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Exemplar-based sparse representations for noise
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Abstract—This paper proposes to use exemplar-based sparse
representations for noise robust automatic speech recognition.
First, we describe how speech can be modelled as a linear
combination of a small number of exemplars from a large
speech exemplar dictionary. The exemplars are time-frequency
patches of real speech, each spanning multiple time frames. We
then propose to model speech corrupted by additive noise as a
linear combination of noise and speech exemplars, and we derive
an algorithm for recovering this sparse linear combination of
exemplars from the observed noisy speech. We describe how the
framework can be used for doing hybrid exemplar-based/HMM
recognition by using the exemplar-activations together with the
phonetic information associated with the exemplars.

As an alternative to hybrid recognition, the framework also
allows us to take a source separation approach which enables
exemplar-based feature enhancement as well as missing data
mask estimation. We evaluate the performance of these exemplar-
based methods in connected digit recognition on the AURORA-2
database. Our results show that the hybrid system performed
substantially better than source separation or missing data mask
estimation at lower SNRs, achieving up to 57.1% accuracy at
SNR= -5 dB. Although not as effective as two baseline recognisers
at higher SNRs, the novel approach offers a promising direction
of future research on exemplar-based ASR.

Index Terms—Speech recognition, exemplar-based, noise ro-
bustness, sparse representations, non-negative matrix factorisa-
tion

I. INTRODUCTION

FOR the last 30 years Automatic Speech Recognition

(ASR) has been dominated by the use of Hidden

Markov Models (HMMs) employing Gaussian Mixture Mod-

els (GMMs) to model the statistics of the acoustics [1].

The ASR performance of these systems, however, degrades

substantially when speech is corrupted by background noise

not seen during training. The reason for this is that the

observed speech signal does no longer match the distributions

derived from the training material.

There have been numerous approaches that aim at resolving

this mismatch, such as normalisation or enhancement of the
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speech features [1], compensation of the acoustic models [2],

[3] and the use of recogniser architectures that use only the

least noisy observations [4], to name a few. Originally, most

noise robustness techniques were based on strong stationarity

assumptions about the underlying noise, but methods have

been proposed that address non-stationary noise [5]–[8].

Recently, models based on sparse representations have

gained considerable interest in signal processing. Sparse rep-

resentations are representations that account for most or all

information of a signal with a linear combination of only

a small number of elementary signals, called atoms. The

collection of atoms that is used is called a dictionary. In audio,

sparse representations have been used for source separation

by expressing a signal that is a mixture of multiple sources

with a sparse representation, using a dictionary for each

underlying source. That sparse representation is determined by

finding the sparsest possible linear combination that describes

the observed signal, using techniques best known from the

fields of non-negative matrix factorisation (NMF) [9] and

Compressed Sensing [10]. Reconstruction using parts of the

dictionary pertaining to only a single source, results in an

estimate of the underlying source [11]–[15].

Another application of sparse representations is pattern

recognition. This is done by associating the dictionary atoms

with class labels, and using the weights of the atoms in the

sparse representation as evidence for the class of the observed

signal. This approach has lead to state-of-the-art classification

results in various fields, such as face recognition [16] and

phone classification [17].

In this work, we investigate the effectiveness of combining

these two approaches. Expressing noisy speech as a sparse

linear combination of speech and noise dictionary atoms,

we first determine the sparse representation. With the atoms

in the speech part of the dictionary associated with speech

labels, we can then use the weights of the speech part of the

sparse representation to provide noise robust evidence for the

identity of the underlying speech unit. Based on preliminary

experiments in [18], [19], we propose to use this approach,

dubbed sparse classification (SC) in earlier work [20], in a

hybrid SC/HMM speech recogniser. Hybrid HMM systems are

commonly used when replacing GMM-based modelling of the

acoustics by alternative modelling techniques, such as neural

network based systems [1].

In most speech applications of sparse representations, the

dictionary atoms either consist of fundamental basis functions

such as Fourier coefficients or wavelets, or are learned [11]–

[14], [21]. In this work, however, we model signals as a sparse

linear combinations of examples of that signal [16]. Thus, we

model speech segments as a weighted linear combination of



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

example speech segments, exemplars [15], [18], [22]. These

exemplars are spectrographic representations of speech span-

ning multiple time-frames of speech (typically 50 to 300 ms).

The use of exemplars to model speech is reminiscent of more

traditional exemplar-based approaches to speech recognition

[1], [23]. In those approaches, however, speech is represented

by one or more exemplars that each individually have the

smallest distance to the observed speech token, whereas in our

framework, speech exemplars jointly approximate the observed

speech.

The use of a speech dictionary containing exemplars as

atoms has several advantages. First, the dictionary is relatively

easy to construct by extraction of speech segments from a

speech database. Second, it becomes computationally efficient

to construct dictionaries with high-dimensional atoms that

contain several frames of time context, which makes confusion

between noise and speech atoms in less likely. Third, the

dictionary can allow for very sparse representations if an

observed speech segment closely resembles speech contained

in the dictionary [22]. Finally, the use of exemplars makes the

mapping from atoms to speech classes straightforward: Each

time-frame in the speech exemplars is directly labelled with an

HMM-state label, obtained by means of a forced alignment of

the transcription on the training database using a conventional

HMM-based recogniser.

In the SC approach, the weights of the linear combination

of speech exemplars are used to provide a weighted sum of

HMM-state scores for each frame in the observed speech. In

order to investigate the effectiveness of the SC approach, we

also use the exemplar-based sparse representations to apply

two conventional robust ASR techniques. First, we extend

the sparse representation-based source separation approach

described earlier to allow the use of atoms that span multiple

time-frames. We can then do feature enhancement, which aims

at providing clean speech features which are recognised by a

conventional, GMM/HMM-based ASR system.

Second, we use the exemplar-based sparse representations

to apply a missing data technique (MDT) [4], [5]. In noisy

speech, MDT distinguishes between features dominated by

speech (‘reliable’ features) and features dominated by noise

(‘unreliable’ c.q. ‘missing’). Discarding the unreliable fea-

tures, speech recognition (using acoustic models trained on

clean speech) is done on the incomplete data by imputation

or marginalisation of the missing features. We create this

reliable/unreliable labelling of noisy speech features by com-

paring the speech and noise estimates provided by our source

separation result [24].

The main contributions of this work are twofold. First,

we investigate the effectiveness of combining two techniques

employing sparse representations, source separation and clas-

sification, and second, we investigate to what extent using

dictionary atoms that span multiple frames is beneficial for

sparse representation-based noise robustness techniques. We

compare the recognition accuracies of the various approaches

using material from the AURORA-2 database, which contains

connected digits artificially corrupted by a number of different

noises at several SNRs. In order to investigate the influence of

using exemplars spanning multiple time-frames, we investigate

recognition accuracy as a function of exemplar size. We com-

pare the performance of the three exemplar-based approaches

to a multi-condition trained recogniser and to a noise-robust

MDT approach in which the reliability estimates are based on

a harmonic decomposition of speech [25].

II. MODEL FOR NOISY SPEECH

A. Sparse representation of noisy speech

Speech signals are represented by their spectro-temporal

distribution of acoustic energy, a spectrogram. The exemplar-

based approaches proposed in this paper operate in the Mel-

scale magnitude spectrogram domain, with the term magnitude

referring to the square root of energy in a time-frequency

element. The cepstral features used in conventional ASR

systems are based on a (mostly logarithmic) compression

of the magnitude values followed by a decorrelating cosine

transform. In our framework, however, we use the magnitude

values directly to simplify the additivity of speech and noise.

The magnitude spectrogram describing a clean speech signal

is a B×T dimensional matrix S (with B frequency bands and

T time frames). To simplify the notation, the columns of this

matrix are stacked into a single vector s of length E = B ·T ,
so that the entry S(b, t), with 1 ≤ b ≤ B and 1 ≤ t ≤ T ,
corresponds to the entry s(b+ (t− 1)B).

We assume that an arbitrary speech spectrogram s can

be expressed as a linear, non-negative combination of clean

speech exemplars asj , with j = 1, . . . , J denoting the ex-

emplar index. These exemplars are magnitude spectrograms

describing segments of speech signals extracted from a training

database and are stacked in same way as was done to obtain

s. We write:

s ≈

J
∑

j=1

asjx
s
j = Asxs subject to xs ≥ 0 (1)

with xs
j being the non-negative weight or activation of each

exemplar. In this paper, the superscript s denotes speech,

and the superscript n will denote noise. The J exemplars

as1, as2, . . . ,a
s
J are grouped into a speech exemplar matrix

As as As = [as1 as2 . . . a
s
J ] and the activations stacked into

xs, a J-dimensional activation vector.

Previous research has shown that xs can be extremely sparse

[22]. That is, only a few non-zero entries suffice to represent

s with sufficient accuracy. The activations are restricted to

non-negative values, a restriction which has turned out to

be critical in audio analysis algorithms employing magnitude

spectrograms [12].

Like clean speech, we assume we can model a B × T
dimensional noise spectrogram N, represented by the stacked

vector n, as a linear combination of K noise exemplars ank,

with k = 1, . . . ,K being the noise exemplar index. We can

now represent a noisy speech segment Y, reshaped into vector

y, as a linear combination of both speech and noise exemplars:
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y ≈ s+ n (2)

≈

J
∑

j=1

asjx
s
j +

K
∑

k=1

ankx
n
k (3)

= [AsAn]

[

xs

xn

]

s.t. xs,xn ≥ 0 (4)

= Ax s.t. x ≥ 0 (5)

where xn is the activation vector of the noise exemplars

and An is the matrix containing noise exemplars. The whole

speech + noise exemplar dictionary matrix A has dimension-

ality E × L, where L = J + K, and vector x contains the

activations of the speech and noise exemplars. Since x is

assumed to be sparse, and represents the noisy observation in

terms of the exemplar activations, x is referred to as a sparse

representation.

We normalise the dictionary rows so each frequency band

has the same weight, and normalise the dictionary columns

(corresponding to exemplars) because this has been found

to produce slightly better results in source separation [14].

Normalisation is done by iteratively scaling each row and

column so that its Euclidean norm equals unity. After nor-

malisation, the norms of the columns equal unity, and the

norms of the rows are approximately equal. During decoding,

each noisy speech segment y is scaled using the frequency

band normalisation applied to A. Because the magnitude of

the exemplar activations in x can vary, arbitrary speech levels

and SNRs can be matched.

B. Finding the activations

In order to obtain the sparse representation x, we search for

linear combinations of exemplars which are able to represent

the noisy speech y with the model Ax, while using only

a small number of nonzero entries in x. We give a visual

example of this process in Fig. 1. The linear combination of

exemplars is found by minimising the cost function:

d(y,Ax) + ||λ. ∗ x||p s.t., x ≥ 0 (6)

The first term measures the distance between the noisy ob-

servation and the model using function d. The second term

enforces sparsity by penalising the non-zero entries of x using

the Lp norm of the activation vector, weighted by element-wise

multiplication (operator .∗) of the vector λ = [λ1 λ2 . . . λL].
The activations of the exemplars are constrained to be non-

negative.

We use the generalised Kullback-Leibler (KL) divergence

for d:

d(y, ŷ) =
E
∑

e=1

ye log(
ye
ŷe

)− ye + ŷe (7)

In source separation methods, the KL divergence has been

found to produce better results than for example the Euclidean

distance [12]. The statistical interpretation behind the minimi-

sation of (6) can be found in [26].

We choose to control the sparseness used in the second term

of (6) by the L1 norm, which has been found to be effective in

obtaining sparse solutions (cf. [10] and the references therein):

||λ.∗x||1 =
∑L

l=1 xlλl. Unlike in most studies, where a single

scalar weight is used to penalise all non-zero entries equally,

we allow different weights for speech and noise exemplars in

the dictionary. In pilot experiments, it was found that enforcing

the sparseness of speech exemplars was very important. The

reason for this is that the linear combination of exemplars is

naturally sparse because an observed speech segment should

ideally be represented only by exemplars pertaining to the

same underlying speech unit [16]. Therefore, enforcing the

sparsity of the speech exemplars results (albeit indirectly) in

activation of exemplars which represent the same underlying

speech unit as the observed speech segment. We do not make

such assumptions about the corrupting noise and thus do not

enforce the sparseness of the noise exemplars.

The cost function (6) is minimised by first initialising the

entries of the vector x to unity, and then iteratively applying

the update rule:

x← x. ∗ (AT(y./(Ax)))./(AT1+ λ). (8)

with .∗ and ./ denoting element-wise multiplication and divi-

sion, respectively. The vector 1 is an all-one vector of length

E. The derivation of (8) is given in appendix A.

C. Sliding window approach for time-continuity

Describing speech as a linear combination of exemplars is

only feasible for relatively short signal segments. In this work,

we consider segments with a duration of 50 to 300 ms. In order

to decode utterances of arbitrary lengths, we adopt a sliding

time window approach as in [18]. We first divide an utterance

into a number of overlapping, fixed-length windows, with the

window length equal to the exemplar size T . We then find

a sparse representation for each window individually. Finally,

depending on the noise robustness approach, the results for

overlapping windows can be recombined and averaged.

Consider a noisy speech utterance Yutt represented as a

magnitude spectrogram of size B × Tutt. We slide a window,

a matrix of size B×T , through Yutt, using a window shift of

∆ frames. Thus, we obtain a sequence of windowed segments

Y1, . . . ,YW , where W is the number of windows in the

utterance. A graphical representation of this process can be

found in Fig. 2.

The ratio of ∆ and T determines the degree to which

subsequent windows overlap. Larger step sizes ∆ reduce com-

putational effort, but might decrease representational accuracy.

Throughout this paper, we keep the window shift constant at

∆ = 1 frame.

At each window position w, the segment is reshaped into

an observation vector yw similarly as was done for speech

and noise exemplars in section II-A. The index of the window

position w ranges from 1 to W = Tutt−T+1. The observation
matrix Ψ of dimensions E ×W has the observations vectors

y1, . . . ,yW as its columns.
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Fig. 1. An example of finding a sparse representation of a noisy speech signal as a linear combination of noise and speech exemplars. The speech and noise
were mixed at SNR = 0 dB. The vertical axis of each spectrogram represents the frequency index, the horizontal axis time. The magnitude spectrograms are
displayed using a logarithmic colour scale, with higher energies corresponding to brighter colours. The first row depicts the dictionary A

s containing speech
exemplars, while the second row corresponds to the dictionary A

n containing noise exemplars. The third row shows the five largest non-zero activations of
the sparse linear combination.

Fig. 2. Schematic diagram of time-continuous processing using overlapping
windows.

Using the notation introduced above, we write the equiv-

alent of (2) for the utterance Yutt with overlapping windows

compactly as:

Ψ ≈ AX s.t. X ≥ 0 (9)

with the columns of matrix X = [x1 x2 . . .xW ] consisting
of the sparse representations of each window. The activation

matrix X of dimensions L×W now describes the activations

of the exemplars for the entire utterance.

III. SPARSE CLASSIFICATION

In this section we describe the hybrid exemplar-based/HMM

method called sparse classification. In our hybrid system

we keep the topology of the HMM system unchanged, thus

describing the speech structure in the conventional way in

terms of a sequence of states. Rather than estimating the

likelihoods of the states by means of GMMs, the calculation of

likelihoods is based on the activations of exemplars described

in II-A.

Sparse classification, first introduced in [20] for the classi-

fication of isolated digits, was extended to enable the recog-

nition of connected digits without added noise [18]. In [19] it

was shown that the method can be extended to noise robust

connected digit recognition, while the method was further

refined in [27].

A. Calculating speech state likelihoods

Assuming a state-level labelling of each frame in the speech

data used to construct exemplars is available, we can label each

frame t = 1, . . . , T in each speech exemplar asj with a state

label qj,t ∈ [1, Q], where Q is the total number of states.

Using the frame-by-frame state labelling of the exemplars,

we encode the labelling of each exemplar asj with label matrix

Lj . Lj is a sparse, binary matrix of dimensions Q × T ,
the entries having values [Lj ]q,t = δ(q, qj,t), where δ is the

Kronecker delta function. The label matrix stores the temporal

information of the states within an exemplar. Fig. 3 illustrates

two examples of exemplars and their corresponding state label

matrices.

Denoting the speech exemplar weights calculated for win-

dow w by xs
w,j , j = 1, . . . , J , we calculate state likelihood

matrix Lw in window w as the weighted sum of exemplar

label matrices as

Lw =
J
∑

j=1

Ljx
s
w,j (10)

The columns of Lw are denoted with vectors lw,t, t =
1, . . . , T . State likelihood estimates of frames from overlap-

ping windows are combined by summing the likelihoods of

the frames of all the windows in which they occur, taking

into account the exact temporal positions of the frames.
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Fig. 3. Two exemplars of length T = 25 representing two different
realisations of the beginning of the digit “two”. The horizontal axes indicate
the time in frames. The top panels illustrate the magnitude spectra, with a
bright colour indicating a higher value. The lower panels illustrate the state
label matrices explained in section III-A. The state indices [17, 32] are the 16
states underlying the digit “two”. The duration of the digit on the left exceeds
250 ms, and therefore the first 25 frames only cover part of the 16 states.
The digit on the right takes less than 250 ms and thus covers all states.

The combined state likelihood vector luttτ for each frame

τ = 1, . . . , Tutt is given as

luttτ =

min(T,τ)
∑

t=max(1,τ−Tutt+T )

lτ−t+1,t (11)

After obtaining the state likelihoods for the entire utterance,

we use the Viterbi algorithm to find the state sequence that

maximises total likelihood.

B. Silence likelihoods

In the sparse classification approach, the likelihoods of

silence states cannot be reliably estimated from noisy ut-

terances using the method described above. As silence is

absence of speech energy, a sparse representation of magnitude

spectrograms models silence with all exemplar weights close

or equal to zero. Since the state likelihoods are calculated by

multiplication of the atom activations with the label matrix,

silence is represented by all state likelihoods having a low

value. After frame-wise normalisation of the likelihoods, the

resulting likelihoods give rise to numerous insertion errors in

areas where there was silence, for example at the begin and

end of each utterance.

In the approach used in this work, we modify the speech

and silence likelihoods produced by SC to circumvent this

problem. In a nutshell, we first measure the activity of speech

from the speech and noise exemplar activations. This measure

is used to change the balance between the existing speech

and silence state likelihoods, effectively boosting the silence

likelihoods when there is no speech activity. The complete

procedure, based on preliminary work described in [27], is

given in Appendix B.

IV. SPARSE REPRESENTATIONS FOR FEATURE

ENHANCEMENT

As an alternative way to do noise robust ASR with the

proposed exemplar-based framework, we use the sparse rep-

resentations of speech and noise to estimate clean speech

spectrograms, i.e., do feature enhancement. This is similar to

source separation methods based on NMF [11]–[15], but the

model is extended to deal with overlapping windows that span

multiple frames.

Because of the use of a sliding window approach, the model

(1) is obtained separately for each window w = 1, . . . ,W ,

each of which consists of T frames. By denoting the spectrum

vector of the t-th frame of speech exemplar j by asj,t, the

clean speech estimate s̃ for the t-th frame of window w can

be written as

s̃w,t =

J
∑

j=1

asj,tx
s
j,w. (12)

Likewise, the noise estimate ñ is given by

ñw,t =

K
∑

k=1

ank,tx
n
k,w. (13)

For each frame τ = 1, . . . , Tutt of the utterance, the models

pertaining to overlapping windows are summed to obtain the

speech and noise models. Normalisation by the number of

overlapping windows is omitted, since it is cancelled by the

later processing stages. When the window position within the

utterance and the frame position within a window are taken

into account, summation in frame τ results in the speech model

ŝτ =

min(T,τ)
∑

t=max(1,τ−Tutt+T )

s̃τ−t+1,τ (14)

Similarly, we add the noise spectra in overlapping windows

to get

n̂τ =

min(T,τ)
∑

t=max(1,τ−Tutt+T )

ñτ−t+1,τ . (15)

The resulting frame-wise estimates are grouped into speech

and noise spectrogram utterance matrices:

Ŝutt =
[

ŝ1, . . . , ŝTutt

]

(16)

N̂utt =
[

n̂1, . . . , n̂Tutt

]

(17)

The reconstructed speech spectra could be used directly as

an estimate of clean speech features, as was done in NMF-

based source separation with dictionary elements which span

only a single frame [13]. In our exemplar-based framework,

we obtain better results (in terms of recognition accuracy at

high SNRs) by using a time-varying filter

ht = ŝt./(ŝt + n̂t) (18)

and calculating the enhanced features in each frame as ht.∗yt.

Unlike the reconstruction in (14), filtering the noisy spectra
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takes the residual into account, that is, the noisy speech energy

not modelled by the linear combination of speech and noise

exemplars. The filtering approach is commonly used in source

separation systems based on a linear model, for example in

[14], [28], and [15]. This feature enhancement approach is

also analogous to Wiener filtering in the frequency domain

[29].

V. SPARSE REPRESENTATIONS FOR MISSING DATA

TECHNIQUES

The missing data technique (MDT) approach to robust

speech recognition [4], [5] is known for its high accuracy at

high SNRs and its ability for dealing with non-stationary noise

types. MDT is built on the assumption that one can estimate—

prior to decoding—which spectro-temporal elements in the

spectrogram are reliable (i.e., dominated by speech) and which

are unreliable (i.e., dominated by background noise). The clean

speech information in the unreliable features is considered

missing and speech recognition must be done with partially

observed data.

To do this, we employ the so-called imputation ap-

proach [30] which handles the missing features by replacing

them with Gaussian-dependent clean speech estimates during

decoding [31]. The difference between the feature enhance-

ment approach described in section IV and imputation of

the features, is that the latter is potentially more powerful

because the Gaussian-dependent imputation approach can use

information on the hypothesised state and digit identities.

The reliability estimates of noisy speech features are re-

ferred to as a missing data mask. We use the exemplar-based

sparse representation framework to obtain a missing data mask

Mutt:

Mutt(b, τ) =







1
def
= reliable if

Ŝutt(b,τ)

N̂utt(b,τ)
> θ

0
def
= unreliable otherwise

(19)

with the spectro-temporal magnitude speech and noise es-

timates Ŝutt and N̂utt from (16) and (17), respectively. The

constant θ is an empirically determined SNR threshold.

VI. BASELINE RECOGNISERS

In this work, we compare the results obtained with the

exemplar-based framework with two noise robust recognisers.

The first is a multi-condition trained recogniser: a standard

GMM-based recogniser trained on a mixture of clean and

noisy speech of various noise types and SNRs. As an addi-

tional noise robustness measure mean and variance normalisa-

tion was used. On AURORA-2, multi-condition recognisers em-

ploying mean and variance normalisation are known to achieve

state-of-the-art performance, often outperforming much more

sophisticated noise robustness techniques [32].

As a second baseline, we use a MDT-based recogniser

employing the so-called harmonicity missing data mask [25].

In the harmonicity mask, the noisy speech signal is first

decomposed in a harmonic and a residual part using a least

squares fitting method. The harmonic energy is then used as

an estimator of the clean speech energy and the residual as an

estimator for the noise energy, for use in (19).

VII. EXPERIMENTS

In order to investigate the effectiveness of the exemplar-

based framework, we compared the recognition accuracies of

the various approaches described above using material from

the AURORA-2 database. For each of the five methods (three

exemplar-based methods, a baseline MDT-based recogniser

and a multi-condition trained recogniser), we investigated

word recognition accuracy as a function of SNR. For the

exemplar-based approaches, we also investigated word recog-

nition accuracy as a function of exemplar size.

A. Experimental setup

1) Recognition task: For our recognition experiments we

used material from test set ‘A’ and ‘B’ of the AURORA-

2 corpus [33]. The material we selected from test set A

comprises 1 clean and 12 noisy subsets, with the noisy subsets

containing four noise types (subway, car, babble, exhibition

hall) at three SNR values, 15, 5 and −5 dB. From test set B,

which contains four different noise types (restaurant, street,

airport, train station), we selected the same SNR subsets.

Each subset contains 1001 utterances, with each utterance

containing one to seven digits ‘0-9’ or ‘oh’. We evaluated

word recognition accuracy by averaging the results over the

four noise types.

The training material of AURORA-2 consists of a clean

and a multi-condition training set, each containing 8440
utterances. The multi-condition training set was constructed

by mixing the clean utterances with noise at various SNRs:

= inf, 20, 15, 10, 5 dB. The noises that were used originate

from the same noise samples used to create test set A.

2) Finding sparse representations: Acoustic feature vec-

tors used in the exemplar-based framework consisted of Mel

frequency magnitude spectra: B = 23 frequency bands with

centre frequencies starting at 100 Hz, using a Hamming

window with a frame length of 25 ms and a frame shift of

10 ms.

The exemplar-based framework was implemented in MAT-

LAB. The update rule (8) was run for 200 iterations which was

enough to obtain solutions that had sufficiently converged. As

in [19], the sparsity parameter was set to λ = 0.65 for speech

exemplars and to λ = 0 for noise exemplars.

3) Dictionary creation: The speech and noise dictionaries

were created in a two-step procedure which is repeated for

each exemplar size T ∈ {5, 10, 20, 30} frames. First, from

each noisy utterance in the multi-condition training set two

segments were selected of length T by choosing a random

offset. The segments were allowed to overlap and no effort

was made to exclude silence frames from the exemplars. For

these segments, rather than using the noisy speech directly,

the underlying clean speech and noise originally used for

creating the noisy speech were extracted from their respective

spectrograms and added to the speech and noise dictionaries.

This resulted in initial speech and noise dictionaries consisting

of 16880 exemplars.

In the second step, we created the speech dictionary by

randomly selecting 4000 exemplars from the set of 16880.
Experiments (not shown) revealed that for this dictionary size,
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the choice of a random subset from the initial dictionary

did not influence recognition significantly. For the initial

noise dictionary, we first removed exemplars pertaining to

silence (corresponding to clean speech utterances in the multi-

condition train set) and then selected 4000 noise exemplars

from the remaining 13504 exemplars. Dictionary creation took

place only once, and dictionaries are kept fixed throughout all

experiments.

4) Speech recognisers: Two speech recognisers were used.

The first, used only for the multi-condition trained baseline

recogniser, is the HTK-based recogniser described in [33], for

which the configuration scripts are included in the AURORA-2

distribution. The only modifications that were made were the

use of the zeroth cepstral coefficient in place of the log-energy

and the use of per-utterance mean and variance normalisation

of the cepstral features.

All other experiments make use of the second recogniser,

a MATLAB implementation of the HMM-based missing data

recogniser described in [31]. The acoustic models, trained on

the clean speech in the training set, consist of 11 whole-word

models with 16 states, as well as an additional 3-state silence

word, resulting in a Q = 179 dimensional state-space. Every

state was modelled by a mixture of 16 Gaussians with diagonal
covariances.

The recogniser performs per-Gaussian-conditioned imputa-

tion during recognition, guided by a missing data mask. As

input the decoder requires log-compressed Mel-band magni-

tude spectra and their first and second time derivatives. During

decoding, the spectral features are converted to PROSPECT

features, an alternative to cepstral features [31] which is

computationally more efficient for missing data imputation.

Missing data masks for the first and second time derivatives

of the (static) speech features were calculated by taking the

first and second time derivatives of the missing data mask per-

taining to static features (cf. [34]). The way the recogniser was

used differs for the Missing Data Technique (MDT), Feature

enhancement (FE) and sparse classification (SC) experiments:

MDT The noisy magnitude features (described in Sec-

tion VII-A2) were log-compressed, after which their

first and second time derivatives were calculated.

The missing data mask used for the missing data

baseline is the harmonicity mask described in [25]

with 10 log10(θ) = −9 dB. For the missing data

mask provided by our exemplar-based framework,

we determined θ for each exemplar size separately

by maximising recognition accuracy on the multi-

condition training set. Based on these experiments,

10 log10(θ) was set to {−2,−1, 0, 0} dB for exem-

plar sizes T ∈ {5, 10, 20, 30}, respectively.
FE The estimated clean speech magnitude features were

log-compressed, after which their first and second

time derivatives were calculated. As a missing data

mask a mask was used that labels all features reliable,

thus ensuring no imputation is done. The original

clean speech models were updated by single-pass re-

training the acoustic models on the enhanced spectra

of the clean speech training data. The single-pass

retraining consisted of re-estimating the Gaussian

means and covariances on the processed (enhanced)

speech using the original Gaussian-mixture weights

and the canonical transcription.

SC The forced alignment of the clean speech training

set with the canonical transcription, used for la-

belling the speech dictionary, was done using log-

compressed magnitude features and their first and

second time derivatives in combination with a miss-

ing data mask that labels all features reliable. During

recognition, only the back-end of the recogniser was

used in order to do Viterbi decoding.

B. Results

The speech recognition results from our experiments on

AURORA-2 are displayed in Fig. 4. In each panel we display

the results of the following methods:

• The multi-condition trained recogniser (M), described in

[33], further augmented with mean and variance normal-

isation.

• The baseline MDT recogniser (I), described in [31].

• The missing data mask estimation (SMDT) approach

with the mask derived from exemplar-based estimates of

speech and noise, described in section V.

• The exemplar-based feature enhancement (FE) approach

described in section IV.

• The exemplar-based sparse classification (SC) approach

described in section III.

For clean speech, the top row in Fig. 4, we can observe

that the SMDT and FE methods achieve similar recognition

accuracies as the MDT-baseline recogniser at 99.3%. More-

over, there is no significant difference between the use of

different exemplar sizes for the SMDT and FE exemplar-based

methods, with the possible exception of T = 5. The multi-

condition recogniser has an accuracy of 98.4% and the SC

method achieves at most 96.6% accuracy at T = 10. For other
exemplar sizes SC achieves lower accuracies.

In the left panel of the second row of Fig. 4, corresponding

to test set A, SNR = 15 dB, we can observe that the multi-

condition recogniser at 97.8% and the SMDT method at T =
10 with 97.4% now outperform the other methods by a small

but significant margin. For all exemplar-based methods, we can

observe clear differences in accuracy between the exemplar

sizes, with the best performance being obtained with T = 10.
In the right panel of that row, corresponding to test set B,

we can observe a different result. While the multi-condition

recogniser still performs best with 97.8% , SC now performs

second best with 93.7% at T = 20, followed by FE with

91.3% accuracy at T=5.

At SNR = 5 dB, displayed in the third row, most exemplar

based methods now perform better than the MDT-baseline.

The SC method performs second best after the multi-condition

recogniser, with 88.7% accuracy at T = 20 for test set A.

In the bottom row of Fig. 4, we can observe the results

for SNR = −5dB. On test set A the SC method performs

much better than all other methods, reaching 57.1% accuracy

at T = 30. On test set B, the multi-condition recogniser

performs best with 40.6% accuracy followed by SC at 37.0%.
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All exemplar-based methods perform better than the MDT-

baseline, although only by a small margin when using the

SMDT method.

VIII. DISCUSSION

A. Clean speech

In the results of our experiments on clean speech, we

observed that SMDT and FE methods delivered the same high

recognition accuracies as the MDT-baseline recogniser. The

high accuracies of the MDT-based systems are due to the

estimated masks correctly identifying all features as reliable.

Consequently, no features are imputed and the recogniser

(which is trained on clean speech) obtains the same results as

would have been obtained without missing data imputation.

In the feature enhancement (FE) method, the reconstructions

of speech and noise results in a filter (cf. (18)) that leaves

the original clean speech features mostly unchanged. While

small differences in the resulting features could result in an

accuracy loss, this is compensated by the retraining of the

acoustic models (cf. section VII-A4).

The multi-condition trained recogniser achieves lower accu-

racies on clean speech because its speech model is optimised

for noisy speech rather than clean speech. Sparse classification

(SC) also achieves lower accuracies, but for a different reason.

SC provides state likelihoods and thus is dependent on a sparse

representation of speech that uses exemplars with the ‘correct’

underlying state identities. There are three issues that might

play in a role in the lower accuracies obtained with SC.

First, the exemplar dictionary is of limited size. Although

exemplars from the dictionary can be linearly combined to

describe the variation in the observations, the dictionary prob-

ably does not cover the entire acoustic space spanned by the

complete training database. Increasing the size of the extracted

dictionary can improve performance [18]. For maximising

the performance, a more principled, possibly learning-based,

method is probably needed to find a combination of exem-

plars which cover the entire training database. This topic is

addressed in more detail in section IX-C.

The second issue could be the use of magnitude spectrum

features. We tackled the problem of the large dynamic range

of magnitude spectrum features by normalising the dynamic

range of the features (cf. section II-B). In addition, we used

the KL divergence rather than the Euclidean distance to give

a more balanced weight to large and small magnitude values.

However, it might be that even after these operations the

distance measure neglects information in low-energy obser-

vations.

The final issue that might play a role is the presence

of the noise dictionary when recognising clean speech. In

clean speech, noise dictionary exemplars still get occasionally

activated which can result in a less descriptive combination

of speech exemplars. A principled approach to deal with this

issue, as well as with the issue of silence balancing, would be

to use machine learning techniques to learn the mapping from

exemplar activations to likelihoods.

B. Noisy speech

In the presence of the additive background noise, all the

exemplar-based techniques generally perform better than the

MDT-baseline system. At the same time, the multi-condition

recogniser employing mean and variance normalisation per-

forms often better still, even at lower SNRs.

Of the exemplar-based methods, SMDT does worst, es-

pecially at lower SNRs. On test set B the SMDT approach

often does not perform better than the MDT-baseline method.

While the exemplar-based framework obtains a fairly accurate

reconstruction of the clean speech spectra, the estimates of

the noise spectra often contain residual speech. SMDT suffers

from the presence of residual speech in the reconstructed noise

spectra, because the reliable/unreliable classification depends

on thresholding the difference between speech and noise

spectra. The hard threshold makes the classification sensitive

to small estimation errors. In addition, the empirically tuned

threshold turns out to be dependent on the SNR level.

The sparse classification (SC) method clearly performs bet-

ter than the other exemplar-based methods at SNRs < 15 dB.

Especially at SNR −5 dB SC achieves much higher accuracies,

up to 57.1% with T = 30 for test set A. It is clear that SC

does so well on noisy speech because the underlying states

(and therefore digit identities) are captured by the exemplar

activations themselves. The fact that the enhancement methods

and the missing data mask approach achieve lower accuracies,

suggests that in noisy environments it is harder to estimate

noise-free spectrograms than to directly estimate the underly-

ing state or digit identity.

C. Performance differences between test sets A and B

The results reveal a distinct difference in performance

between test set A and B: The performance of all exemplar-

based methods is worse on test set B. The difference is due

to the fact that the noise dictionary contains the same noise

types as those found in test set A. Especially for the SMDT

method, the performance of which critically depends on the

accuracy of the noise estimate, this has a detrimental effect.

Surprisingly, the multi-condition trained recogniser, which is

also trained on noises encountered in test set A, seems to be the

most noise-robust method on test set B. An explanation for this

result is found in the fact that the noises in test set B, although

originating from different noise sources, have a similar average

spectral content as those found in test set A [33]. The noise

exemplars employed in SC, on the other hand, also model the

time structure of the noise and thus do not benefit from the

similarity in average spectral content.

In order to study the influence of the noise match/mismatch

in more detail, we performed an additional SC experiment on

the full test set of AURORA-2 in which the real noise dictionary

was replaced by a collection of completely artificial noise

exemplars. These noise exemplars, first introduced in [35],

consist of constant noise activity within a single frequency

band for the duration of the exemplar. In other words, they

are B × T dimensional all-zero matrices, with only one row

(frequency band) having a non-zero, constant value. Thus,

the total number of noise exemplars is only B = 23. In
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Fig. 4. Recognition results per test set and SNR. Recognition accuracy is displayed on the vertical axes. Vertical bars around the maxima indicate 95%
confidence intervals. In each figure we display the results of missing data mask estimation (SMDT), feature enhancement (FE) and sparse classification
(SC). For each exemplar-based method, we display four bar graphs, corresponding to the four exemplar sizes T ∈ {5, 10, 20, 30}. The baseline recogniser
employing missing data imputation (I) and the multi-condition trained baseline recogniser (M) are indicated by dashed and dotted lines, respectively. The left
panel corresponds to recognition on test set A and the right panel corresponds to recognition on test set B. The top row corresponds with clean speech, the
second with noisy speech artificially corrupted with noise at 15 dB. The third and final row correspond to 5 and -5 dB. SNR, respectively. Note that the range
of the vertical axis can differ between test sets A and B.
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the experiment, all parameter settings and normalisation steps

were kept the same as when using a real noise dictionary (cf.

Sections II-A and VII-A).

In Fig. 5 the results of SC (T = 30) with both real and

artificial exemplars are shown, as well as the performance of

the MDT baseline and multi-condition baseline recognisers.

The results show a decrease in the accuracy on test set A, but

an increase in accuracy on test set B. The decrease in accuracy

on test set A might be an indication that the time structure of

the noise types in test set A is more difficult to model with

the artificial exemplars. The fact that the SC performance on

set B increased, is another indication that in some sense the

real noise exemplars model are overfitting the noise, resulting

in a lack of generalisation.

Still, the results of this small experiment also show that

while SC benefited from the match between noise dictionary

and noises encountered in the noisy speech of test set A, the

method can also provide noise robustness with —by definition

mismatched— artificial noise exemplars.

D. Effectiveness of Sparse Classification

From the discussions above it is clear that in its current

form, SC does not yet reach high enough accuracies to be a

replacement for GMM-based calculation of likelihoods, such

as those that can be obtained with a multi-condition trained

recogniser. At the same time, the results at low SNRs show

the SC approach has potential, especially when there is some

knowledge of the corrupting noises that can be present. The

fact that at lower SNRs, it is harder to estimate noise-free

spectrograms than to directly estimate the underlying state

or digit identity, makes a strong case for using the SC-based

likelihoods scores to improve noise robustness.

The SC framework presented in this work is, to the best of

our knowledge, the first instance of using exemplar-based tech-

niques for noise robust ASR. As such, it may serve as a starting

point for exemplar-based ASR research. Being an exemplar-

based technique, SC is quite different, and potentially more

flexible, than model-based noise robustness methods.

In popular model-based compensation techniques such as

parallel model combination (PMC) and Vector Taylor Series

(VTS) approaches [3], [36], [37], the acoustic model is up-

dated in each frame to account for the noise estimated to

be present in that frame. In the end, however, the acoustic

model still describes noisy speech, which can lead in a lack

of discriminative power at lower SNRs. In the SC approach the

noise and speech are separately modelled. The fact that the SC

algorithm has the freedom of choosing any noise exemplar at

any point in the utterance, without relying on any initial noise

estimate, can make it more flexible. After all, any additional

information on the noises that might be encountered in the

utterance can simply be added to the noise dictionary on the

fly.

Also, it is important to notice that the unfavourable com-

parison to the multi-condition baseline recogniser may very

well be due to its lower performance on clean speech: It is

likely that these lower accuracies propagated into the lower

SNRs. Thus, improving the results at high SNRs may make

SC a more viable alternative. In Section IX we discuss various

options for improving the results. Preliminary research on one

of the options discussed there, combination of SC and GMM-

based likelihoods, has already revealed that 98.8% accuracy

on clean speech is easily obtainable [38].

E. Influence of using time-context

One characteristic of the exemplar-based representations

presented in this work, is that they allow straightforward

modelling of multiple frames of time-context. From the re-

sults, we can generally observe that longer exemplar sizes

(T = 20, 30) improve performance at lower SNRs, while

at higher SNRs shorter exemplar sizes (T = 5, 10) work

better. The SMDT method is an exception, however, when

considering its performance on test set B. The reason for this is

probably that its performance, especially with larger exemplar

sizes, is critically dependent on the exemplar size-dependent

threshold value. These thresholds, tuned on the multi-condition

set which contains the same noise types used in test set A, do

not seem to generalise well, which causes shorter exemplar

sizes to do better.

The reason for the better performance of longer exemplars

at low SNR is that including more time context prevents

confusion with noise exemplars, by imposing more constraints

on the search for a sparse linear combination of exemplars.

A similar result was found in [39], in which log-spectral

exemplar-based representation were used for missing data

imputation.

At the same time, using larger exemplars at higher SNRs

decreases the accuracy because it becomes more difficult to

accurately describe clean speech as a linear combination of

such large exemplars. In [18] it was shown for clean speech,

that for larger exemplar sizes a larger dictionary is needed to

reach the same accuracies.

Another downside of using more time-context may be the

more accurate modelling of noise. As pointed out in Sec-

tion VIII-C, modelling the time-context of noise may reduce

performance when there is a mismatch between the noise types

in the dictionary and those encountered in the noisy speech.

While arguable not a problem for source separation scenarios

in which the characteristics of both sources are known, this

is detrimental for noise robust ASR in which the corrupting

noise type is often difficult to predict in advance.

We conclude that the use of exemplars spanning multiple

frames of time-context is beneficial if the underlying sources

are known. Based on these findings, it might be beneficial to

combine multiple exemplar sizes into a single system: using

smaller exemplar sizes to improve generalisation while longer

exemplars more accurately model the time structure of known

sources.

F. Model complexity and computational effort

Because the exemplar-based methods use a dictionary that

contains a large number of real speech spectrograms, the

number of parameters needed to model the speech is larger

than for the corresponding GMM model. In the GMM model,

each GMM state is represented as a mixture of B-dimensional
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Fig. 5. Recognition results per test set as a function of SNR. Recognition accuracy is displayed on the vertical axes. Vertical bars around the maxima indicate
confidence intervals at a 95% confidence. In each figure we display the results of sparse classification using real noise exemplars, sparse classification using
artificial noise exemplars and the multi-condition recogniser. For the sparse classification methods, the exemplar size was T = 30.

mean and variance vectors for each Gaussian, resulting in

Q × B × G × 2 parameters, where G is the number of

Gaussians per state. In the recognisers used in this work,

which also model the first and second time derivatives of the

static features, this amounts to a model size of approximately

3.95× 105 parameters. The dictionary of the exemplar-based

methods contains a total of L × B × T entries. This means

the clean speech is modelled by approximately 4.6 × 105 to

2.76× 106 parameters, depending on the exemplar size.

To roughly characterise the computational effort needed,

we did a test of the running time of the SC and MDT-

baseline method on a single core of a 64-bit machine with

a Core 2 Quad Q6600 2.4 GHz processor. We tested the utter-

ance ‘MIP 68385A’, taken from test set A, subway noise type,

SNR -5 dB, which has a length of 182 frames (1.82 seconds of

speech). For the baseline method, the average running time to

obtain noise robust likelihoods was 8.6 seconds, of which 4.9
seconds were spent on missing data mask estimation, and 3.5
seconds were spent on imputation and Gaussian evaluation.

The running times for the SC method are given in Table I.

The average time spent on Viterbi decoding was a negligible

0.08 seconds.

From Table I we can observe that, depending on the

exemplar size T , the SC method is a factor 5 to 15 slower than

the baseline MDT method. At the same time we observe that

the running time is completely dominated by the time spent on

minimising update rule (8). This algorithm, fortunately, lends

itself well to parallelisation and speedups of a factor 30 and

higher using modern graphics cards have already been reported

for similar problems [40].

IX. FUTURE IMPROVEMENTS AND EXTENSIONS

A. Finding a better linear combination of exemplars

The successful application of the sparse representation-

based methods hinges on the success with which a correct

linear combination of exemplars can be found. That success,

TABLE I
AVERAGE RUNNING TIMES FOR DIFFERENT EXEMPLAR SIZES. THE

‘SOLVER’ COLUMN DEPICTS THE TIME SPENT ON MINIMISING UPDATE

RULE (8).

T W solver [s] total [s]

5 178 42.4 42.5
10 173 60.3 60.4
20 163 100.1 100.4
30 153 129.2 129.5

in turn, is largely dependent on the constraints placed on

the minimisation in (6). Aside from the constraints currently

used in SC, e.g. non-negativity, sparsity, and the use of

exemplars that span multiple frames, there are several options

for additional constraints.

While the current framework models time-context by using

exemplars that span multiple frames, we do not explicitly

model the fact that in addition to the absolute energy levels,

modulations or changes in the speech energy carry also impor-

tant information. In HMM-based recognisers, this is typically

modelled by using derivative features. Since derivative features

are simply a linear combination of the static features, they

could be combined into the current framework by splitting

them into a negative and positive part and stacking them with

the current features. Such an approach has already been used

in NMF-based source separation [41].

Another approach to add additional constraints would be

to take the identity of the exemplars into account by using

‘group sparsity’ [42]. At any window position, only a limited

number of digits (usually only one) can be present. The

linear combination of speech exemplars, while sparse, may

still consist, however, of exemplars pertaining to many more

different digit identities. Rather than enforcing the sparsity

of the linear combination itself, we can enforce the linear

combination to be sparse between groups (different realisations

of the same digit). This could increase the accuracy of the

resulting sparse representation and would also result in sparser
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and thus better defined likelihoods.

As pointed out in Section VIII-A, another factor determining

the success with which a sparse representation is found is

the feature representation. In this work we employ magnitude

domain features which allow for a simple formulation of

additive noise and speech as a single sparse representation. As

an alternative, it may be possible to allow speech exemplars

to combine in the logarithmic domain, while at the same time

allowing noise and speech to add in the magnitude domain.

This will make cost function (6) more complex, however, and

more research is needed to effectively minimise it.

B. Hybrid recognition using sparse classification

Aside from improving the underlying framework, a practi-

cal approach to improve the results of sparse classification,

especially at high SNRs, would be to combine SC with

conventional speech recognisers. Such a hybrid approach can

take many forms. Using a ‘tandem’ approach [43], one could

treat the likelihoods produced by SC as input features for

a conventional GMM based recogniser, in order to ‘learn’

the proper mapping between the internal state representation

of the HMM-based recogniser and the exemplar activations

underlying SC. Such an approach would have the advantage

that we can employ any low-dimensional representation of the

exemplar activations, such as phone-based labelling.

A more principled approach would be to combine the in-

formation provided by the SC framework with those provided

by GMMs in a Dynamic Bayesian Network (DBN). In such a

model, we can describe the joint probability of the GMM and

SC likelihoods. Preliminary experiments on AURORA-2 with

this approach, described in [38], showed that the DBN can

have both the high performance at lower SNRs of SC while

retaining the high performance at high SNRs as obtained by

a GMM operating on cepstral features.

C. Large vocabulary speech recognition

The exemplar-based framework described in this work can

be applied to large vocabulary speech without further adapta-

tion, provided the speech can be represented as a sparse linear

combination of exemplars. In [39] the sparsity of an exemplar-

based representation on large vocabulary speech was investi-

gated. It was shown that a dictionary consisting of randomly

extracted exemplars can be used to sparsely represent large vo-

cabulary spontaneous speech using no more than 30 exemplars

at a time. Although in that work a logarithmic compression

of the magnitude features was used (in combination with a

Euclidean distance measure), the result gives confidence that

at least in principle, exemplar-based sparse representations can

be used for the representation of large vocabulary speech.

Still, a more principled approach toward the creation of an

exemplar dictionary is probably required. An ideal exemplar-

based speech dictionary should probably cover the full range

of variation in speech phenomena. Random selection of exem-

plars ensures a good representation of the relative occurrence

of speech phenomena, but in larger vocabulary tasks rare

phones and pronunciations will easily be under-represented.

Several alternatives are possible, such as ensuring that ex-

emplars are selected from certain phonetic (or state) groups,

clustering-based approaches or dictionary learning approaches

[44].

Another issue is that in its current form, many exemplars

are needed to provide shift invariance and cover variability in

duration. An alternative for this is to modify the model to allow

shift and duration invariance. Algorithms that can estimate the

activations in such a model can be based on the convolutive

NMF approaches described in [45] and [46].

X. CONCLUSIONS

We proposed the use of an exemplar-based framework in

which noisy speech is modelled by a sparse linear combination

of speech and noise exemplars. These exemplars consist of

segments of speech or noise that span multiple time-frames,

typically 50 to 300 ms. We proposed the use of the sparse

classification method that uses such sparse representations to

do hybrid exemplar-based/HMM decoding. The weights of

the linear combination together with an HMM-state based

labelling of the speech exemplars is used to feed noise robust

HMM-state likelihoods to the Viterbi back-end of a conven-

tional recogniser. Moreover, we described how the exemplar-

based approach can be used as a source separation technique

in order to do missing data mask estimation and feature

enhancement.

We compared the sparse classification approach with the

other exemplar-based approaches to noise robust recognition

as well as a missing data based noise robust baseline recog-

niser and a multi-condition trained baseline recogniser. Results

on the AURORA-2 database revealed that the sparse classifica-

tion method outperformed the other exemplar-based methods

at SNRs < 15 dB, achieving up to 57.1% accuracy at SNR=

-5 dB. From this we concluded that at low SNRs, it is better to

directly estimate the underlying state or digit identities from

the sparse representation than to try to reconstruct a clean

speech spectrogram.

When investigating the influence of using exemplars that

include multiple frames of time-context, we found that in

general, longer exemplars work better at lower SNRs. We

concluded that the use of longer time-context is beneficial if

the underlying sources are known, but that smaller exemplar

sizes may be more effective for generalisation to unknown

sources.

In comparison to the baseline recognisers, it was found that

sparse classification only performed better at low SNRs. We

discussed the various reasons for its lower performance on

clean speech and outlined several promising ways for improv-

ing the performance of exemplar-based sparse representation

methods in general, and sparse classification in particular.

Future research is needed to establish the effectiveness of these

strategies.

APPENDIX A

DERIVATION OF THE UPDATE RULE

This appendix describes the derivation of update rule (8),

used for minimisation of the cost function (6). First, we rewrite

Eq. (6) as:
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d(y,Ax) + d(0, diag(λ)x) (20)

where d is the KL divergence (7), 0 is an all-zero column

vector of length E and diag(λ) is a diagonal matrix having

the elements of λ in the diagonal. The sum (20) can be written

as d(z,Zx), with zT =
[

yT0T
]

and ZT =
[

ATdiag(λ)
]

.

For a function of this form an update rule was proposed in

[9]:

x← x. ∗ (ZT(z./(Zx)))./(ZT1). (21)

By substituting zT =
[

yT0T
]

and ZT =
[

ATdiag(λ)
]

in

(21) we obtain update rule (8).

This update rule leads to non-increasing values of the cost

function (20) as proven in [9]. While theoretically that does not

ensure convergence to a stationary point [47], in our studies

with real data we have observed that the algorithm converges

sufficiently robustly.

APPENDIX B

SILENCE BALANCING

This appendix describes a method for modifying the orig-

inal, potentially unreliable (cf. section III-B) ratio between

speech and silence states. This is done through the use of a

speech level estimate. This speech activity is calculated from

the sum of speech exemplar activations per window:

rw =

J
∑

j=1

xs
w,j (22)

with rw the speech activity in window w. A frame level

estimate rt is acquired by linear interpolation of rw. rt is then
normalised to the [0, 1] range over the complete utterance, with

0 denoting silence and 1 the maximum observed speech level.

In order to obtain a steeper division between speech and

silence regions, we then calculate the adjusted speech activity

r̂t by applying a shifted and scaled logistic function:

r̂t =
1

1 + exp(−αrt − β)
(23)

with the threshold level and steepness controlled by the

parameters α and β.
At each frame, speech state likelihoods are multiplied by a

single scalar so that their sum equals r̂t. Similarly, silence

states are scaled together so that their sum equals 1 − r̂t.
Consequently, the original ratio between speech and silence

likelihoods is replaced by one defined by r̂, and the likelihoods
in each frame sum to unity.

In practice, it was found that the parameters α and β of the

logistic function (23) are more stable when defined by a weight

factor φ, which describes the overall influence of speech states,
and a width factor χ, which represents the steepness:

α =
1

χ
(24)

β = log
1− eφα

eφα − eα
. (25)

TABLE II
SILENCE BALANCING PARAMETERS FOR DIFFERENT EXEMPLAR SIZES.

T cχ c0 cφ
5 0.01 0.998 0.03
10 0.05 0.996 0.12
20 0.08 0.992 0.26
30 0.105 0.988 0.225

The parameters φ and χ were made exemplar size and SNR

dependent. The SNR of each utterance is estimated as the ratio

of the sum of speech and noise exemplar activations:

SNR =

∑W

w=1

∑J

j=1 x
s
w,j

∑W

w=1

∑K

k=1 x
n
w,k

(26)

with the SNR estimate truncated to the [0.04, 4] range. The
parameters φ and χ are now calculated as:

χ = cχ ∗ SNR
−

1

2 , (27)

φ = c0 − cφ ∗ χ. (28)

The constants cχ, c0, cφ were optimised by maximizing the

recognition accuracy on the multi-condition training set (cf.

section VII-A1) for each exemplar size T separately using a

grid search, and are given in Table II.
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