matching informed recognition using the

true speaker’s basis alone. Because the HMMs can be trained

speaker-independently, the whole recognition process becomes

speaker-independent over the set of modelled speakers. To-

gether with a robust speaker identification algorithm, the frame-

work provides reliable classification results for both speaker

identity and the phonetic content in a scenario, where one un-

known speaker from multiple candidates is active at a time.

Concerning the overall rates, it should be noted that the pre-

sented framework used small 250-atom speech and noise bases.

In other work, we have presented several alternatives for speech

and noise modelling [3]. Better results could be achieved by

using more accurate speech and noise models, although the ef-

ficiency of improved models in conjunction with group sparsity

needs to be investigated. While in the presented results speech

enhancement was found to perform better than sparse classifi-

cation, for different bases and features the order may become

reversed [3]. Moreover, the two approaches have been found to

complement each other in multi-stream recognition [14].

In this study, group sparsity was used for speaker discrimi-

nation. However, it is equally feasible to select any sets of atoms

for the groups based on their expected co-occurrence. The atom

weights in groups need not to be binary either. Different tem-

poral spans can be selected for groups either by choosing an

appropriate factorisation spectrogram length, or adjusting the

window span used in Equation (7), and then spreading the group

sparsity penalty vector (11) accordingly.

7. Conclusions

We proposed using group sparsity in addition to L1 sparsity in

spectral factorisation based noise robust speech recognition in

order to limit the number of active speakers from multiple can-

didates. An iterative update rule was presented for solving con-

volutive non-negative matrix factorisation with consistent group

sparsity over all time indices in an utterance. We found out

that the new model manages to narrow down the distribution of

speakers, producing marginal but consistent improvements in

speaker and speech recognition results. The presented model is

generic and allows enforcing also other kinds of group struc-

tures in dictionary-based audio spectrogram factorisation.

Table 3: Speech recognition scores (%) with sparse classifica-

tion. Results are shown for the multi-speaker (MS) basis with-

out and with group sparsity, and then for using the true, single

speaker only (SS).

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

Sparse classification scores

MS, λg = 0 89.3 87.7 81.5 78.0 68.1 57.9 77.1

MS, λg = 0.1 90.4 88.4 85.7 80.8 73.4 64.3 80.5

SS 89.8 89.0 84.3 81.8 73.9 65.8 80.8
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