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ABSTRACT
This paper proposes the use of a deep neural network for the
recognition of isolated acoustic events such as footsteps, baby
crying, motorcycle, rain etc. For an acoustic event classifi-
cation task containing 61 distinct classes, classification accu-
racy of the neural network classifier (60.3%) excels that of the
conventional Gaussian mixture model based hidden Markov
model classifier (54.8%). In addition, an unsupervised layer-
wise pretraining followed by standard backpropagation train-
ing of a deep network (known as a deep belief network) re-
sults in further increase of 2-4% in classification accuracy.
Effects of implementation parameters such as types of fea-
tures and number of adjacent frames as additional features
are found to be significant on classification accuracy.

Index Terms— acoustic event classification, artificial
neural networks, deep belief networks, deep neural networks,
pattern classification.

1. INTRODUCTION

Acoustic event recognition addresses the recognition of
sounds which are generated by nature, by objects handled
by humans or by humans themselves. Classification and
detection of these sounds, namely acoustic events, is useful
in information retrieval, having applications in multime-
dia content analysis, context-aware devices and audio-based
surveillance and monitoring systems.

Some of the research on acoustic event classification has
focused on classification of acoustic events into event classes
for a specific context [1, 2]. Some other has focused on
classification of acoustic events into contextual classes [3,
4]. Throughout these works, varying classification rates have
been achieved depending on the complexity of the problem
(number of different classes, available number of data, qual-
ity of the data, distribution of the data etc.) The features used
to represent the audio data and the classifiers used for the clas-
sification task also differ from work to work.

In [5], a k-nearest neighbor classifier was established for
classification of certain acoustic events. Automatic speech
recognition algorithms such as Gaussian mixture models
(GMM) with hidden Markov models (HMM) [3,4,6,7] have
been the most commonly used methods. Other methods such
as vector quantization [8], decision trees [9] and support vec-
tor machines [10, 11] have also been tried. Among these

methods, GMM based HMM was considered to be the stan-
dard classifier in acoustic event classification. In [6], acoustic
events corresponding to 61 different classes were classified
with such a classifier, achieving a classification accuracy of
54.8%.

Classification accuracies of the abovementioned classi-
fiers for acoustic event classification tasks point out presence
of room for improvement. Thus, search for enhancement of
these methods or investigation of new approaches is essen-
tial. With the help of new training mechanisms, deep neural
networks (DNN) are giving promising results in many pat-
tern recognition applications. Recently, in automatic speech
recognition, DNNs have outperformed the conventional ap-
proaches [12] and due to the similar nature of the problems
DNNs are worth to investigate for acoustic event classifica-
tion tasks.

In our work, a deep neural network classifier is proposed
to perform acoustic event classification. In addition, the
power of neural network (NN) classifiers is underlined as
well as the advantage of unsupervised pre-training on the
DNN performance for a given acoustic event classification
task. Our approach shows significant improvement of clas-
sification performance over other methods for acoustic event
classification tasks including the standard GMM based HMM
classifier.

This paper is organized as follows. Section 2 presents
the task of acoustic event classification using deep neural net-
works. Evaluation setup is presented in Section 3. In Sec-
tion 4, main results of conducted experiments as well as the
effect of certain network and implementation parameters on
classification accuracy are presented. Finally, in Section 5,
conclusions are drawn.

2. ACOUSTIC EVENT CLASSIFICATION USING
DEEP NEURAL NETWORKS

The schematic of the proposed acoustic event classification
system can be seen in Figure 1. Firstly, input audio files are
preprocessed with amplitude normalization, frame blocking
and windowing. After that, feature extraction is applied to
each frame separately in order to represent the audio data by a
set of acoustic features. Due to the presence of silent frames,
a fixed number of most energetic frames are selected from
each audio file by discarding the rest. The number of frames
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Fig. 1. Acoustic event classification system schematic.

coming from each file is also kept the same with this approach
independent of the file length. To model the dynamic proper-
ties of sounds, adjacent frames are also taken into considera-
tion. The number of features that represent each frame is in-
creased by concatenation of features of the current frame with
that of left and right adjacent frames. The data is then divided
into three distinct sets namely, training, validation and test set.
Training set is used to train the neural network classifier first
in an unsupervised manner. Then a supervised training fol-
lows that, which is conducted simply by introducing labeled
examples to the network. Validation set is used to tune the
neural network training parameters and to adjust the neural
network topology. It has a significant role in the decision of
stopping the supervised neural network training as well. Fi-
nally, test set is simply used for the performance evaluation
of the trained neural network classifier.

2.1. Deep neural networks

Neural networks are powerful pattern classifiers which have
been used in numerous classification and function approxi-
mation tasks. They are highly nonlinear classifiers not only
because they have nonlinear activation units but also because
of the layer-wise structure stacked one after another. Such a
structure enables the NNs to learn the complex input-output
relationships of many classification problems such as acoustic
event classification.

Artificial neural networks are trained in a supervised
manner with the backpropagation algorithm in which the
randomly initialized network weights are adjusted accord-
ing to the gradient descent rule to learn the input-output
relations from labeled data. Backpropagation algorithm per-
forms effectively for shallow networks, i.e., those that have
1 or 2 hidden layers, but its performance declines when the
number of layers increases. Numerous experiments show
that the algorithm gets stuck in local optima easily and fails
to generalize properly for deep networks [13, 14] (with a
possible exception of convolutional neural networks, which
were found to be easier to train even for deeper architectures
[15, 16]). In general, it is shown that, when NN weights are
randomly initialized, deep neural networks perform worse
than the shallow ones [13, 17].

In order to ease the training of deep networks, an unsuper-
vised pre-training is conducted layer by layer, to initialize the
network weights [18]. This greedy, layer-wise unsupervised
pretraining is based on restricted Boltzmann machine (RBM)
generative model. An algorithm called contrastive divergence
(CD) is applied to train an RBM. CD algorithm trains the first
layer in an unsupervised manner, producing an initial set of
coefficients for the first layer of a NN. Then, the output of
the first layer is fed as an input to the next, again initializing
the corresponding layer in an unsupervised way and so forth.
The mathematical details of the CD algorithm, can be found
in [19] and will not be presented in this work. After pretrain-
ing, neural networks are trained in a supervised manner with
batch backpropagation algorithm in which the weight updates
take place after a number of training samples is presented to
the network (batch size). This step serves as a fine-tuning pro-
cess of the neural network coefficients which were initialized
with pretraining.

In this work, the topology of the neural network (5 hidden
layers each containing 70 neural units with sigmoid activation
functions) is chosen according to the validation set and the
effect of variations in network topology on the classification
accuracy is not presented. Training parameters for the neural
networks such as learning rate, momentum, batch size etc. as
well as their topology are kept the same for all of the exper-
iments. The batch size for both unsupervised and supervised
parts are chosen to be 100. Learning rate and momentum of
backpropagation are decided to be 0.5 and 1 respectively. The
number of epochs for the unsupervised pretraining is fixed
to 2. The criterion for stopping the supervised training was
based on the validation set error. The training was terminated
when the validation error started to increase which is a sign
of overfitting.

2.2. File classification

In our work, classification of audio files belonging to distinct
classes is aimed. Each WAVE file is normalized to unity max-
imum amplitude and blocked into frames of 50 ms with Ham-



ming windowing function with 50% overlap in the prepro-
cessing step. 40 mel energy coefficients are extracted from
each frame. For each file, 120 most energetic frames are taken
into consideration. Additional features are provided by ad-
jacent frames of these most energetic ones. The number of
left and right adjacent frames for providing extra features is
2. Therefore, each input observation to the network training
consists of 200 coefficients (40 from the current frame, 80 left
and 80 right adjacent) and there are 120 observations for each
file. During testing, each frame outputs a set of values which
can be considered as likelihoods. A test file is classified to the
class that gives the maximum value for the mean of outputs
of 120 frames belonging to that file.

Effect of different representations of audio data on the
classification accuracy is also examined. The investigated
features are MFCCs, mel energies and log-mel energies. Ef-
fect of number of adjacent frames for additional features on
the classification performance is one other thing that is inves-
tigated. The number of adjacent frames is varied from 0 to 7
for that purpose.

3. EVALUATION SETUP

The database used in all of the experiments, which was first
introduced in [6], includes acoustic events of 61 distinct
classes such as sneezing, dog barking, clapping, car door,
beep, yelling. The database is a collection of isolated sound
events which was retrieved from the Stockmusic online sam-
ple database. There are in total 1325 audio files. Both the
number of files per class and the average length of files per
class is very uneven which makes the classification problem
rather difficult. The minimum number of files for a class is
10. The maximum number of files for a class is 94. The
shortest file is about 0.3 milliseconds and the longest file is
about 3 minutes 46 seconds long. The histogram of number
of files per class and the histogram of average number of
frames per class can be seen in Figure 2 and Figure 3, respec-
tively. The second histogram was plotted assuming a frame
length of 50 ms to give a comparison of average length of
files per class. The database is highly heterogeneous both in
terms of number of files per class as well as length of files
per class. Together with the high number of classes, such a
classification task can be considered rather difficult.

In our experiments the audio files are randomly divided
into training, validation and test data as 80%, 10% and 10%
respectively at all times. A 10-fold cross-validation is per-
formed and the classification rates are the averaged rates of
the all 10 folds. All classification accuracies in this work are
calculated according to the number of files (not to the number
of frames) that are correctly classified.

The implementation platform for the whole work was
MATLAB. For neural network implementations, an open
source toolbox, i.e., DeepLearnToolbox [20] was used.

The baseline classifier is based on [6], i.e., a three-
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Fig. 2. Histogram of number of files per class.
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Fig. 3. Histogram of average length of files per class.

state, left-to-right HMM with 8 mixture densities. Static
and dynamic mel energies were used as features and HMMs
were trained using the Expectation-Maximization algorithm.
Viterbi algorithm was established in the classification stage.
With the validation and training sets combined, same 10-fold
cross-validation yields a classification rate of 54.8%.

4. EXPERIMENTAL RESULTS

The classification accuracies obtained by different recogni-
tion systems are given in Table 1. The main result of this
work is that the proposed pretrained NN classifier with 5 hid-
den layers outperforms both the baseline GMM + HMM clas-
sifier and the 2 layer NN classifier. When mel energy features
are used with 2 left and right adjacent frames for additional
features, pretrained NN classifier achieves a classification ac-
curacy of 64.6% (class-wise accuracies in Figure 4). Accu-
racy of the baseline and 2-layer NN classifiers on the same
database are 54.8% and 60.2% respectively. Note that, as ex-
pected, without pretraining a rather deep network topology
fails to perform as good as a shallow one.



Classifier Classification Accuracy (%)
GMM + HMM 54.8
NN (2 layers) 60.2
NN (5 layers) 38.7
NN (5 layers - pretrained) 64.6

Table 1. Classification accuracies for different types of classi-
fiers and topologies.
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Fig. 4. Classification accuracies for each class.

4.1. Effect of unsupervised pretraining

The effect of unsupervised pretraining is examined for differ-
ent number of neural network depths (Figure 5). The classi-
fication accuracy of 60.2% is achieved for a 2-hidden-layer
NN. The classification performance decreases gradually as
the depth (number of layers) of the network increases as back-
propagation algorithm gets stuck in local optima. The unsu-
pervised pretraining provides better initializations to the net-
work weights, resulting in 64.6% classification rate at 5 lay-
ers. Note that the effect of unsupervised, greedy, layer-wise
pretraining can not be observed for shallow networks.
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Fig. 5. Effect of unsupervised pretraining on classification ac-
curacy for different number of hidden layers.

Features Classification Accuracy (%)
MFCCs 53.3
mel energies 64.6
log-mel energies 63.2

Table 2. Classification accuracies for different types of fea-
tures.
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Fig. 6. Effect of number of adjacent frames on classification
accuracy.

4.2. Effect of type of features

The effect of type of features is examined on the pretrained
DNN structure of 5 hidden layers with 2 adjacent frames. The
results are presented in Table 2. The MFCCs give a classifi-
cation accuracy of 53.3%. Mel energies and log-mel energies
achieve classification accuracies of 64.1% and 63.2% respec-
tively.

4.3. Effect of number of adjacent frames for additional
features

The adjacent frames were used to provide extra features to
represent the dynamic properties of sounds. The effect of
number of left and right adjacent frames on the classification
accuracy of a 2 layer NN can be seen from Figure 6. MFCCs
were chosen to be the features in this case. One can conclude
that small number of adjacent frames fail to represent the dy-
namic properties well enough. On the other hand, too large
number of adjacent frames result in a decrease in performance
too. This may be due to encountering of silent frames.

5. CONCLUSIONS

In this work, the classification performance of deep neural
networks is shown to be considerably better than that of con-
ventional audio classifiers that utilizes HMMs with GMMs
on the same database [6]. Classification accuracy of 64.6%
is reached on the audio file database of 1325 files belonging



to 61 isolated event classes. In addition, unsupervised pre-
training is found to be beneficial in terms of classification ac-
curacy. Mel energies are found to give a better represent of
the acoustic data compared to other features, i.e., MFCCs or
log-mel energies. The effect of retrieving additional features
from adjacent frames is also found to be significant on classi-
fication accuracy.

For future investigation, the pretrained DNN classifier
could be evaluated in more complex acoustic event classifica-
tion scenarios, i.e., more number of classes, noisy recordings
etc. Multi-label classification of audio files containing more
than one acoustic events could also be investigated.

In addition, the effect of network topology (number of
layers, number of units in each layer, type of activation func-
tion) and training parameters (batch size, learning rate, mo-
mentum etc.) on the classification accuracy could be exam-
ined in the future. Under better circumstances, the benefit of
unsupervised pretraining could be more apparent.
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