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ABSTRACT

To detect the class, and start and end times of sound events
in real world recordings is a challenging task. Current com-
puter systems often show relatively high frame-wise accuracy
but low event-wise accuracy. In this paper, we attempted to
merge the gap by explicitly including sequential information
to improve the performance of a state-of-the-art polyphonic
sound event detection system. We propose to 1) use delayed
predictions of event activities as additional input features that
are fed back to the neural network; 2) build N-grams to model
the co-occurrence probabilities of different events; 3) use se-
quential loss to train neural networks. Our experiments on a
corpus of real world recordings show that the N-grams could
smooth the spiky output of a state-of-the-art neural network
system, and improve both the frame-wise and the event-wise
metrics.

Index Terms— Polyphonic sound event detection, lan-
guage modelling, sequential information

1 Introduction

Environmental audio contain many overlapping or poly-
phonic sound events, e.g., foot steps and car passing. Com-
puter systems that automatically detect the class, start, and
end of these sound events in the audio stream are called sound
event detection (SED) [1]. SED poses a challenging research
topic. Not only are the sound events often overlapping with
each other, i.e., polyphonic, the number of simultaneously oc-
curring sound events at certain time is also not set. Recent
advances in polyphonic SED are largely attributed to the use
of deep neural networks (DNNGs) [2, 3]. In particular, the use
of recurrent neural networks (RNNs) have significantly im-
proved SED performance in the past few years. RNNs are
able to model the contextual correlation or relationships be-
tween sound events [4, 5, 6]. Cakir et al. have build a convo-
lution recurrent neural network which reaches state-of-the-art
performance on polyphonic SED [7]. Majority of DNN sys-
tems use a frame-wise cost function for training the network
and make prediction on a frame-by-frame basis. The frame-
wise F'1 score is often considerably higher, more than 5 times,
than the event-wise accuracy. For example, in DCASE2016
challenge the F'1 score is around 30% at frame level (frame
length 1 second), but only around 5% at event level! [8, 9].
Frame-based information alone is not enough to produce high
quality system output that are similar to human annotations,
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and we want to build accurate systems that obtain high accu-
racy at both frame- and event-level.

Many recent works in the field of environmental audio
research are borrowing techniques from automatic speech
recognition (ASR) to model the sequential structure of poly-
phonic sound events. These techniques step away from
frame-wise networks to improve event-level accuracy. For
example, Hayashi et al. used hidden semi-Markov model
to separately model the duration of sound events on top of
DNNs [10]. Wang et al. used connectionist temporal classifi-
cation (CTC) cost function in a sequence-to-sequence model
for the SED task [4, 6, 11]. Sigtia et al. use language models
(LMs) and decoding methods which are analogous to ASR
systems, to deal with polyphony in automatic piano music
transcription [12]. Inspired by these advances, we propose
to explicitly use sequential information to improve the event-
level accuracy of polyphonic SED system, and aim to bridge
the gap between automatic systems and human annotator at
the frame and event-level.

Methods that explicitly model the sequential information
are not common in SED systems. Unlike speech and mu-
sic, environmental sound events are much more diverse and
sparse, making it the most challenging. Therefore, we pro-
posed to incorporate sequential information to a state-of-the-
art polyphonic SED system via:

1. using delayed predictions of event activities as addi-

tional input features to the neural network;

2. building N-grams from annotations and using them for

decoding with acoustic models;

3. using sequential loss function, i.e., a CTC decoder to

find the most probable event sequences. The proposed
CTC model is able to give the precise event start and
end time which has not been done in previous research.

We argue that the state-of-the-art polyphony SED systems
could benefit from the explicit use of sequential information.

2 Method

A state-of-the-art convolutional recurrent neural net-
work (CRNN) model is used as our baseline, as was de-
scribed in [7]. Figure 1 shows the system structure. The
mel-frequency cepstral coefficients (MFCCs) of the audio
recordings are used at the input. The output layer has logistic
activation functions and one neuron for each class. The model
generates the posterior probabilities of each sound class being
active at each time step. The probability is compared against
a threshold value 0.5, and converted to a binary event vector
where 0/1 denotes the presence/absence of the event. In this
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Fig. 1: An overview of the CRNN system for polyphonic sound
event detection.
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Fig. 2: Using annotations with a time-delay at the CRNN system
input.

section, we describe the three methods to compensate for the
sequential information in the CRNN SED system.

2.1 Using delayed prediction of events activi-
ties as additional input features

In real-world environments, some sound events exhibit intrin-
sic relationships, where one event happening is likely to trig-
ger another. For example, water running is likely to be as-
sociated with dish washing in the home environment. We
propose to use event labels from previous frames as additional
input features to give the neural networks more information
during training. Though the RNN layers already include the
feedback loop in the CRNN system, the loops are only op-
erating within one layer. Feeding back the predictions ex-
plicitly will show whether more information could be gained.
This method will reveal whether the bottom layers of CRNN
would provide anything significantly new. The ground-truth
event annotations are converted to a NV by 7' binary matrix,
where N is the total number of event classes, 7" is the total
number of time frames (40 ms long), and 0/1 in each cell
denotes the presence/absence of the event. As shown in Fig-
ure 2, during training, we feed the event vector, with one time
frame delay, as additional input features to the CRNN. Note
that the event vector without the time frame delay is also the
target matrix for training the network. During testing, the pre-
diction at the CRNN output is firstly converted into a event
vector, then added a time delay, and feed back as additional
input. Since this will create a mismatch between training and
testing conditions, we also train the system by feeding the de-
layed predicted event vector, in binary discrete form, back to
CRNN and carried out a separate experiment.

2.2 Using N-grams

Language model priors can significantly reduce the ambigu-
ities from using the acoustic model alone [13, 14]. Current
polyphonic SED systems are not doing any explicit language
modelling, i.e., use the grammar in the annotations to assist
system prediction. We propose to build N-gram LMs to es-

timate the statistic in the event annotations. For each audio
signal, the event annotations are projected onto the time axis
to make a single sequence, using a moving window empiri-
cally set to be 100 ms long. We tried different window sizes:
20 ms, 40 ms, 80 ms, 100 ms, 120 ms and choose the one
that gave the best results. As shown in Figure 3, we first
transcribe the beginning and the end of a event class e with
(e start) and (e end), according to its time. When the event
is active, we transcribe e every 100 ms, if the event spans
more than 100 ms. These transcriptions are ordered by their
time markers. As the frame resolution during feature extrac-
tion in the CRNN system is 40 ms, if the event is shorter than
100 ms and longer than 40 ms, we mark three points, the
event boundaries and the event itself in the middle point. If
the event span is shorter than 40 ms, only the event label it-
self is marked. This is done for all events to produce a text
transcription for training statistical N-gram LMs.

Given a sequence £ = {ei}, where e! is a projected
sound event e’ at time step ¢. The N-gram method counts the
number of occurrences of event, event-pairs (2-grams), and
event trios (3-grams), and defines a prior probability distribu-
tion Py, s, where

PLM =0.2% Punigram +0.2 P2—gram +0.6 % P3—gram

(1)
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It accounts for the co-occurrence probabilities of different
events: which event classes are likely to happen simultane-
ously and the temporal sequences of sound events: which
events are likely to follow each other. The N-grams are com-
bined with the CRNN acoustic models via a decoder to find
the most probably event sequences, as shown in Figure 4.
Analogous to decoding in ASR [13], the acoustic model and
N-gram model are combined via

P(E) = lOg(PA]\/[) —I—LMSF*ZOQ(PLM) 5
where P4y is the acoustic model probability (continuous) at
the CRNN output layer, LMSF is the language model scaling
factor (set to be 0.8 in our experiments, which shows bet-
ter SED performance on the test data). However, searching
for the best sequence is intractable as the number of possible
paths through the event activation matrix grows exponentially
with time 27, where T is the number of time frames. We
performed beam search decoding, where the number of can-
didate solution at each step is pruned and limited to top k. The
likelihood of the top paths are calculated in the log domain to
avoid underflow. The N-gram models are built using KenL.M?

Zhttps://kheafield.com/code/kenlm/
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Fig. 3: Projecting annotations of polyphonic sound events to
sentence-like transcription. Two event classes: bird singing end
and people walking are used to illustrate the process.
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Fig. 4: Using N-grams to decode polyphonic sound events.

and applied to the CRNN system via a python interface?.
2.3 Using CTC sequential loss function

To move away from a frame-level cost function, it is desir-
able to make a predictions based on the overall sequential
loss for polyphonic sounds, as shown by [12]. We imple-
mented a CTC decoder for the polyphonic SED task. CTC
loss is based on the probability of the entire even sequence
over all possible alignments, and generates a probability dis-
tribution of all the event tokens in the output [11, 15]. This
could reduce the gap of high frame-level accuracy and low
event-level accuracy. Our approach is similar to [4], but they
use only event boundaries to create a single sequence. In this
paper, we use the sequential transcriptions generated by the
projection scheme (Section 2.2) in parallel with the audio to
train the CTC networks. This enables the CTC model to lo-
cate the precise event start and end time, i.e., e with (e start)
and (e end), during training, which are not available in the
previous CTC approach [4].

3 Experiments
3.1 Data

The dataset is the same as used in DCASE 2016 SED task, the
TUT SED 2016 development set (TUT-SED2016)*. The cor-
pus consists of 22 audio recordings from two real world en-
vironments: indoor home with 10 recordings from different
homes (total audio length is about 36 minutes) and outdoor
residential area with 12 recordings from different streets in
residential area (total audio length is about 42 minutes). The
recordings are annotated with a list of 17 sound event classes,
with onset and offset time marker for each event class. The
average length of sound event is about 1.94 seconds at home,
and about 6.29 seconds at the residential area. Most of
the event classes are scene-specific. The average number of
events active in the same time frame, 40 ms, is about 2. The
percentages of overlapping or polyphony level in the dataset
are shown in Table 1. At polyphony level N, there are IV over-
lapping event classes.

3https://github.com/kpu/kenlm
4TUT-SED2016 corpus [online] https:/zenodo.org/record/45759

Table 1: Polyphony Statistics of Environmental Recordings.

home (%) residential area (%)
polyphony 1 50.70 26.42
polyphony 2 41.15 58.31
polyphony 3 5.65 12.50
polyphony 4 0.25 0.96
polyphony 5 0.00 0.34
3.2 Setup

We used a state-of-the-art scene independent polyphonic
CRNN SED system as a baseline [7]. The system has re-
ported the highest frame-wise accuracy on the TUT-SED2016
dataset used here. The classifier is implemented with Keras®
(version 1.1.0) with Theano (version 0.8.2) backend [16]. The
networks are trained on NVIDIA Tesla K80 GPUs. Training
takes about 4 hours and converges after about 120 epochs.
The acoustic features are 40 MFCCs (13 cepstral, 13 delta,
13 delta-delt, 1 log energy). The window size is 40ms and
the hop length is 20 ms. The CRNN output is a probabilistic
activity matrix which gives a probability of each sound event
in every time-frame 40 ms for each audio recording. During
evaluation, the matrix is compared to a threshold value, 0.5, to
obtain the binary matrix, where presence/absence of a sound
event in each time frame is indicated by 0/1 in each cell. The
predicted matrix is compared with the ground-truth annota-
tion to calculate frame-wise and event-wise metrics [17].

3.3 Evaluation Metrics

We report the frame-wise and the event-wise (onset-only) per-
formances on TUT-SED2016. The frame-wise metrics are
calculated in non-overlapping 1-second segments. In other
words, it is done in a fixed time grid, using segments of one
second length to compare the ground truth and the system
output. For each segment in the test set, the number of true
positive (TP), false positive (FP) and false negative (FN) are
calculated. The event-wise metrics are calculated with respect
to event instances. All the numbers are accumulated over the
test data to output the F'1 score and the error rate (ER) [17],

SN, 2-TP, ©
SN (2-TP, + FN, + FP,)

N
_(S¢+1I;+D
ER = Zt_l( tN t t) (7
. D
where S is the number of substitutions, I insertions, D dele-
tions, ¢ the segment index, and A the total number of active
sound events in the reference segments.

F1 =

3.4 Results and Discussion

Table 2 summarizes the average F'1 scores and error rates
(ER) of the proposed methods on the TUT-SED2016 corpus.
The results are calculated over all the event segments on the
whole test set for each scene and then averaged to get an
overall metric. The baseline CRNN system achieves 27.1%

5Qnline: https://github.com/fchollet/keras



Table 2: Experimental results on polyphonic sound event corpus
TUT-SED2016: 2 scenes 17 events.

F1 (%) Error Rate
Frame Event Frame Event
CRNN (Baseline) 27.1 3.0 0.95 2.45

prediction 27.3 3.7 0.96 1.55

teventactivity  — undoruth 1.1 03 1.04  1.54

+Ngram LM topk =5 29.1 5.4 0.94 1.56
+CTC decoder 25.0 4.2 1.09 2.50
+CTC +Ngram 27.5 1.8 1.35 4.78

frame-wise F'1 score, and 3.0% event-wise F'1. The frame-
wise F'R is 0.95 and the event-wise F R is 2.45.

Using N-grams gives some gain over the baseline system.
In SED, the number of overlapping events is unknown, and
the audio recording is usually longer than 10 events. It is
estimated that the LM posteriors of adjacent events smooths
the acoustic scores at the neural network output. At the out-
put of the beam search decoder, we found that the top paths
are usually very similar and contain lots of silent labels. As
the length of the sequence grows, the posterior drops sig-
nificantly. We restrained the decoder search the top k =
5 path in every 100 frames, 4 seconds, and then combine
these path with logic ’OR’ function. The N-gram method im-
proves event-wise F'1 by 2.4% absolute, and frame-wise F'1
by 2.0%. The method also reduces the E'R by 0.89 absolute,
as shown in Table 2. The gains are mostly from events like
dishes and object_impact in the home scene. For dishes, N-
gram method improves event-wise F'1 by 4.3% absolute, and
frame-wise F'1 by 6.0%. N-gram statistics show that dishes
has a relatively higher log-likelihood than others. In fact, out
of 586 event labels in the annotation of the home scene, 156
are object_impact and 94 are dishes. For other events in either
the home or the residential area scene, there is not much
gain, and using the proposed methods do not worsen the re-
sults either. Varying the number of top paths, k, does not give
further improvements.

Using the delayed predicted event activities as additional
features which are fed back to CRNN during training gives
0.7% gain on event-wise F1. In contrast, using delayed
ground truth event activities worsens the performance signif-
icantly. It is probably that the system output is significantly
different from ground truth at event-level, and feeding back
the true annotations only corrupts the sequential regularities.
Using the CTC cost function in CRNN training improves
the event F'1 by 1.2%, but decreases 2.1% on frame-wise
F1. Furthermore, applying N-grams in CTC decoding does
not improve event F1. It performs better on harmonic sound
events that have plenty of labels in the training data, e.g., bird
singing.

The results confirms that using grammar or language
models could benefit the current state-of-the-art SED system.
Yet the problem of overlapping is more challenging than we
estimated. The overall gain is small. The largest gain is for
the event dishes and object_impact in the home scene, which
have more occurrences than the other events. It is proba-

Table 3: Experimental results on a larger polyphonic sound event
corpus: 11 scenes 63 events.

F1 (%) Error Rate
Frame Event Frame Event
CRNN (Baseline)  69.1 8.9 0.46 2.42
+Ngram LM 70.4 104 0.46 1.72

ble that the used dataset contains sparsely distributed sound
events. For instance, a large portion of the annotations are
silence. The consequence is that the activity matrix at the
CRNN output contains many short bursts of events, which
introduces a lot of insertion error, especially in the event-wise
metric. The N-grams could give a smoothing effect to this
end, but the paths from beam search decoder are too simi-
lar to each other. In experiments on a much larger corpus
with 11 scenes and 63 sound classes [7], using the N-grams
improves the CRNN system frame-wise F'1 by 1.3% and
event-wise F'1 by 1.5%. The method also reduces the ER by
0.7 absolute, as shown in Table 3.

4 Conclusion

Environmental sound events have temporal structures and
sequential dependencies. Human use the contextual relation-
ships between sound events to to identify and isolate environ-
mental sound events of interests with ease. In most automatic
polyphonic SED systems, there is not an explicit LM compo-
nent, and sequential information is assumed to be implicitly
modelled by the recurrent neural networks. We exploit us-
ing sequential information: calculating N-gram probability of
events, using delayed event annotations, and using sequen-
tial CTC loss function to train neural networks, to improve a
state-of-the-art polyphonic SED system. Using a corpus with
two real environmental scenes, indoor home and outdoor resi-
dential area, our results show that LM is able to improve both
the frame-wise and event-wise accuracy, though with small
gains.

The proposed methods have several weaknesses. The sta-
tistical language models could only manage short context, and
fails to account for longer contexts. One solution is to train
separate language models to learn longer-term dependencies
and to rescore the decoded paths as done in speech and music
recognition systems [12, 18, 19, 20]. The system needs to deal
with multiple overlapping sources in this scenario. Moreover,
LMs is mostly useful when learned separately using an exter-
nal large collection of text resources. Thus it will be desirable
to combine information from multiple databases.

Acknowledgement

The authors wish to acknowledge CSC-IT Center for
Science, Finland, for providing the computational resources.
This work would not have been possible without the assis-
tance from Annamaria Mesaros and Emre Cakir, and discus-
sion from members at the TUT Audio Research Lab.



5
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

References

Tuomas Virtanen, Mark Plumbley, and Dan Ellis,
Computational Analysis of Sound Scenes and Events,
Springer, 2017.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al., “Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82-97, 2012.

Emmanouil Benetos, Dan Stowell, and Mark Plumbley,
“Approaches to complex sound scene analysis,” in Com-
putational Analysis of Sound Scenes and Events, pp.
215-242. Springer, 2018.

Yun Wang and Florian Metze, “A first attempt at poly-
phonic sound event detection using connectionist tem-
poral classification,” in ICASSP, 2017, pp. 2986-2990.

Giambattista Parascandolo, Heikki Huttunen, and Tuo-
mas Virtanen, “Recurrent neural networks for poly-
phonic sound event detection in real life recordings,” in
ICASSP, 2016, pp. 6440-6444.

Yun Wang, Leonardo Neves, and Florian Metze,
“Audio-based multimedia event detection using deep re-
current neural networks,” in ICASSP, 2016, pp. 2742—
2746.

E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and
T. Virtanen, “Convolutional recurrent neural networks
for polyphonic sound event detection,” IEEE Transac-

tions on Audio, Speech and Language Processing, vol.
25, no. 6, pp. 1291-1303, 2017.

Tuomas Virtanen, Annamaria Mesaros, Toni Heittola,
Mark D. Plumbley, Peter Foster, Emmanouil Benetos,
and Mathieu Lagrange, Proceedings of the Detection
and Classification of Acoustic Scenes and Events 2016
Workshop (DCASE2016), Tampere University of Tech-
nology, 2016.

Annamaria Mesaros, Toni Heittola, and Tuomas Vir-
tanen, “Assessment of human and machine perfor-
mance in acoustic scene classification: DCASE 2016
case study,” in IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics (WASPAA), 2017,
pp- 319-323.

Tomoki Hayashi, Shinji Watanabe, Tomoki Toda,
Takaaki Hori, Jonathan Le Roux, and Kazuya Takeda,
“Duration-Controlled LSTM for Polyphonic Sound
Event Detection,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 25, no. 11, pp. 2059—
2070, 2017.

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

Alex Graves, Santiago Fernandez, Faustino Gomez, and
Jiirgen Schmidhuber, “Connectionist temporal classi-
fication: labelling unsegmented sequence data with re-
current neural networks,” in International conference on
Machine learning, 2006, pp. 369-376.

Siddharth Sigtia, Emmanouil Benetos, and Simon
Dixon, “An end-to-end neural network for polyphonic
piano music transcription,” IEEE Transactions on Au-
dio, Speech and Language Processing, vol. 24, no. 5,
pp. 927-939, 2016.

Lawrence Rabiner and Biing-Hwang Juang, Fundamen-
tals of Speech Recognition, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1993.

Elizabeth Shriberg, Andreas Stolcke, and Don Baron,
“Observations on overlap: Findings and implications for
automatic processing of multi-party conversation,” in
Seventh European Conference on Speech Communica-
tion and Technology, 2001.

Alex Graves and Navdeep Jaitly, “Towards end-to-end
speech recognition with recurrent neural networks,” in
International Conference on Machine Learning, 2014,
pp. 1764-1772.

The Theano Development Team, Rami Al-Rfou, Guil-
laume Alain, Amjad Almahairi, Christof Angermueller,
Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien,
Justin Bayer, Anatoly Belikov, et al., “Theano: A
python framework for fast computation of mathematical
expressions,” arXiv preprint arXiv:1605.02688, 2016.

Annamaria Mesaros, Toni Heittola, and Tuomas Virta-
nen, “Metrics for polyphonic sound event detection,”
Applied Sciences, vol. 6, no. 6, pp. 162, 2016.

Guangpu Huang, Arseniy Gorin, Jean-Luc Gauvain, and
Lori Lamel, “Machine translation based data augmenta-
tion for Cantonese keyword spotting,” in ICASSP, 2016,
pp. 6020-6024.

Guangpu Huang, Thiago Fraga da Silva, Lori Lamel,
Jean-Luc Gauvain, Arseniy Gorin, Antoine Laurent,
Rasa Lileikyte, and Abdel Messouadi, “An investiga-
tion into language model data augmentation for low-
resourced STT and KWS,” in ICASSP, 2017, pp. 5790-
5794.

Jen-Tzung Chien and Chuang-Hua Chueh, “Joint acous-
tic and language modeling for speech recognition,”
Speech Communication, vol. 52, no. 3, pp. 223-235,
2010.



