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ABSTRACT

Non-negative spectral factorisation has been used successfully for

separation of speech and noise in automatic speech recognition,

both in feature-enhancing front-ends and in direct classification.

In this work, we propose employing spectro-temporal 2D filters to

model dynamic properties of Mel-scale spectrogram patterns in ad-

dition to static magnitude features. The results are evaluated using

an exemplar-based sparse classifier on the CHiME noisy speech

database. After optimisation of static features and modelling of tem-

poral dynamics with derivative features, we achieve 87.4% average

score over SNRs from 9 to -6 dB, reducing the word error rate by

28.1% from our previous static-only features.

Index Terms— Automatic speech recognition, exemplar-based,

spectral factorisation, noise robustness

1. INTRODUCTION

In its current state, automatic speech recognition (ASR) can achieve

high phonetic classification quality in favourable conditions. How-

ever, the same cannot be said about noisy ASR. As the signal to noise

ratio decreases towards zero or below, a majority of spectral features

becomes corrupted, and traditional recognisers cannot match the ob-

servations to speech models reliably. Especially non-stationary noise

is problematic for recogniser back-ends and difficult to counter with

uniform compensation methods. Therefore detecting and removing

non-speech artifacts becomes essential for noise-robust ASR.

To compare different robust ASR methods, PASCAL CHiME

challenge was announced in 2010, and its results were gathered in

a workshop in September 2011 [1]. As the test data includes very

low SNRs, practically all challenge entries contained enhancement

or separation steps for extracting real speech features from the noisy

mixture [2]. Proposed approaches included beamforming, spatial

uncertainty-of-observation, statistical speech-noise models and in-

dependent component analysis. Separation algorithms can thus be

considered highly important for everyday ASR in general. What is

less clear is how to select the algorithms and features for the task.

One significant group of separation methods consists of spectral

factorisation. Due to the novelty of this branch, current work mostly

focuses on modelling static spectrogram features. Nevertheless, we

know that important characteristics of speech and noise can be found

in spectral dynamics, that is, local changes in spectro-temporal pat-

terns. In MFCC-based recognition, it has been found beneficial to

augment the base features with time derivatives, also known as delta

coefficients [3]. Another approach suggested for long temporal con-

text modelling is using TRAP features, where the emphasis is on

long term behaviour of a few spectral bands [4]. In our exemplar-

based framework, spectrogram windows spanning up to 300 ms can

capture a lot of temporal context [5], but some of the dynamic in-

formation is lost in the additive model. It has been suggested, that

dynamics can be emphasised in factorisation-based recognition by

including temporal and spectral derivatives in the feature vectors [6].

In this work, we inspect further the efficiency of derivative fea-

tures on top of optimised Mel magnitudes to improve the robust-

ness of factorisation-based recognition. The work is organised as

follows. First, we introduce in Section 2 our exemplar-based fac-

torisation framework and its recognition method known as sparse

classification (SC). Then we describe the concept of derivative fea-

tures in Section 3. The CHiME challenge data, our basic setup and

feature space experiments are described in Section 4, whereafter we

conclude in Section 5.

2. EXEMPLAR-BASED SPARSE CLASSIFICATION

While many separation methods are based on statistical speech and

noise models, in our approach we make the models more explicit by

representing the observed features as a combination of exemplars—

spectrogram segments sampled directly from the training material or

the local context [5].

Each exemplar in our system is a B × T spectrogram matrix

with B spectral bands and T consecutive frames. They are gathered

to a basis or dictionary, which is used to model observed speech and

noise features. Each observation window is represented as a linear

combination of basis atoms. If we reshape the observation matrix to

a vector y and each exemplar (basis atom) to a column vector ai, the

problem becomes finding the activation weight vector x so that

y ≈
m

X

i=1

aixi (1)

where m is the number of exemplars in the basis. In matrix form

the same equation can be given as y ≈ Ax. Multiple observation

windows can be given as parallel column vectors to solve the total

activation matrixX (m × n) for n windows at once. Finally, by as-

suming that basis and observation features are non-negative spectral

magnitudes, and that activations should be non-negative too, finding

X becomes a non-negative matrix factorisation (NMF) problem for

a fixed basis. Enforcing additional sparsity on the solution ensures,

that a few best fitting matches are favoured over unrealistically com-

plex combination of multiple atoms. The iterative update rules used

to find the x estimates are presented in [5].

To determine the utterance content from activations, each exem-

plar has aQ×T label matrix, describing the likelihood of each state

q ∈ [1, Q] over the exemplar’s frames [1, T ]. Label matrices are
added together according to the corresponding exemplars’ activation

weights in temporal locations, where the activation was observed.

This produces a Q × Tutt likelihood matrix for the whole utterance,

which can be decoded using a standard Viterbi algorithm. The full

procedure is described in earlier work [5, 7].



Figure 1: Spectro-temporal filters. Top row: ‘Medium’ length Ga-

bor filters for temporal, diagonal and spectral direction. Bottom row:

‘Short’ and ‘Long’ Gabor filters, and length 2 HTK delta filter. Mag-

nitudes are shown at a full greyscale range, thus not in scale.
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As the decoding is based on activation weights and exemplar la-

bels, there is no need to reconstruct the clean spectrogram or to syn-

thesise the waveform for an external back-end. Even though spec-

trum or signal enhancement are also possible, in earlier work we

have shown that direct classification performs better than the single-

stream alternatives [5]. Multi-stream methods can improve the re-

sults significantly [8], but in this work we only use SC for simplicity

and to eliminate the contribution of other components.

3. SPECTRO-TEMPORAL DERIVATIVE FEATURES

Current spectral factorisation algorithms are mostly employed in

plain magnitude spaces, which model the activity in spectrogram

bins, but not the dynamics over time and frequency. As in MFCC

time derivatives, the NMF base features can be augmented by dif-

ferential estimates. Because we are working in Mel spectrogram

domain, it is possible to observe changes not only in time, but in

any spectro-temporal direction by using 2-dimensional filters. The

concept is similar to edge detection algorithms in image processing.

First, we construct a filter matrix in the spectro-temporal space.

Then a derivative feature matrix is calculated by common 2-

dimensional convolutive filtering of the static features, revealing

the on- and offsets of spectrogram patterns. However, it should

be noted that the differential estimates can have any sign, unlike

the original non-negative magnitudes. To stay in the non-negative

domain required by standard NMF algorithms, we must modify the

features before factorisation.

The derivative feature matrix is reshaped to a vector, and repre-

sented by two vectors of the same size. The first contains the positive

coefficients, and zeros where the vector was negative. Similarly, the

second vector contains the absolute values of negative coefficients.

If we denote the static features by a row vector f and its derivative

by df , the augmented feature vector becomes

f̂ = [f , df
+

, df
−] = [f , max(df ,0), max(−df ,0)]. (2)

If multiple derivatives are used, they are concatenated further to the

vector as +/- pairs. Similar implementation was used in [6].

To learn the directions helpful for phonetic classification, we ex-

perimented with real-valued Gabor filters for multiple directions and

sizes. Examples of filter matrices are shown in Figure 1, and they

are described in more detail in Section 4.4.

4. EVALUATION

4.1. CHiME challenge data

The experiments were conducted using the PASCAL CHiME chal-

lenge database [1]. Its speech data consists of GRID corpus sen-

tences, which follow a linear grammar of six word classes. The task

is to recognise words belonging to the ‘letter’ and ‘digit’ classes,

which contain 25 and 10 word options, respectively.

CHiME utterances are convolved with room response patterns,

and mixed with household noises at six SNRs ranging from +9 to

-6 dB. For training, there are 500 reverberated utterances for each

of the 34 speakers, and six hours of plain background noise. The

development and test sets consist of 600 utterances each, distributed

between all speakers. Each set is repeated for all SNRs by mixing

the utterances with different background segments containing an ap-

propriate level of noise. All noisy utterances are presented within

a long noise context as ‘embedded’ wave files. The development

utterances are also available as ‘clean’ files with reverberation but

no additive noise. Speaker identity is assumed to be known during

recognition, while the target SNR is not.

4.2. Base setup

Our exemplar-based setup generally follows the one described in [7].

To reduce the number of parameters, we only use exemplar length

of 20 frames (25 ms frame length, 10 ms shift), speaker-dependent

speech bases and adaptively sampled noise bases in this work. The

previous results for this setup and the GMM-based CHiME chal-

lenge baseline recogniser can be found in Table 3.

For each speaker, a speech basis is constructed by sampling 5000

exemplars from the ‘clean’ training speech semi-randomly. 5000

noise exemplars are also extracted for each test utterance by sam-

pling the ‘embedded’ waveform files to both directions from the tar-

get utterance. In clean speech recognition, the noise basis is omitted.

After converting all exemplars to Mel magnitudes and merging the

speech and noise bases, a band weighting function is applied to de-

fine the contribution of each spectral band. Thereafter individual

basis vectors are normalised to a Euclidean norm of 1.

Each test utterance is similarly converted into Mel magnitudes

by extracting overlapping windows with a step of one frame. The

band weights determined for the basis are applied to the observa-

tion as well. The observation windows are factorised to find out the

activation vectors x as described in section 2. We initialise the ac-

tivations to ones, and apply 300 rounds of an iterative update rule.

The algorithm minimises the sum of estimation error (defined by

KL-divergence) and a weighted L1 penalty for non-zero activations.

As in earlier work, we used base sparsity values of 2.0 for speech

and 1.7 for noise activations. However, the final sparsifying effect

depends on the ratio between the penalty values and the 1-norms of

basis vectors. The latter will increase by a factor of
√

R, if the length

of 2-normed feature vectors is multiplied by R and their distribution

remains similar. Therefore the
√

R scaling is applied to the previ-

ously determined sparsity values, whenever the channel count, band

number or derivative features change the feature vector length.

To avoid optimising for the test set, all parameter scans were

performed on the development set. The ‘clean’ set was also used,

although it does not belong to the final test set and is not included

in any average values. The feature extractor was modified to use

512 FFT bins instead of the previous 256, producing small initial

improvements over the earlier extraction. No changes were made

to basis selection, factorisation or decoding algorithms. The learnt

state mappings presented in [7] were not used in this work.



Figure 2: Mel band weighting curves for no adjustment (‘flat’), on-

line normalisation of the combined basis (‘utt-c’), online speech ba-

sis normalisation (‘utt-s’), precalculated normalisation from training

speech (‘pre-s’) and bandpass filtering (‘bandp’).
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4.3. Spectral band parameters

Before moving on to derivative features, we reoptimised the under-

lying static spectral magnitude space. In earlier work, we used 26

spectral bands calculated from 16 kHz signals as in the provided

CHiME recogniser. The features were extracted separately for both

channels, and the channel feature vectors were concatenated. These

choices were re-evaluated as follows.

4.3.1. Band weighting

The Mel-scale distribution of speech and noise features is consider-

ably uneven across bands. We can reweight the bands for two differ-

ent goals; either to flatten the distribution for equal contribution of

each band, or alternatively to emphasise certain bands for maximal

classification quality. While the highpass filter commonly employed

in MFCC extraction can improve clean speech recognition, we have

found it too drastic for robust factorisation algorithms. Instead, five

different weighting methods were tested:

1. No weighting (‘flat’)

2. Normalisation of the combined utterance basis bands (‘utt-c’)

3. Normalisation calculated from the speech basis only (‘utt-s’)

4. Precalculated normalisation of training speech bands (‘pre-s’)

5. Experimental bandpass filtering (‘bandp’)

Method 2 is our previous approach and depends on the adaptive

noise basis of each utterance. Method 3 only depends on the cur-

rent speech basis, that is, speaker identity. Methods 4 and 5 both

produce fixed weighting, which simplifies the later steps. The band-

pass weighting was included as an example of filter types, which

emphasise the speech formant area and mostly discard frequencies

over 4 kHz. All weighting methods are illustrated in Figure 2. For

non-fixed weightings, means over all development data are shown.

The results are summarised in the first part of Table 1. We ob-

serve that ‘do nothing’ and online-computed speech weighting fare

worse at certain SNRs than the other methods, which are approxi-

mately tied. Interestingly, the fixed weightings produce similar av-

erage rates, while bandpass filtering favour the clean end and precal-

culated speech normalisation the noisy one. The latter was chosen

for further experiments due to its robustness, normalising effect and

fixed shape. The differences between diverse weighting methods

were generally small.

Table 1: Development set results for different spectral band parame-

ter combinations. The format of experiment names is [band number]

/ [mono | stereo] / [weighting type].

SNR (dB) clean 9 6 3 0 -3 -6 avg

26/s/flat 92.7 90.6 90.5 88.3 83.5 79.1 71.8 84.0

26/s/utt-c 93.7 91.8 91.8 89.8 83.5 78.5 72.2 84.6

26/s/utt-s 93.7 92.0 91.6 89.3 83.3 77.4 70.4 84.0

26/s/pre-s 93.6 91.4 90.8 89.3 84.7 78.9 72.7 84.6

26/s/bandp 93.7 92.0 91.7 89.8 83.8 78.8 71.8 84.6

26/m/pre-s 93.3 92.1 91.4 89.3 83.9 78.7 71.9 84.5

26/m/bandp 93.7 91.8 91.7 89.6 83.8 79.5 71.6 84.7

40/m/pre-s 93.6 92.3 91.6 89.8 85.0 79.7 72.7 85.2

4.3.2. Channel count

In our original parametrisation, binaural features were kept in sep-

arate entries of the feature vector, retaining some of the spatial in-

formation of the sound sources. To study whether it plays any role

in recognition quality, the development set was also factorised using

mono features by averaging the Mel magnitudes of channels. Apart

from adjusting the sparsity value due to vector length halving, no

other changes were made. Two fixed weighting curves, precalcu-

lated normalisation and bandpass filtering, were tested.

As can be seen from the results in Table 1 (rows 4–7), the ac-

curacy of mono and stereo features is highly similar. Because mono

features reduce the vector length and consequently computing costs

by a half, they were used for further experiments.

4.3.3. Spectral band number

One fundamental question regarding feature selection is the num-

ber of Mel bands. To inspect this briefly, the band count was in-

creased from 26 to 40. The results are shown on the last row of

Table 1. We observe some ∼1% improvements and no decrements,
suggesting that the gains may be worth the increased computational

costs. While the next section was still evaluated using the original

26 bands, the final evaluation was performed on both values.

4.4. Spectro-temporal filters

After determining efficient base features, we tested three combina-

tions of spectro-temporal Gabor filters: only temporal (forward and

backwards), cardinal directions (temporal and spectral), and diago-

nal filters (45◦ angles). The prototype filter matrix was defined by

g(x, y) = exp(−(
x2 + (γy)2

2σ2
) sin(

2πx

λ
), x, y ∈ [−5, 5] (3)

with ellipticity γ set to 3, Gaussian envelope width factor σ to 2, and

wavelength λ to 9, producing approximately one full sinusoid cycle.

The prototype filter and two of its rotations are shown on the first row

of Figure 1. The absolute sum of filter coefficients was set to 0.6 for

each half of the filter. The results of augmenting directional filters

to fixed-norm weighted mono features can be seen in the first part of

Table 2. We notice that temporal direction improves the recognition

rates, while including any of the spectral directions does not.

Settling for primarily temporal filtering, we tested the Gabor fil-

ter with its size increased and decreased by 50%, and in addition

the delta filter employed by HTK using the default window length

of 2 frames to both directions [3]. All were normalised to a 0.6



Table 2: Development set results for 2D filtering. Filter type is either

Gabor [short | medium | long] in [temporal | cardinal | diagonal ]

directions, or HTK delta.

SNR (dB) clean 9 6 3 0 -3 -6 avg

G/med/temp 92.8 92.0 91.7 89.5 83.9 80.3 73.2 85.1

G/med/card 92.9 91.8 90.3 89.3 83.8 78.1 71.7 84.1

G/med/diag 92.8 91.1 90.6 88.3 82.7 76.3 69.5 83.1

G/short/temp 93.3 92.2 92.2 90.3 85.6 81.4 73.5 85.9

G/long/temp 92.3 91.0 89.8 88.3 82.2 77.4 70.5 83.2

HTK delta 93.4 92.4 91.8 90.3 85.1 82.1 74.1 86.0

coefficient sum per side. The filters are shown on row 2 of Figure

1, and the results in the second part of Table 2. The best results

were achieved using the shorter filters with little or no cross-band

bleeding. The clean speech recognition rate does not improve over

unfiltered base features, but the robustness against heavy noise in-

creases. Changing the filter weight (not shown) did not produce any

significant improvements.

4.5. Final test set evaluation

After optimisations, the test set was evaluated using the follow-

ing parameter combination; mono features, precalculated speech-

normalising band weights, and length 2 temporal delta filtering at

weight 0.6. Both 26 and 40 spectral bands were used for determin-

ing their quality-cost tradeoff. The results are listed in Table 3. We

notice significant improvements at each SNR in comparison to our

earlier results. The word error rate is reduced by 13.9–32.8% at

different SNRs, and the total error rate by up to 28.1%. Using 40

bands produces a large boost at -6 dB and modest gains elsewhere.

While the overall rates do not match the state-of-the-art results

achieved in the CHiME workshop, where the best average score

was 91.65% [9], it should be noted that the current highest rank-

ing methods are relatively complex combinations of multiple tech-

niques, whereas the approach presented here is a single stream clas-

sifier. Preliminary experiments suggests, that using sparse classifi-

cation with complementary methods in multi-stream recognition can

indeed achieve over 90% average recognition rate on the CHiME

data already with the earlier, unoptimised features [8].

5. CONCLUSIONS

We studied alternative parametrisations of Mel features and their

derivatives for factorisation-based speech recognition using CHiME

challenge data and an exemplar-based sparse classifier.

First, we found out that the recognition algorithm is not particu-

larly sensitive to band weighting, although some normalisation will

improve the results over do-nothing. Mono features were found as

effective as stereo for this data, allowing a 50% reduction in compu-

tational costs. Increasing the spectral band number from original 26

to 40 improved the results slightly.

Spectro-temporal filters were applied to the basis and observa-

tion features to model dynamic behaviour. Including temporal delta

information produced significant improvements, while edge detec-

tion in spectral directions was found detrimental. The best temporal

filters were relatively short with roughly 20ms temporal context to

both directions, and no cross-band bleeding.

All in all, our feature space optimisation yielded 28.1% reduc-

tion in the total word error rate over all noisy conditions. Clean

speech recognition rate remained at approximately 93–94%, which

Table 3: Test set scores (%) for the CHiME baseline GMM recog-

niser, our previous SC features, and optimised features with their

relative word error rate reductions (%) from the earlier results.

SNR (dB) 9 6 3 0 -3 -6 avg

GMM baseline 82.4 75.0 62.9 49.5 35.4 30.3 55.9

original SC, B=26 91.6 89.2 87.6 84.2 74.7 68.0 82.5

optimised SC, B=26 92.8 91.3 89.8 87.9 82.2 75.8 86.6

WER reduction 13.9 19.9 17.5 23.7 29.6 24.5 23.4

optimised SC, B=40 92.9 91.8 90.1 88.4 82.9 78.5 87.4

WER reduction 15.9 24.6 20.1 26.8 32.6 32.8 28.1

illustrates the difficulty of short word classification when no clues of

word identity can be found from the neighbouring word context.

While the presented work was tested on the exemplar-based

recogniser, it can be generalised to other algorithms based on non-

negative spectral factorisation. The improved separation quality

should prove useful both for feature-enhancing front-ends and for

direct classifiers in standalone or combined recognition.
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