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ABSTRACT

Non-negative matrix factorisations are used in several branches of

signal processing and data analysis for separation and classification.

Sparsity constraints are commonly set on the model to promote dis-

covery of a small number of dominant patterns. In group sparse mod-

els, atoms considered to belong to a consistent group are permitted

to activate together, while activations across groups are suppressed,

reducing the number of simultaneously active sources or other struc-

tures. Whereas most group sparse models require explicit division

of atoms into separate groups without addressing their mutual rela-

tions, we propose a constraint that permits dynamic relationships be-

tween atoms or groups, based on any defined distance measure. The

resulting solutions promote approximation with components consid-

ered similar to each other. Evaluation results are shown for speech

enhancement and noise robust speech and speaker recognition.

Index Terms— non-negative matrix factorization, group spar-

sity, sparse representations, speech recognition, speaker recognition

1. INTRODUCTION

Many natural signals and data sets can be represented as additive

combinations of underlying sources and their more primitive com-

ponents. Non-negative matrix factorisation (NMF) is a common

algorithm for compositional modelling with a basis of atoms rep-

resenting such components [1, 2]. Their relative activation weights

reveal the estimated presence of each individual component, hence

performing separation, classification, and approximation of the con-

tent of observations. Factorisations are referred to as unsupervised,

semi-supervised, or supervised, depending on whether all, some, or

none of the atoms are adapted in the process beside activations.

Supervised factorisation with an overcomplete basis may lead to

an infinite number of equivalent solutions. Sparsity constraints are

often introduced to favour modelling with a small number of best

matching components. Discovering such key elements is known

as sparse classification (SC), and it has been used for diverse pur-

poses such as face recognition [3], music genre classification [4], and

general audio analysis [5]. In our previous work, NMF algorithms

have been applied to noisy speech for automatic speech recognition

(ASR) [6] and speaker recognition/identification [7] via SC.

Common sparsity measures like an L1 norm penalty term on

activations promote reduction of the number of active elements. Al-

though different penalty weights can be set on each atom, in gen-

eral this does not address the internal structure of activations, that

is, co-occurrence of atoms. In many scenarios, however, the com-

ponents are naturally structured, hence appropriate modelling would

be preferable over treating the atoms as independent entries.
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Group sparsity functions have been proposed for general sparse

models in [8, 9, 10, 11, 12]. Recent studies on e.g. group LASSO reg-

ularisation also permit overlapping and variable-size groups. Mod-

els for NMF in particular were demonstrated in [13] and [14] for

modelling speech with multiple speaker-dependent bases. In these

experiments, a group comprises various phonetic patterns of a sin-

gle speaker. Under an assumption that only one, unknown target

speaker is present in a noisy observation, the model will converge

to a solution with only the most likely candidates active, instead of

combining features arbitrarily from all speakers. Because less active

non-target speech features and other speech-like interferences are

suppressed, improvements have been observed in denoising [13, 14],

SC-based ASR [15], and speaker recognition [15].

A typical approach to group sparsity is to use two different mea-

sures for activations; an inner sparsity function within a group, and

another over groups. By appropriate selection of the functions, acti-

vations from the same group have a lower cost than the same coef-

ficients distributed across groups. In [15], these measures were L2

and L1 norms, respectively. In [13], several combinations were dis-

cussed with log and L1 functions chosen for experiments to reduce

the number of active speaker bases in denoising. They were also

used in [16] for separation of music and in [17] for audio events.

There are two problems with this general approach, though.

First, regardless of the choice of the inner function, its minimisa-

tion will also penalise any activations within the selected group(s),

which may not be desired. Second, these nested functions in their

basic form do not consider which groups will activate, alone or

together. While these models promote general group sparsity, for

many purposes it would be beneficial to have more control on the

relationships of different atoms or groups. For this purpose, we pro-

pose a quadratic penalty function, where a distance measure can be

defined between elements to promote diverse structures of underly-

ing models. The new group sparse model does not alter the structure

of individual activations within groups, hence their penalisation may

be defined independently from the group cost function.

The proposed model with its mathematical properties is intro-

duced in Section 2. An experimental framework demonstrating the

method on recognition of noisy speech by an unknown speaker from

a closed set is described in Section 3. Results and conclusions are

given in Sections 4 and 5, respectively.

2. DISTANCE-BASED GROUP SPARSITY MODEL

2.1. Sparse representation

Let us define the baseline sparse NMF model within a B-dimensional

feature space so that an observation vector y is estimated with L
basis vectors a stored in a B ×L matrix A. The estimate of y is ψ,

given as



ψ = Ax, (1)

where x is a length L activation vector. All arrays in the model are

non-negative. The core task is to find the sparse representation x,

which minimises a cost function of a general form

ftot = d(y,ψ) + fλ(x) (2)

for some estimate distance function d between the observation and

its estimate, and a sparsity cost function fλ. Typical choices for d
include Euclidean distance and generalised Kullback-Leibler diver-

gence. Basic sparsity for individual atoms is often achieved by using

the L1 norm of x as the cost function. The aforementioned L2/L1

group sparsity is denoted by fg =
∑S

s=1

∥

∥xs

∥

∥

2
, where xs is a sub-

vector of x containing the indices belonging to group s of S.

2.2. Group cost for atom distances

Let us define an L×L group distance matrixM, where each element

mi,j is a distance measure between atoms i and j. The cost function

to be minimised is
fm(x) = x

T
Mx, (3)

which measures the sum of all ximi,jxj coefficients for i, j ∈ L.

We notice that the formulation itself is equivalent to Tikhonov regu-

larisation, whose special case employing a weighted identity matrix

is often used for ridge regression in least squares problems. Indeed,

nonzero diagonal elements may be used for the same purpose here as

well. However, in the following analysis we concentrate on the non-

diagonal cross terms, and actually assume the diagonal to consist of

zeros according to a general interpretation of distances, which should

be zero to the element itself and non-negative between any two ele-

ments. The common definition of a distance also implies symmetric-

ity, and even for any measures violating it (such as KL-divergence),

the original matrix M may be replaced with its symmetric counter-

part M̂ = (M + MT)/2 without affecting any mathematical or

practical aspects of this work.

2.3. Properties and analysis

We can immediately observe the following properties of the ele-

ments of M:

1. Co-occurrence of xi and xj will not be penalised if and only

if both cross-terms mi,j and mj,i are zeros.

2. An infinite entry mi,j = ∞ (or a very large value) prevents

xi and xj from activating together.

3. All other m values produce a quadratic penalty weight for

co-occurrence of the corrersponding x entries.

Consequently, the model will favour activation patterns, where the

cross-terms between all activated atoms are low, standing for a small

distance and thus high similarity.

Function fm is quadratic. Its gradient, used for iterative NMF

update rules, is (M+MT)x and its Hessian matrix M+MT. Both

are non-negative. These become 2Mx and 2M, respectively, when

symmetry is assumed or enforced. Because we defined the diagonal

elements as zeros or small compared to the cross-terms, the 2 × 2
principal minors of M are non-positive, and the Hessian indefinite.

Thereby the cost function is strongly nonconvex by design. For min-

imisation of general quadratic functions in open sets this would be a

major issue. However, in non-negative modelling, it only causes the

minima to appear on the axes. Also, when the measure is combined

with the original modelling task and its residual cost function, the

convexity and behaviour of the overall function are not smooth.

Let us illustrate the matter with a simple example, where the

function to be minimised is ftot = d(y,ψ) + λfm(x) for arrays

y =

[

4
4

]

, A =

[

3 1
1 3

]

, M =

[

0 1
1 0

]

.

If the sparsity weight λ is zero, x clearly has a solution
[

1 1
]T

for any common distance function d. However, assuming Euclidean

distance dEuc as the residual measure, the overall function has a uni-

form Hessian

H =

[

20 12
12 20

]

+ λ

[

0 2
2 0

]

. (4)

If λ < 4, the global minimum is at x = 16/(λ + 16)
[

1 1
]T

.

If λ > 4, the function becomes a saddle with its minima in the

non-negative activation space at x =
[

1.6 0
]T

and
[

0 1.6
]T

.

In other words, cross-activations have been eliminated at the cost

of estimate ψ coefficients becoming 1.6 and 4.8, either way. If the

distance function is changed to generalised KL-divergence dKL,

the same fundamental behaviour remains, but non-uniform, x-

dependent convexity of the overall function allows a small range of

λ values, where both the local minimum on the diagonal and the two

global minima on the axes are present simultaneously.

For actual data and more diverse M matrices, the solutions be-

come varied. For example, a large mi,j value may split the activation

space into two halves, while both halves still have their own min-

ima, unhindered by the fm cost if these cross-terms are low. Small

λ values alter the selection between almost equivalent atoms with-

out dominating the result. Conversely, large λ values result in strong

nonconvexity, which calls for careful initialisation to guide the so-

lution to the correct minimum. In our experiments, running initial

NMF iterations without the group cost term and then introducing it

gradually produced stable descent to accurate group sparse solutions.

2.4. Extension to groups of activations

The model described in Equation (3) applies to single activation vec-

tors with matrix M defined between individual atoms. This already

permits group structures in the sense that e.g. multiple atoms may

be assigned to the same group by giving them zero cross-distances.

However, in our speech processing work, the common application is

to find optimal multi-column activation matrices X, where

1. large sets of atoms belong to few groups, and

2. structures should apply coherently to multiple observation in-

dices, that is, columns of X.

Both objectives can be met by defining the distances for sets of ac-

tivations, which may span multiple rows and columns of X or even

more complex structures. Nevertheless, to simplify the formulation,

we concentrate on rectangular blocks of X (L × W ), whose W
columns correspond to window indices of audio spectrograms. The

set activation weights zs for S sets are computed as

zs =
∑

l∈Gs

W
∑

w=1

Xl,w (5)

with Gs denoting atoms indices belonging to set s. Group distance

M with order S×S is then defined between whole groups of atoms,

and the cost computed as fm = zTMz for sets of activations instead

of individual entries. The group cost is introduced to common NMF

update rules [1, 2] by adding the strictly non-negative gradient of fm,

2Mx (or 2Mz) to the denominator of activation update, in the latter

case applied to all activations belonging to each zs. For example, the

update rule for atom-level group sparsity with KL-divergence will be



Fig. 1. Distance matrix for CHiME speakers, sorted by gender.

Bright/yellow entries correspond to high distance values.
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x← x⊗
AT(y/(Ax))

AT1+ 2Mx
(6)

with ⊗-multiplication and all divisions taken elementwise.

3. EXPERIMENTS ON NOISY SPEECH

3.1. Noisy speech corpus

The proposed method is tested in enhancement and sparse classifi-

cation of noisy speech from the 1st CHiME Challenge [18]. The task

is based on GRID corpus [19], where one of 34 speakers utters a

six-word command sentence following a linear grammar with a vo-

cabulary of 51 words. In the CHiME corpus, utterances are mixed

with living room noise at six SNRs from +9 to -6 dB, each using a

different instance of noise without rescaling. Long noise context is

available to both directions for adapting the models. For training of

speech models, there are 500 utterances per speaker without additive

noise. Development and test sets comprise 600 utterances per SNR.

The challenge task is to conduct automatic speech recognition,

where two keywords per utterance (‘letter’ and ‘digit’) are scored.

In the original challenge, speaker identity is known. Nevertheless, to

demonstrate the group sparse methods, we run the factorisation and

recognition tasks blindly with concatenated speaker models, expect-

ing the model to find the correct identity while suppressing others.

The single, correct speaker model thus acts as an oracle baseline.

3.2. Experimental set-up

Most of the set-up follows our earlier NMF experiments on the same

corpus [6, 7, 15]. Features were extracted as 40 monaural mel mag-

nitudes with 25 ms frame length and 10 ms shift. A speech basis of

250 templates, each a 40 × 25 spectrogram segment, was extracted

for all 34 speakers by computing an average spectro-temporal pro-

file of each back-end state and its context from 300 training utter-

ances per speaker. These were concatenated to a joint speech basis

of 34 · 250 atoms. For noisy sets, 250 noise atoms of the same size

were extracted from the neighbourhood of each utterance individu-

ally by sampling the noise context. Thereby 8500 atoms were used

in factorisation of clean speech, and 8750 in noisy conditions.

Each single-speaker basis forms a group in our system. Because

matching atom indices contain the same linguistic content in every

speaker’s basis, it is relatively straightforward to compute a distance

Table 1. Average results over the noisy CHiME test set, measured by

the five metrics given in Section 3.3. Rows correspond to different

speaker selection methods; joint bases without group sparsity (‘no

GS’), previous L2/L1 group sparsity [15], proposed distance-based

model, and oracle factorisation with the correct speaker’s basis only.

method act.% SDR/dB FE-ASR SC-ASR spk.rec

no GS 35.6 6.52 83.5 76.5 95.0

L2/L1 45.8 7.40 83.8 80.9 95.7

proposed 79.1 8.01 83.6 80.1 94.6

oracle 100 8.62 85.2 81.8 100

between each pair of bases. After experimenting with e.g. KL and

Euclidean distances between atoms, we settled for computing the

angle between vectorised atom spectrograms a as

6 (a
(i)
l ,a

(j)
l ) = cos−1 a

(i)
l · a

(j)
l

‖a
(i)
l ‖‖a

(j)
l ‖

(7)

pairwise for each atom index l in the bases of speakers i and j.

These were summed over atoms to form the mi,j entries. Finally, the

34×34 distance matrix M was normalised to a mean value of 1 over

non-diagonal entries. This measure was found to produce plausible

estimates of speaker similarity. For example, the average distance

between speakers of the same gender was approximately 20% lower

than across genders. The matrix is shown in Figure 1, sorted by gen-

der. Apart from general trends, diverse levels of pairwise similarity

between speakers can be observed in individual entries.

Activation matrices were computed with convolutive NMF de-

scribed in [6, 15] using a combination of KL-divergence, 1-norm

of activations weighted by matrix Λ1 (with weights 0.1 and 0.085

for speech and noise, respectively), and the new group sparsity cost

together as the target function,

ftot = dKL(Y,Ψ) + ‖Λ1 ⊗X‖1 + λmfm(z). (8)

Apart from changing the group sparsity function, the set-up was

identical to [15]. Group sparsity factor λm was optimised to 0.0025

on the development set, and multiplied by the mean of atom 1-norms

like other sparsity weights in related work. To address the possibil-

ity of multiple minima in the cost function, the group cost was in-

troduced linearly from zero to λm over iterations 101–200 so that

an approximate non-sparse solution would be reached first before

converging into a reduced number of speaker bases. All in all, 400

iterations were used for sufficient convergence of the final cost.

3.3. Result metrics

The following metrics were used to evaluate the results.

Correct speaker activity percentage (act.%): For each utterance,

a normalised histogram of speaker activity (the z vector) was calcu-

lated. The amount of correct speaker’s activity was averaged over all

600 utterances per condition.

Signal-to-distortions ratio (SDR): Speech features were enhanced

by computing a spectro-temporal filter Ψs/Ψtot binwise between

utterance estimates from speech-only and all atoms. Both were con-

verted from mel to DFT magnitudes by the pseudoinverse of the mel

matrix as in [6, 15]. Enhancement quality of synthesised waves was

measured by SDR using BSSeval toolkit (without highpass filtering)

[20] and averaged over utterances.

ASR by feature enhancement (FE): Keyword accuracy was deter-

mined by recognising the enhanced utterances with the same multi-

condition trained CHiME GMM back-end as in earlier work [6, 15].



Fig. 2. Results for separation and recognition experiments, plotted over the noise levels of 1st CHiME test set.
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ASR by sparse classification (SC): For SC, state likelihoods were

determined directly from activation weights by assigning Q × T
mapping matrices to atoms, where Q = 250 is the number of back-

end states and T = 25 the number of frames in an atom [6]. These

were learnt from factorisations of 200 training matrices per speaker

by using the deconvolutive algorithm described in [21]. State likeli-

hood matrices were decoded with CHiME baseline HMMs.

Speaker recognition: As in [7, 15], the average activation vector

over each utterance was used to map a variable-length utterance to

a fixed-length high-dimensional vector. A sparse linear discriminant

analysis (LDA) model is trained using 200 factored clean utterances

per speaker, and the cosine similarity metric is employed after LDA.

All factorisation and recognition parameters were optimised with de-

velopment data. No optimisation took place during test set scoring.

4. RESULTS AND DISCUSSION

Results for the CHiME test set are shown as averages in Table 1, and

plotted over SNR in Figure 2. In both representations, the proposed

method is compared to joint-basis factorisation with no group spar-

sity, the previous L2/L1 group cost, and oracle factorisation using

only the correct speaker’s basis (where applicable). We notice that

both group sparsity models clearly surpass joint factorisation without

such constraint, but lose to oracle factorisation as expected. Differ-

ent goals and modelling methods are discussed briefly as follows.

Measuring the relative speaker activities reveals that the pro-

posed model is very efficient in finding the correct speaker and

emphasising the corresponding activations. Although the sparsity

weight λ obviously plays a role in the shaping, the new function

was clearly more discriminative for all λ values producing plausible

recognition results. This is explained by the new function’s tendency

to remove nonmatching groups from the model completely.

Because a majority of activations was condensed on the correct

speaker, SDRs of the enhanced signals improved uniformly. How-

ever, this did not produce significant changes in enhancement-based

ASR. All joint-basis methods were roughly tied. A possible explana-

tion is that even incorrect speaker models are able to separate speech

from other noises. All factorisation methods were still successful,

as the average SDR for unenhanced signals was -0.78 dB and the

corresponding keyword recognition rate 74.7%.

In sparse classification of speech, the results were not com-

pletely consistent. Despite better basis selection, the average recog-

nition rate decreased compared to the L2/L1 model due to worse

performance at low SNRs. One explanation is that the atom-level

shrinkage of L2/L1 sparsity may actually change the activation

pattern favourably for noisy conditions. Nevertheless, both costs

clearly surpass baseline joint factorisation.

In speaker recognition, the results did not improve over previous

models. The primary reason is that clean training factorisations con-

centrated very heavily on single bases, producing classifiers that do

not generalise well to mismatched noisy activation patterns.

Overall, the results show the method’s potential, although the ex-

act outcome depends on the task. One major factor in this scenario is

that especially at low SNRs, CHiME utterances contain competing

voices, whose energy may exceed the target speech. In such cases,

the new model may converge to a non-target speaker, largely losing

the target speech, whereas models without similarity constraints can

keep both. Inspecting the behaviour of single utterances revealed

that this indeed happened, causing a few strongly negative outliers

among generally improving separation. The task of picking a lower

energy speaker blindly is fundamentally difficult, though. A bet-

ter noise model or spatial methods might help in tackling these sce-

narios. Another factor is the training of classifiers from clean data,

whose activation pattern in this model is more mismatched than ear-

lier, thus multi-condition training should be used for SC instead.

5. CONCLUSIONS

A group sparsity model was proposed for non-negative matrix fac-

torisation, based on defining distance measures between groups. The

model favours solutions, where a small number of groups is active

with a further preference for mutual similarity. The measure may be

defined by any means suitable for the task, and it permits customis-

able pairwise penalties ranging from zero to complete exclusion.

The function does not affect the distribution of activations within

groups, unlike commonly used group costs. Initial experiments on

factorisation of speech with joint speaker bases suggest that better

convergence to the correct speaker within a closed set is achieved.

However, as the function is nonconvex by design, proper initialisa-

tion is necessary. As future work, we expect to apply the model to

other separation and classification tasks, and to refine its details.



6. REFERENCES

[1] D. D. Lee and H. S. Seung, “Algorithms for Non-negative Ma-

trix Factorization,” in Advances in Neural Information Pro-

cessing Systems 13, 2001, pp. 556–562.

[2] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnega-

tive Matrix and Tensor Factorizations, Wiley, New York, NY,

USA, 2009.

[3] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma,

“Robust Face Recognition via Sparse Representation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 31, no. 2, pp. 210–227, 2009.

[4] Y. Panagakis, C. Kotropoulos, and G. R. Arce, “Music Genre

Classification via Sparse Representations of Auditory Tempo-

ral Modulations,” in Proc. of the 17th EUSIPCO, Glasgow,

Scotland, UK, 2009, pp. 1–5.

[5] T. Virtanen, J. F. Gemmeke, B. Raj, and P. Smaragdis, “Com-

positional models for audio processing,” IEEE Signal Process-

ing Magazine, vol. 32, no. 2, 2015.

[6] A. Hurmalainen, J. F. Gemmeke, and T. Virtanen, “Modelling

non-stationary noise with spectral factorisation in automatic

speech recognition,” Computer Speech & Language, vol. 27,

no. 3, pp. 763–779, 2013.

[7] R. Saeidi, A. Hurmalainen, T. Virtanen, and D. A. van

Leeuwen, “Exemplar-based Sparse Representation and Sparse

Discrimination for Noise Robust Speaker Identification,” in

Odyssey speaker and language recognition workshop, Singa-

pore, 2012.

[8] S. Bengio, F. C. N. Pereira, Y. Singer, and D. Strelow, “Group

Sparse Coding,” in Proc. of NIPS, 2009, pp. 82–89.

[9] M. Kowalski, K. Siedenburg, and M. Dörfler, “Social Spar-

sity! Neighborhood Systems Enrich Structured Shrinkage Op-

erators,” IEEE Transactions on Signal Processing, vol. 61, pp.

2498–2511, 2013.

[10] G. Obozinski, L. Jacob, and J.-P. Vert, “Group Lasso with

Overlaps: the Latent Group Lasso approach,” Tech. Rep., IN-

RIA, 2011, arXiv:1110.0413.

[11] Q. Tan and S. Narayanan, “Novel Variations of Group Sparse

Regularization Techniques with Applications to Noise Robust

Automatic Speech Recognition,” IEEE Transactions on Audio,

Speech, and Language Processing, vol. 20, pp. 1337–1346,

2012.

[12] S. Gishkori and G. Leus, “Compressed Sensing for Block-

Sparse Smooth Signals,” in Proc. of the 39th ICASSP, Flo-

rence, Italy, 2014, pp. 4166–4170.

[13] D. L. Sun and G. J. Mysore, “Universal Speech Models for

Speaker Independent Single Channel Source Separation,” in

Proc. of the 38th ICASSP, Vancouver, BC, Canada, 2013, pp.

141–145.

[14] M. Kim and P. Smaragdis, “Mixtures of Local Dictionaries for

Unsupervised Speech Enhancement,” IEEE Signal Processing

Letters, vol. 22, no. 3, pp. 294–297, 2015.

[15] A. Hurmalainen, R. Saeidi, and T. Virtanen, “Group Spar-

sity for Speaker Identity Discrimination in Factorisation-based

Speech Recognition,” in Proc. of the 13th INTERSPEECH,

Portland, OR, USA, 2012, pp. 2138–2141.
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