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Abstract—Sound event detection systems typically consist of
two stages: extracting hand-crafted features from the raw audio
waveform, and learning a mapping between these features and
the target sound events using a classifier. Recently, the focus of
sound event detection research has been mostly shifted to the lat-
ter stage using standard features such as mel spectrogram as the
input for classifiers such as deep neural networks. In this work,
we utilize end-to-end approach and propose to combine these
two stages in a single deep neural network classifier. The feature
extraction over the raw waveform is conducted by a feedforward
layer block, whose parameters are initialized to extract the time-
frequency representations. The feature extraction parameters are
updated during training, resulting with a representation that is
optimized for the specific task. This feature extraction block is
followed by (and jointly trained with) a convolutional recurrent
network, which has recently given state-of-the-art results in
many sound recognition tasks. The proposed system does not
outperform a convolutional recurrent network with fixed hand-
crafted features. The final magnitude spectrum characteristics of
the feature extraction block parameters indicate that the most
relevant information for the given task is contained in 0 - 3 kHz
frequency range, and this is also supported by the empirical
results on the SED performance.

Index Terms—neural networks, convolutional recurrent neural
networks, feature learning, end-to-end

I. INTRODUCTION

Sound event detection (SED) deals with the automatic
identification of the sound events, i.e., sound segments that
can be labeled as a distinctive concept in an audio signal. The
aim of SED is to detect the onset and offset times for each
sound event in an audio recording and associate a label with
each of these events. At any given time instance, there can be
either a single or multiple sound events present in the sound
signal. The task of detecting a single event at a given time
is called monophonic SED, and the task of detecting multiple
sound events is called polyphonic SED. In recent years, SED
has been proposed and utilized in various application areas
including audio surveillance [1], urban sound analysis [2],
multimedia event detection [3] and smart home devices [4].

The research leading to these results has received funding from the
European Research Council under the European Unions H2020 Framework
Programme through ERC Grant Agreement 637422 EVERYSOUND. The
authors wish to acknowledge CSC IT Center for Science, Finland, for
providing computational resources.

SED has traditionally been approached as a two-stage
problem: first, a time-frequency representation of the raw
audio signal is extracted, then a classifier is used to learn
the mapping between this representation and the target sound
events. For the first stage, magnitude spectrograms, and human
perception based methods such as mel spectrograms and mel
frequency cepstral coefficients (MFCC) have been the most
popular choices among SED researchers, and they have been
used in a great portion of the submissions for the two recent
SED challenges [5], [6]. For the second stage, deep learning
methods such as convolutional and recurrent neural networks
have recently been dominating the field with state-of-the-art
performances [7]–[9].

Using time-frequency representations are beneficial in the
following ways. Compared to raw audio signal in time domain,
frequency domain content matches better with the semantic
information about sounds. In addition, the representation is
2-D, which makes the vast research on classifiers on image-
based recognition tasks applicable to SED. Also, they are often
more robust to noisy environments than raw audio signals (as
the noise and the target sources can occupy different regions
in the frequency domain), and the obtained performance is
often better than using the raw audio signals as input to
the second stage. On the other hand, especially for human
perception based representations, it can be argued that these
representations utilize domain knowledge to discard some
information from the data, which could have been otherwise
useful given the optimal classifier method.

A. Related Work

Recently, classifiers with high expression capabilities such
as deep neural networks have been utilized to learn directly
from raw representations in several areas of machine learning.
For instance, in image recognition, since the deep learning
methods have been found to be highly effective with the works
such as AlexNet [10], hand-crafted image features have been
mostly replaced with raw pixel values as the inputs for the
classifiers. For speech recognition, similar performance have
been obtained for raw audio and log mel spectrograms in using
convolutional, long-short term memory deep neural network
(CLDNN) classifiers [11]. For music genre recognition, raw
audio input for a CNN gives close performance to mel spectro-



Fig. 1. Method framework. The method output shape in various stages of the framework is given in brackets.

grams [12]. Both [11] and [12] claim that when the magnitude
spectra of the filter weights of the first convolutional layers
are calculated and then visualized with the order of lowest
dominant frequency to the highest, the resulting scale resem-
bles the perception based scales such as mel and gammatone.
For speech emotion recognition, a CLDNN classifier similar
to [11] with raw audio input outperforms the standard hand-
crafted features in the field, and it provides on-par performance
with the state-of-the-art on a baseline dataset [13].

However, when it comes to SED, hand-crafted time-
frequency representations are still found to be more effective
than raw audio signals as the classifier input. In [14], raw
audio input performs considerably worse than concatenated
magnitude and phase spectrogram features. In [15], deep gated
recurrent unit (GRU) classifier with raw audio input ranks
poorly compared to time-frequency representation based meth-
ods in DCASE2017 challenge sub-task on real-life SED [6].
Most likely due to the poor performance, the research on the
end-to-end methods for SED has recently been very limited,
and only two out of 200 submissions have used raw audio
as classifier input (with low success) in DCASE2017 SED
challenge [6]. As an attempt to move towards lower level input
representations for SED, in [16], magnitude spectrogram has
been used an input to a deep neural network whose first layer
weights were initialized with mel filterbank coefficients.

B. Contributions of this work

In this work, we propose to use convolutional recurrent
neural networks (CRNN) with learned time-frequency repre-
sentation inputs for end-to-end SED. The most common time-
frequency representations consist of applying some vector
multiplications and basic math operations (such as sum, square
and log) over raw audio signals divided into short time frames.
This can be implemented in the form of a neural network
layer, and the benefit is that the parameters used in the vector
multiplications can be updated during network training to
optimize the classifier performance for the given SED task.
In this work, we investigate this approach by implementing
magnitude spectrogram and (log) mel spectrogram extraction
in the form of a feature extraction layer block, whose param-
eters can be adapted to produce an optimized time-frequency
representation for the given task. We then compare the adapted
parameters with the initial parameters to gain insight on the
neural network optimization process for the feature extraction

block. To our knowledge, this is the first work to integrate
and utilize domain knowledge into a deep neural network
classifier in order to conduct end-to-end SED. The main
differences between this work and the authors’ earlier work on
filterbank learning [16] are the input representation (raw audio
vs. magnitude spectrogram), spectral domain feature extraction
block using neural network layers and the classifier (CRNN
vs. FNN and CNN).

II. METHOD

The input X ∈ RN×T consists of T frames of raw audio
waveforms sampled of N samples with sampling rate Fs,
and Hamming window with N samples is applied to each
frame. Initially (i.e. before the network training), the output of
the feature extraction block is either max pooled magnitude
spectrogram, mel spectrogram or log mel spectrogram. The
method framework is illustrated in Figure 1.

A. Feature Extraction block

The input X to the feature extraction block is fed through
two parallel feedforward layers, lre and lim, each with N
neurons with linear activation function and no bias. The
weights of these two layers, namely Wre ∈ RN

2 ×N and
Wim ∈ RN

2 ×N , are initialized so that the outputs of these
layers for each frame X:,t (t = 1, ...T ) would correspond
to the real and the imaginary parts of the discrete Fourier
transform (DFT):

Fk,t =
N−1∑
n=0

Xn,t[cos(2πkn/N)− i · sin(2πkn/N)]

Wre
k,n ← cos(2πkn/N)

Wim
k,n ← sin(2πkn/N)

Zre
k,t =

N−1∑
n=0

Wre
k,nXn,t

Zim
k,t =

N−1∑
n=0

Wim
k,nXn,t

(1)

for k = 0, 1, ..., N2 − 1 and n = 0, ..., N − 1, where Z is the
weighted output for each feedforward layer. The reason for
taking only the first half of the DFT bins is that the raw audio
waveform input X is purely real, resulting with a symmetric
magnitude spectrum. Each weight vector Wk,: can be deemed



as an individual sinusoidal filter. For both lre and lim, the
outputs given the input X is calculated using the same weights
Wre and Wim for each of the T frames. Both layers are
followed by a square operation, the outputs of the layers are
summed, and finally a square root operator results with the
magnitude spectrogram S ∈ RN

2 ×T :

Sk,t = |Fk,t| =
√

(Zre
k,t)

2 + (Zim
k,t)

2 (2)

At this stage, S can be directly fed as input to a CRNN
classifier, or it can be further processed to obtain M (log)
mel spectrogram using a feedforward layer with M neurons,
rectified linear unit (ReLU) activations and no bias:

Zmel
m,t = max(0,

N/2−1∑
k=0

Wmel
m,kSk,t) (3)

for m = 0, 1, ...M − 1. The weights Wmel of this layer is
initialized with the mel filterbank coefficients in the similar
manner with [16] and log compression is used in part of the
experiments as

Zlogmel = log(Zmel + ε) (4)

where ε = 0.001 is used to avoid numerical errors. The
parameters Wmel are obtained from Librosa [17] package and
the center frequencies for each mel band are calculated using
O’Shaughnessy’s formula [18]. For the experiments where this
layer is utilized, the weights Wre and Wim are kept fixed, as
explained in Table I.

In our experiments while using S directly as the input for
CRNN, we observed that when the number of features for S
is dropped from N

2 to M by using max-pooling in frequency
domain, the computation time is substantially reduced with
very limited decrease in accuracy. Hence, we followed this
approach when the mel feature layer is omitted.

B. Convolutional Recurrent block

Following the same approach with [8], the CRNN block
consists of three parts:

1) convolutional layers with ReLU activations and non-
overlapping pooling over frequency axis

2) gated recurrent unit (GRU) [19] layers, and
3) a single feedforward layer with C units and sigmoid

activation, where C is the number of target event classes.
The output of the feature extraction block, i.e., a sequence

of feature vectors, is fed to the convolutional layers and the
activations from the filters of the last convolutional layer are
stacked over the frequency axis and fed to the GRU layers. For
each frame, GRU layer activations are calculated using both
the current frame input and the previous frame outputs. Finally,
the GRU layer activations are fed to the fully-connected layer.
The output of this final layer is treated as the event activity
probability for each event. The aim of the network learning
is to get the estimated frame-level class-wise event activity
probabilities as close as to their binary target outputs, where
target output is 1 if an event class is present in a given frame,

TABLE I
A TABLE SHOWING WHICH WEIGHT MATRICES ARE LEARNED FOR EACH

EXPERIMENT. 3 STANDS FOR LEARNED, 7 STANDS FOR FIXED, AND -
STANDS FOR NOT UTILIZED IN THE EXPERIMENT.

Learned? Wre Wim Wmel

DFT learned 3 3 -
Mel learned 7 7 3

Log mel learned 7 7 3

and 0 vice versa. In the usage case, the estimated frame-level
event activity probabilities are thresholded with 0.5 to obtain
binary event activity predictions. More detailed explanation
about CRNN block can be found in [8].

The network is trained with back-propagation through time
using Adam optimizer [20] with learning rate 10−3, binary
cross-entropy as the loss function and for maximum 300
epochs. In order to reduce overfitting of the model, early stop-
ping was used to stop training if the validation data frame-level
F1 score did not improve for 65 epochs. For regularization,
batch normalization [21] was employed in convolutional layers
and dropout [22] with rate 0.25 was employed in convolutional
and recurrent layers. Keras deep learning library [23] was used
to implement the network.

III. EVALUATION

A. Dataset

The dataset used in this work is called TUT-SED Synthetic
2016. It is a publicly available polyphonic SED dataset, which
consists of synthetic mixtures created by mixing isolated sound
events from 16 sound event classes. Polyphonic mixtures were
created by mixing 994 sound event samples with the sampling
rate 44.1 kHz. From the 100 mixtures created, 60% are used
for training, 20% for testing and 20% for validation. The total
length of the data is 566 minutes. Different instances of the
sound events are used to synthesize the training, validation and
test partitions. Mixtures were created by randomly selecting
event instance and from it, randomly, a segment of length 3-15
seconds. Mixtures do not contain any additional background
noise. Dataset creation procedure explanation and metadata
can be found in the web page 1 hosting the dataset.

B. Evaluation Metrics and Experimental Setup

The evaluation metrics used in this work are frame-level
F1 score and error rate. F1 score is the harmonic mean of
precision and recall, and error rate is the sum of the rate
of insertions, substitutions and deletions. Both metrics are
calculated in the same manner with [8] and they are explained
in more detail in [24].

The input X to the feature extraction block consists of
a sequence of 40 ms length frames with 50% overlap. The
number of frames in the sequence is T = 256 which corre-
sponds to 2.56 seconds of raw audio. The audio signals have

1http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/tut-sed-synthetic-2016



TABLE II
FRAME-LEVEL F1 SCORE F1frm AND ERROR RATE ERfrm RESULTS FOR

DIFFERENT TIME-FREQUENCY REPRESENTATION METHODS AND
SAMPLING RATES. ”DFT” STANDS FOR MAGNITUDE SPECTROGRAM

USING LINEAR FREQUENCY SCALE, ”MEL” STANDS FOR MEL
SPECTROGRAM, ”FIXED” AND ”LEARNED” STANDS FOR WHETHER THE

WEIGHTS OF THE FEATURE EXTRACTION BLOCK ARE KEPT FIXED OR
UPDATED DURING TRAINING.

Method F1frm ERfrm

DFT 8 kHz fixed 60.8±0.8 0.55±0.01
DFT 8 kHz learned 60.8±0.8 0.55±0.01

Mel 8 kHz fixed 60.8±0.9 0.55±0.01
Mel 8 kHz learned 61.0±0.8 0.56±0.01

Log mel 8 kHz fixed 63.1±0.6 0.52±0.01
Log mel 8 kHz learned 58.6±1.6 0.56±0.01

DFT 16 kHz fixed 61.9±0.9 0.54±0.01
DFT 16 kHz learned 60.1±1.7 0.58±0.03

Mel 16 kHz fixed 62.3±0.7 0.54±0.01
Mel 16 kHz learned 60.6±0.9 0.57±0.02

Log mel 16 kHz fixed 65.8±1.4 0.50±0.01
Log mel 16 kHz learned 59.9±1.3 0.56±0.01

DFT 24 kHz learned 58.1±1.6 0.59±0.03

Log mel 44.1 kHz fixed [8] 66.4±0.6 0.48±0.01

been resampled from the original rate of 44.1 kHz to 8, 16
and 24 kHz in different experiments, which corresponds to
N = 160, 320, and 480 features for each frame, respectively.
This is done both to investigate the effect of discarding the
information from higher frequencies, and also to reduce the
memory requirements to be able to run experiments with a
decent sized network and batch size. At the max pooling
(or mel) layer of the feature extraction block, the number of
features is set to M = 40.

In order to find the optimal network hyper-parameters, a grid
search was performed, and the hyper-parameter set resulting
with the best frame-level F1 score on the validation data
was used in the evaluation. The grid search consists of every
possible combination of the following hyper-parameters: the
number of convolutional filters / recurrent hidden units (the
same amount for both) {96, 256}; the number of recurrent
layers {1, 2, 3}; and the number of convolutional layers {1, 2,
3 ,4} with the following frequency max pooling arrangements
after each convolutional layer {(4), (2, 2), (4, 2), (8, 5), (2,
2, 2), (5, 4, 2), (2, 2, 2, 1), (5, 2, 2, 2)}. Here, the numbers
denote the number of features at each max pooling step; e.g.,
the configuration (5, 4, 2) pools the original 40 features in a
single feature in three stages: 40→8→2→1. This grid search
process is repeated for every experiment setup in Table II
(except the last experiment, where a similar grid search has
been performed earlier for that work).

After finding the optimal hyper-parameters, each experiment
is run ten times with different random seeds to reflect the effect
of random weight initialization in convolutional recurrent
block of the proposed system. The mean and the standard
deviation (given after ±) of these experiments are provided.

C. Results

The effect of feature extraction with learned parameters
have been investigated and compared with the fixed feature
extraction parameters in Table II. For both frame-level F1
score and error rate metrics, experiments with fixed feature
extraction parameters often outperform the learned feature
extraction methods in their corresponding sampling rates. In
addition, the experiments with fixed parameters benefit from
the increased sampling rate, whereas the performance does
not improve for learned feature extraction parameters with
higher sampling rates. One should also note that the F1 score
using both learned and fixed parameters with 8 kHz sampling
rate is 60.8%. Although there is some drop in performance
from the highest F1 score of 66.4% at 44.1 kHz, it is still
remarkable performance considering that about 82% of the
frequency domain content of the original raw audio signal is
discarded in the resampling process from 44.1 kHz to 8 kHz.
This emphasizes the importance of low frequency components
for the given SED task. Since the computational load due to
high amount of data in the raw audio representations is one of
the concerns for end-to-end SED systems, it can be considered
to apply a similar resampling process for the end-to-end SED
methods in the future.

In order to investigate how the original parameters of
the feature extraction block have been modified during the
training, the magnitude spectrum peak, i.e. the maximum value
of the magnitude spectrum, of the trained weights for Wre

k ,
Wim

k , and Wre
k + i ·Wim

k are calculated for each filter k.
Without network training, these weights represent sinusoid
signals, therefore the magnitude spectrum of each filter is
equal to a single impulse at the center frequency of the filter,
whose amplitude equals to the number of filters. At the end of
the training, the peak of the magnitude spectrum for each filter
stays at the center frequency of the filter, while the amplitude
of the peak is either increased or decreased to a certain degree.
In order to visualize the change in the peak amplitude, the
peak amplitude positioned at the center frequency for each
filter after training is given in Figure 2. The same analysis
is repeated for different experiments using raw audio inputs
with different sampling rates (8 kHz, 16 kHz and 24 kHz) as
input to their feature extraction block which initially calculates
the pooled magnitude spectrogram. The magnitude spectrum
peaks for each experiment is scaled with the number of filters
for visualization purposes, and therefore each peak is equal to
1 before the training. The three observations that can be made
from Figure 2 is

• Although each of these three systems have different
CRNN architectures (grid search for each system results
with different hyper-parameter set) and their raw audio
input is sampled with different rates, the magnitude
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Fig. 2. Magnitude spectrum peaks for the real (Wre) and imaginary (Wim)
DFT layer filters after the training. The amplitude of the peak for each filter
is positioned at the center frequency of the corresponding filter, resulting with
a line plot covering the whole frequency range for the experiment with given
sampling rate.

spectrum peaks possess very similar characteristics. For
all three experiments, the peaks are modified the most for
the frequencies below around 3 kHz, and there is little
to no change in peak amplitudes after 4 kHz. This may
indicate that the most relevant information for the given
SED task is in 0-4 kHz region. Although the authors
cannot conclude this, it is empirically supported to a
certain degree with the results presented in Table II.
Even though the amount of data from the raw audio
input sampled with 44.1 kHz is substantially reduced by
resampling with 8 and 16 kHz, the performance drop is
limited.
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(a)
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(b)

Fig. 3. (a): Real (Wre) DFT layer filters with different center frequencies
Fc and (b): their magnitude spectra. Blue plot represents initial values, and
red plot represents the values after the training. Horizontal dashed lines at -1
and 1 mark the initial maximum and minimum values for the filters.

• For all three experiments, the change in the magnitude
spectrum peaks is not monotonic in the frequency axis.
Some of the peaks in the low frequency range are boosted,
but there are also other peaks in the same frequency
region that are significantly suppressed. This implies a
different optimal time-frequency representation than both
magnitude and mel spectrogram. One should also bear
in mind that this learned representation is task-specific,
and the same approach for other classification tasks
may lead to a different ad-hoc magnitude spectrum peak
distribution.

• Although they represent different branches of the feature
extraction block (and therefore are updated with different
gradients), the magnitude spectrum peaks of Wre and
Wim are modified in a very similar manner at the end of
the training.

The learned filters with the center frequencies up to 800
Hz with the sampling rate 8 kHz and their magnitude spectra
have been visualized in Figure 3. The neural network training
process seemingly do not result with a shift in the center
frequencies of the filter. On the other hand, it should be
noted that in addition to the peak at the center frequency, the
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Fig. 4. (a): Initial, and (b): learned mel filterbank responses.

magnitude spectrum of each filter consists of other components
with smaller amplitude values spread over the frequency range,
which reflects that the pure sinusoid property of the filters are
lost.

For the experiments where the mel layer is utilized, the
learned mel filterbank responses are visualized in Figure 4.
One common point among the responses is that the filter-
bank parameters covering lower frequency range have been
emphasized. The learned filterbank response that is the most
resembling its initial response belongs to mel layer with 8 kHz
sampling rate, which also performs the best among these four
experiments with 61% F1 score, as presented in Table II. For
the response of both mel and log mel layers with sampling
rate 16 kHz, the parameters covering higher frequency range
have been emphasized, and the filter bandwidths for higher
frequencies have been increased. However this does not result
with an improved performance, as these experiments provide
60.6% and 59.9% F1 score, respectively.

IV. CONCLUSION

In this work, we propose to conduct end-to-end polyphonic
SED using learned time-frequency representations as input to a
CRNN classifier. The classifier is fed by a neural network layer
block, whose parameters are initialized to extract common
time-frequency representation methods over raw audio signals.
These parameters are then updated through the training process
for the given SED task. The performance of this method
is slightly lower than directly using common time-frequency
representations as input. During the network training, re-
gardless of the input sampling rate and the neural network
configuration, the magnitude response of the feature extraction
block parameters have been significantly altered for the lower

frequencies (below 4 kHz), and stayed mostly the same for
higher frequencies.
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