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Mikko Myllymäki and Tuomas Virtanen

Department of Signal Processing, Tampere University of Technology
Korkeakoulunkatu 1, 33720, Tampere, Finland

email: mikko.v.myllymaki@tut.fi, tuomas.virtanen@tut.fi

ABSTRACT

This paper proposes a voice activity detection algorithm to
be used in the presence of breathing noise. We use a hy-
brid approach where a neural network is first applied in in-
dividual frames using mel-band energies within the frame as
inputs. The output of the neural network is then processed
using a hidden Markov model, which takes into account the
temporally continuous nature of speech activity. Both the
neural network and the hidden Markov model can be trained
in supervised manner. On simulations with realistic acoustic
material, the proposed method achieved average frame-level
sensitivity above 97% and average specificity above 95%.
The proposed algorithm enables a good rejection of noise
and breathing frames while retaining the intelligibility of in-
put speech.

1. INTRODUCTION

Voice activity detection (VAD) refers to the task of locat-
ing speech segments from an input signal which consists
of user’s speech and other sound sources captured by the
recording device. It is commonly used to decrease the battery
and bandwidth usage in communication devices by switch-
ing the transmitter off during speech pauses. Speech seg-
ments can be detected, e.g., by measuring the energy of the
input signal [1], or by making other assumptions of the sta-
tistical properties of the speech and noise signals [2]. There
exist several standards of VAD algorithms for telecommuni-
cation devices, see [3, pp. 357-377] for a review. In practice
all existing VAD algorithms process an input signal in short
frames and produce a speech/non-speech decision for each
frame, and therefore VAD can be viewed as a classification
problem where the frames are observed sequentially.

This paper deals with the VAD in the presence of high-
level breathing noise. This kind of algorithms are useful for
example in communication devices, in which the microphone
is located directly in front of the mouth of the user. Such de-
vices are used, e.g., by professionals working on security and
safety fields, which may include physically demanding situ-
ations. Because of the physically demanding conditions, a
user cannot easily control the transmitter manually by, e.g.,
pressing a tangent, and there is a need to detect the speech
activity automatically. The placement of the microphone and
the conditions where the device is used results in signals
which include a strong breathing sound, which places an ex-
tra challenge for VAD algorithms: the breathing sound may
have a relatively high level, as illustrated in Figure 1. The
devices may also be attached to a breathing apparatus which
further amplifies the level of the breathing noise. Since ex-
isting VAD algorithms have not been developed to function
in the presence of breathing sound, a specific algorithm has
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Figure 1: Example signal containing both speech and breath-
ing segments.

to be designed to obtain a good rejection of breathing seg-
ments. The only previous study which tries to solve this
problem used linear predictive coding derived from a pre-
recorded sample of breathing noise, and calculating the pre-
diction error for each frame of the observed signal [4].

This paper proposes an algorithm for VAD in the pres-
ence of breathing noise, which is based on combining a
discriminatively trained neural network (NN) with a hidden
Markov model (HMM). This kind of hybrids of NNs and
HMMs have previously been used, e.g., in automatic speech
recognition [5]. The block diagram of the proposed algo-
rithm is illustrated in Figure 2. First, the input signal is seg-
mented into 20 ms non-overlapping frames and acoustic fea-
tures are calculated in each frame. The features are fed into
a neural network which does non-linear mapping in order to
make the speech and non-speech frames linearly separable.
The output of the NN is then modeled using a HMM with
Gaussian emission densities in order to take into account the
temporally continuous nature of speech segments. Finally,
thresholding is used to give the final classification result for
the frame. An advantage of the algorithm is that its parame-
ters do not require manual tuning, but it can be automatically
optimized using recorded signals. This approach proved to
be very efficient and the algorithm provided good separation
between speech and noise frames.

Figure 2: Block diagram of the proposed VAD algorithm.



The structure of the paper is as follows: Section 2
presents the feature extraction, Section 3 the neural network
and Section 4 the hidden Markov model and the final clas-
sification. Section 5 presents the simulations and Section 6
conclusions.

2. FEATURE EXTRACTION

The input of the algorithm is a digital signal having sampling
frequency of 8 kHz. First the signal is prefiltered with a high-
pass FIR filter defined by the equation

ŝ(n) = s(n)−0.97s(n−1), (1)

where s(n) is the value of the speech signal at the time n
and ŝ(n) is the corresponding filtered value. The filtering is
done in order to flatten the spectrum of the input signal and to
remove possible low-frequency noise. After the prefiltering
the speech signal is processed and features extracted in 20 ms
frames. Here we present the feature extraction which take
place within a single frame, and omit the frame index for
clarity.

We tested several features which have been previously
used in VAD systems, including the frame energy and zero
crossing rate, the amount of periodicity [6, 7], an entropy
measure calculated from the magnitude spectrum of the
frame [8], the linear prediction coding coefficients and the
prediction error [1], and cepstral features [9]. All the afore-
mentioned features and different combinations of them were
evaluated. However, the best results were obtained using
frequency-band energies (used, e.g., in [10]). They also have
a low computational complexity.

In this work we use 20 triangular bands spaced linearly
on the mel frequency scale, so that adjacent bands overlap by
50%. The energy within each band is obtained by the fast
Fourier transform and summing the corresponding squared
transform coefficients.

The energy Elin(k) of the kth frequency band is further
converted to decibel scale as

EdB(k) = 10· log10(Elin(k)+ ε), k = 1, . . . ,K, (2)

where K = 20 is the number of frequency bands, and ε is
a small constant value. The decibel scale compresses the
dynamic range of the input and ε prevents small values
caused by noise from affecting the feature. Here we used

ε = 2·10−5, while the average level of Elin(k) was about 10.

The resulting features EdB(k), k = 1, . . . ,K are further
normalized to zero mean and unity variance using the means
and variances obtained from the training set (see Section 5).
The output of the feature extraction stage is a vector of
normalized frequency-band energies EdB(1), . . . ,EdB(K) for
each frame, which is then used as an input for a neural net-
work.

3. NEURAL NETWORK

The power of NNs lie in their ability to create nonlinear de-
cision functions. We use a three layer (input, hidden and out-
put) feedforward NN, which maps the input feature vector of
each frame into a single output. The hidden layer performs a
nonlinear transformation of the input feature vector to make
the speech/non-speech classes linearly separable in the space

of the output variable. The output yi of the ith hidden neuron
is calculated from the input feature vector by

yi = G(
K

∑
k=1

EdB(k)wki +bi), (3)

where wki is the weight of the kth feature for the ith hidden
neuron and bi is the bias of the ith hidden neuron. G is the
tangential sigmoid transfer function defined as

G(x) =
2

1+ e−2x
−1,

which maps the input values of a hidden neuron to an interval
between minus one and one. The NN has a single output
z, which is a weighted sum of the hidden neuron outputs,
defined as

z =
M

∑
m=1

ymsm + c, (4)

where M is the number of hidden neurons, sm is the hidden
to output weight, and c is the output bias.

The parameters of the NN were trained using a database
(see Section 5) which contains acoustic signals and annota-
tions of speech segments. The frequency band energies were
calculated framewise for every signal in the database. The
target value of the NN output for a feature vector was one if
a frame was annotated as a speech frame, and zero otherwise.
The NN was trained using the Quasi-Newton Backpropaga-
tion algorithm [11, Chapter 2] which minimizes the squared
error between the NN output and the target output. We used
the NN implementation included in the Matlab Neural Net-

works Toolbox1.
In addition to NNs we also tested a Gaussian mixture

model (GMM) and a support vector machine (SVM) for the
classification of the feature vector of a single frame. The
SVM was found to be impractical for our purposes since it
was computationally too complex. The framewise classifica-
tion results (see Section 5) obtained with GMMs were com-
parable to those obtained with NNs, but the post-processing
explained in the next section improved the performance of
NNs more, and therefore a NN was used in proposed the sys-
tem.

4. HIDDEN MARKOV MODEL

The output of the NN is further processed in order to take
into account the property that speech utterances appear in
sequences of consecutive frames. The input signal is mod-
eled using a two-state hidden Markov model (HMM), con-
sisting of speech and noise states. The speech state mod-
els speech frames and the noise state models silence, breath-
ing, and other noise sources. HMMs have been previously
used in VAD systems for example in [2, 12]. Other methods
which model the temporal continuity include the ”hangover”-
method [13, 10], which classifies a predefined number of
frames succeeding a detected speech frame also as speech.

Let us denote the speech state by ”s” and the noise state
by ”n”. In the HMM, the probability of a state in a partic-
ular time frame depends only on the state probabilities in
the previous frame, and the output of the NN in that particu-
lar frame. For the following processing, four state transition
probabilities have been calculated beforehand:

1http://www.mathworks.com/products/neuralnet/



1. probability, that the current frame is speech, given that
the previous frame was speech (as|s = 0.982)

2. probability, that the current frame is speech, given that
the previous frame was noise (as|n = 0.002)

3. probability, that the current frame is noise, given that the
previous frame was speech (an|s = 0.018)

4. probability, that the current frame is noise, given that the
previous frame was noise (an|n = 0.998)

These above constants have been calculated from the training
data by finding the fraction of the frames that corresponds to
the given conditions.

Let us use pt−1(s|zt−1) to denote the posterior probability
of a speech state in frame t − 1, when the output of the NN
has been observed in that frame and all previous frames, and
similarly pt−1(n|zt−1) to denote the posterior probability of
a noise state in frame t−1. The prior probability pt(s) of the
speech state (when the NN outputs have been observed in all
previous frames but not in frame t) and the prior probability
pt(n) of the noise state in frame t are then given as

pt(s) = pt−1(s|zt−1)as|s + pt−1(n|zt−1)as|n
pt(n) = pt−1(s|zt−1)an|s + pt−1(n|zt−1)an|n.

The NN output class-conditional probability density
function (pdf) for the speech state is denoted by pt(zt |s),
which is modeled by Gaussian distribution with mean µs = 1

and variance σ2 = 1
2
, and the NN output class-conditional

probability density function for the noise state is denoted
by pt(zt |n), which is modeled by Gaussian distribution with

mean µn = 0 and variance σ2 = 1
2
. We also tried other dis-

tributions instead of the Gaussian distributions, for example
GMMs where the parameters were estimated from the train-
ing data, but the above Gaussian distributions produced the
best results.

The posterior probability that a state is speech is obtained
by the Bayes equation as follows [14, pp.179-224]:

pt(s|zt) =
pt(zt |s)pt(s)

pt(zt |s)pt(s)+ pt(zt |n)pt(n)

=
1

1+ exp(−a)
, (5)

where

a = ln
pt(zt |s)pt(s)

pt(zt |n)pt(n)
. (6)

Using the above-defined Gaussian distributions to model the
speech and noise class-conditional pdfs, pt(zt |s) and pt(zt |n),
respectively, Equation (6) can be simplified to

a = ln

1

σ
√

2π
exp[− 1

2σ2 (zt −µs)
2]pt(s)

1

σ
√

2π
exp[− 1

2σ2 (zt −µn)2]pt(n)

= ln
exp[−(zt −1)2]pt(s)

exp[−z2
t ]pt(n)

= 2zt −1+ ln
pt(s)

pt(n)
. (7)

By substituting Eq. (7) back to Eq. (5) we can write the
posterior probability of the speech state in frame t as

pt(s|zt) =
1

1+ exp[1−2zt − ln( pt(s)
pt (n))]

(8)

The posterior probability pt(n|zt) of the noise state is ob-
tained simply by 1− pt(s|zt). Once the posterior probability
of the speech state in a frame has been calculated, the final
decision is made by using a fixed threshold T :

{

pt(s|zt) ≥ T −→ speech

pt(s|zt) < T −→ noise
(9)

Here we use threshold T instead of a fixed value 0.5 to allow
tuning the sensitivity of the algorithm easily. In practice T
can be tuned manually, but in our simulations it was tuned to
maximize the performance on the test data.

The proposed VAD algorithm is relatively simple: in ad-
dition to the calculations of the fast Fourier transform it con-
sist approximately of 27000 multiplications, 26000 summa-
tions, 1050 logarithms, 550 exponents and 50 comparisons
per second and it does not require information of the speech
signal in upcoming frames. Therefore it does not produce a
significant delay in the processing of the speech signal and
the VAD can effectively be used in real time.

5. SIMULATIONS

Simulations were conducted using a communication device
having the microphone in front of the speaker’s mouth. The
device is usually used in physically demanding situations and
the signals recorded by the device have a high level of breath-
ing. On the other hand, the device is not very sensitive to
external noise signals.

To evaluate the performance of the algorithm, a database
of acoustic signals was recorded in conditions that corre-
spond to the device’s intended environment of use. The
database consists of microphone signals recorded from four
men and one woman. The total amount of data is approxi-
mately 2 hours 10 minutes. There are 2-3 signals from each
speaker with a signal length of approximately 3-10 minutes.
The percentage of speech in the signals is approximately 2-
20% depending on the speaker. The recorded signals were
manually labeled into speech and noise segments with a tem-
poral resolution of 10 ms.

The performance evaluation of the VAD algorithm was
done using the leave-one-out cross-validation method where
the signals of one speaker were regarded as a test set and
the rest as the training set. A NN was trained using the
acoustic data and the annotations in the training set using the
Quasi-Newton Backpropagation algorithm. The test signals
were processed using the VAD algorithm, which produces
speech/noise decision for each frame.

The classification accuracy was measured by comparing
the classifications to the annotated speech activity. The fol-
lowing four measures were used to judge the classification
accuracy:

• Sensitivity gives the percentage of the frames correctly
classified as speech from all the speech frames in the sig-
nal

• Specificity gives the percentage of the frames correctly
classified as noise from all the noise frames in the signal

• Positive predictive value gives the percentage of the
frames that actually are speech from all the frames clas-
sified as speech

• Negative predictive value gives the percentage of the
frames that actually are noise from all the frames clas-
sified as noise



The higher the sensitivity, the less speech frames are classi-
fied as noise, which is the most important requirement in this
study, because classifying speech frames as noise degrades
the intelligibility of the transmitted speech signal. On the
other hand, classifying noise frames as speech is not so a
critical error and therefore a high specificity value is less im-
portant than a high sensitivity value. Because noise frames
are more easily classified as speech than the other way round,
the positive predictive value is relatively low while the nega-
tive predictive value is very high.

In addition to the proposed algorithm, four alternative al-
gorithms were also tested:

• NN+GMM+HMM algorithm models the NN output
class-conditional pdfs with GMMs instead of the single
Gaussians used in the proposed algorithm. HMMs are
used to model the temporal continuity.

• GMM+HMM algorithm uses GMMs directly for the fea-
ture vectors for the speech and noise classes, and HMM
for post-processing.

• NN algorithm uses the output of the NN without HMM
post-processing.

• GMM algorithm trains GMMs for the feature vectors
for the speech and noise classes and does not use post-
processing.

Each algorithm was tested by the leave-one-out procedure
where the above measures were calculated for each test
speaker at time, and the results were averaged to give the fi-
nal results. For all the algorithms the threshold T was tuned
so that the average sensitivity for the test set was above 97%,
since this was found to be sufficient for retaining the intelli-
gibility of the speech, and the specificity was tuned as high
as possible. The final average results for the tested methods
are illustrated in Table 1.

Algorithm Sens. Spec. PPV NPV
Proposed 97.4 95.2 69.2 99.4

GMM modeling the pdf 97.0 82.8 47.7 99.4
GMM + HMM 97.1 57.2 26.1 99.2

NN without HMM 97.2 43.6 21.0 99.0
GMM without HMM 97.0 44.5 21.6 99.0

Table 1: VAD algorithm results (%)

The proposed algorithm has sensitivity of 97.4% and
specificity of 95.2%, which are very satisfactory results. In-
formal listening tests where the detected non-speech frames
had been removed showed that the speech intelligibility was
not affected and only short bursts of (breathing) noise could
occasionally be heard. Therefore, the proposed VAD can
provide a significant reduction in battery usage in a commu-
nication device.

Modeling the class-conditional output of the NN using a
GMM which parameters were fitted to the training data did
not produce as good results as single Gaussians used in the
proposed system. This is partly explained by the parame-
ter estimation procedure where the parameters of the GMMs
and the HMM were estimated separately. The NN classifier
offers significantly higher specificity than the GMM classi-
fier as illustrated by the first and third rows of Table 1. The
performance of all the tested methods is clearly improved by
using the HMM postprocessing. When the HMM postpro-
cessing is not utilized, using either NN or GMM for classi-
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Figure 3: Example of the classification results obtained with
the proposed algorithm: gray/white background = anno-
tated as speech/noise, high/low discrete value = classified as
speech/noise.

fying the frames provide equally good results as is illustrated
by the two lowest rows in Table 1.

Figure 3 illustrates the results of the classification ob-
tained with the proposed algorithm. The background is gray,
when the signal has been annotated as speech, and white,
when the signal has been annotated as noise. The discrete
value below the signal indicates a speech decision, when it is
high, and noise decision, when it is low. The figure illustrates
very well the most common mistakes made by the VAD al-
gorithm: classifying noise as speech after a speech segment
and classifying speech as noise at the beginning of a speech
segment. The former is due to the postprocessing, which
makes the posterior probability of speech decrease slowly af-
ter the speech segment, which in turn leads to false speech
detections. The latter is the same but in reverse, the poste-
rior probability of speech does not increase fast enough for
the algorithm to detect speech at the beginning of the speech
segment. The figure also shows some random errors made
by the algorithm.

It should be noted here, that the sensitivity value could
easily have been made higher by adjusting the threshold T as
illustrated in Figure 4. This was not necessary, however, be-
cause a large percentage of the incorrect classifications that
cause the sensitivity to drop, are a result of the fact that the
algorithm sometimes classifies short intervals of silence dur-
ing speech as noise, although they have been annotated as
speech. The 97% sensitivity limit does not degrade the in-
telligibility of the transmitted speech, which is the most im-
portant requirement. Furthermore, increasing the sensitivity
decreases the specificity significantly after the 97% sensitiv-
ity limit as can be seen in Figure 4.

6. CONCLUSIONS

We have proposed a novel algorithm for voice activity detec-
tion in the presence of breathing noise. The proposed method
combines successfully a discriminatively trained neural net-
work and hidden Markov model postprocessing. The neu-
ral network maps the input acoustic feature vector nonlin-
early to allow better distinguishing speech from breathing
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Figure 4: ROC-plot of the algorithm performance.

and other noise sounds, and the HMM provides a probabilis-
tic framework for modeling the temporally continuous nature
of speech activity. Simulations with realistic acoustic signals
show that the proposed method allows average frame-level
sensitivity above 97% and specificity above 95%. The al-
gorithm is able to effectively reject most of the non-speech
frames while retaining the speech intelligibility.
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