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Abstract—Exemplar-based speech enhancement systems work by de-
composing the noisy speech as a weighted sum of speech and noise

exemplars stored in a dictionary, and use the resulting speech and noise

estimates to obtain a time-varying filter in the full-resolution frequency

domain to enhance the noisy speech. To obtain the decomposition,
exemplars sampled in lower dimensional spaces are preferred over

the full-resolution frequency domain for their reduced computational

complexity and the ability to better generalize to unseen cases. But the
resulting filter may be sub-optimal as the mapping of the obtained speech

and noise estimates to the full-resolution frequency domain yields a low-

rank approximation. This paper proposes an efficient way to directly

compute the full-resolution frequency estimates of speech and noise
using coupled dictionaries: an input dictionary containing atoms from

the desired exemplar space to obtain the decomposition and a coupled

output dictionary containing exemplars from the full-resolution frequency

domain. We also introduce modulation spectrogram features for the
exemplar-based tasks using this approach. The proposed system was

evaluated for various choices of input exemplars and yielded improved

speech enhancement performances on the AURORA-2 and AURORA-4
databases. We further show that the proposed approach also results in

improved word error rates (WERs) for the speech recognition tasks using

HMM-GMM and deep-neural network (DNN) based systems.

Index Terms—Exemplar-based, noise robust automatic speech recog-

nition, non-negative sparse coding, modulation envelope

I. INTRODUCTION

S
PEECH recordings taken from realistic environments typically

contain degradations along with the required speech signal

which reduce its intelligibility and also result in poor performance

of speech related tasks like automatic speech recognition (ASR),

automatic voice assistance, etc. Therefore, some speech enhancement

mechanism is deployed as the first step in most of these applications

to circumvent the degradations which are mainly introduced by the

background noise and room reverberation.

In scenarios where a model for speech and noise is not known a

priori, unsupervised techniques like spectral subtraction [1], Kalman

filtering [2], using the periodic structure in speech [3], etc., have

been successfully used for speech enhancement. But most of these

approaches rely on stationarity assumptions on the noise, which are

often invalid for realistic data. Alternatively, supervised techniques

can yield improved performance using codebook based [4] or model

based [5] approaches, since the models for speech and noise are

known a priori.

In this work, we investigate speech enhancement on a single

channel noisy recording in the presence of additive noise using

non-negative matrix factorization (NMF) algorithms. Ever since its

introduction [6], NMF has been successfully used for numerous

source separation problems [7]–[9]. Given a dictionary containing
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atoms representing the sources, NMF-based algorithms decompose

a noisy observation as a sparse non-negative linear combination of

the atoms. In our framework, the atoms used are time-frequency

representations of the training speech and noise data. The NMF-

based decomposition thus yields estimates of speech and noise in the

observation which can then be used to obtain a time-varying filter in

the full-resolution frequency domain for speech enhancement.

One of the popular approaches in NMF-based algorithms is to use

overcomplete dictionaries created using “exemplars” of speech and

noise that are the directly sampled versions of the training speech

and noise data itself [10]–[12]. Another approach is to train the

dictionary atoms from the training samples using the NMF updates

[13], where generalisable models for speech and noise are learned

as undercomplete dictionaries [14,15]. A study presented in [16]

compares these two approaches and showed that the NMF-learned

dictionaries outperform the exemplar-based dictionaries for speech

enhancement in reverberant environments. However, the comparisons

are done only with undercomplete dictionaries. It is also observed

that, given enough training data to create overcomplete dictionaries,

using exemplars from the training data as such leads to better

separation performance than the NMF-learned dictionaries [17,18].

In this work we use overcomplete dictionaries where exemplars are

expected to work better and we refer this approach to as “exemplar-

based approach”.

The performance of an exemplar-based approach depends on

two key factors: First, on how well the speech and noise can be

differentiated in the chosen time-frequency representation or the

“exemplar space”. Popular choices of exemplar spaces include Mel-

integrated magnitude spectra [10], DFT (refers to the magnitude

of the short-time Fourier transform in this paper) [19] and Gabor

filterbank coefficients [11]. Using DFT as the exemplar space has

the advantage that the time-varying filter can be directly obtained in

the full-resolution frequency (DFT) domain. However, such systems

suffer from increased computational complexity, poor speech and

noise separation especially in presence of babble noise [20] and

inability to generalise well for unseen noise cases [21]. It is observed

that using lower dimensional features like the Mel features can

address most of these issues fairly well [21] and this introduces the

second factor: how well we can map the resulting lower-dimensional

estimates to the DFT space to obtain the time-varying filter? Most of

the current approaches make use of a pseudo-inverse [12] to obtain

the mapping which always yield a low-rank approximation of the

estimates, resulting in a sub-optimal filter which cannot account for

all the added noise content and results in poorer noise suppression.

In this work, we have three main goals. First, to effectively utilize

the advantages of the low-dimensional features and to address the

low-rank approximation, we propose to use coupled dictionaries,

which has been used earlier to increase the spectro-temporal resolu-

tion [18,22], voice conversion [23] and dimensionality reduction for

multi-label learning [24]. In this work, we make use of two (coupled)

dictionaries: an input dictionary containing atoms sampled in the

exemplar space where the NMF-based decomposition is to be done

and a coupled output dictionary containing the corresponding DFT
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exemplars to directly reconstruct the estimates in the DFT domain.

This approach thus can obtain a better decomposition at a reduced

computational complexity, and make use of the resulting weights or

activations of the input dictionary atoms to directly reconstruct the

DFT estimates using the coupled output dictionary, which will be

explained in Section II.

Second, we introduce using modulation spectrogram (MS) features

[25] for exemplar-based speech enhancement. The MS representation

for speech was introduced as part of a computational model for

human hearing and a better separation between speech and noise can

be expected in the MS domain considering the fact that speech and

noise often have different modulation frequency contents. However,

obtaining the MS representation involves non-linear operations which

makes it hard to invert to the frequency domain where the mixture

signal is processed. In this work, we investigate the use of coupled

dictionaries to reconstruct the underlying DFT features following

the decomposition in the MS domain for exemplar-based speech

enhancement and ASR tasks.

Finally, we investigate the performance of various state-of-the-art

automatic speech recognition (ASR) tasks on these enhanced speech

data. ASR evaluation serves two purposes in this work. First, the

recognition performance acts as an additional evaluation measure to

assess the utility of the enhanced speech data on small and large

vocabulary speech recognition. Second, we investigate how much the

HMM-GMM based and deep-neural network (DNN) based state-of-

the-art ASR systems can benefit from making use of the enhanced

data.

The rest of the paper is organized as follows: Section II details

the proposed exemplar-based speech enhancement technique using

coupled dictionaries. The various choices of input exemplars investi-

gated in this work are described in Section III. The evaluation setup

is explained in Section IV followed by some results and observations

made on the experiments done on the AURORA-2 database in Section

V. Section VI details the results obtained for speech enhancement and

ASR evaluations on the AURORA-4 database. Section VII concludes

the paper along with some directions for future work.

II. SPEECH ENHANCEMENT USING COUPLED DICTIONARIES

A. Compositional model for noisy speech using NMF

Exemplar-based separation of speech and noise in a noisy recording

makes use of a speech dictionary As containing J exemplars sampled

from segments of clean speech and a noise dictionary An containing

K exemplars sampled from segments of noise that corrupt speech.

Exemplars are spectro-temporal representations of the training data,

with the spectral axis referred to as frequency bins or coefficients

and temporal axis as frames. The principle behind the approach is

that the noisy speech, being an addition of speech and noise, can be

approximated as a weighted sum of atoms in the speech and noise

dictionaries. The exemplars may span multiple, say T , frames (which

are reshaped to a vector) to capture the temporal dynamics [26]. Let

D be dimensionality of the resulting exemplars and A = [As An]
be the dictionary of size D × (J +K) used for the decomposition.

To convert a noisy recording to the exemplar space, the data is

first converted to the desired time-frequency representation used to

create the dictionaries. A sliding window of length T frames is moved

along its time axis at a hop size of 1 frame resulting in a total of

W = L − T + 1 windows, where L is the number of frames in

the time-frequency representation. The frames corresponding to each

window are reshaped to a vector and are stacked as columns in the

observation data matrix Ψ of size D×W . This is then approximated

as a weighted sum of the atoms in the speech and noise dictionaries

to obtain the activations X (of size (J +K)×W ) as:

Ψ ≈
[

As An

]

[

Xs

Xn

]

= AX s.t. X ≥ 0 (1)

where, Xs and Xn are the activations for the speech and noise dictio-

naries respectively and X = [Xs

⊺
Xn

⊺]⊺. Here, ⊺ denotes the matrix

transpose. The approximation is done to obtain the activations X

that minimize the generalized Kullback-Leibler divergence between

Ψ and AX with additional sparsity constraint on X, which in matrix

form is formulated as:

D
∑

d=1

W
∑

w=1

{

Ψd,w log
Ψd,w

(AX)d,w
−Ψd,w + (AX)d,w

}

+

(J+K)
∑

n=1

W
∑

w=1

(Λ⊙X)n,w

(2)

where Λ is a matrix of size (J+K)×W which, in effect, penalizes

the l1-norm of the activations and serves as a parameter to control

the sparsity of X. ⊙ denotes element-wise multiplication. For the

rest of the paper, the subscripts s and n denote the speech and noise,

respectively and the superscripts denote the exemplar spaces.

Notice that the sparsity penalty matrix Λ has a size equal to the

number of atoms in the dictionary times the number of observation

vectors. This matrix thus can be used to individually adjust the

relative weight of any atom in the dictionary to approximate any

column in the observation matrix Ψ. However, in practise, the penalty

is kept constant as λs for all speech atoms and λn for all noise atoms

across all columns in the observation matrix, reducing the number of

parameters to be tuned to two. Λ will thus have a structure comprised

of an upper-block matrix of size J ×W with all elements equal to

λs and a lower block matrix of size K×W with all elements set as

λn.

The cost function (2) is minimized by iteratively applying the NMF

multiplicative-update rule [13,27]:

X← X⊙

A
⊺

(

Ψ

AX

)

A⊺1+Λ
(3)

where all divisions are element-wise and 1 is a matrix of ones of size

D ×W . This update rule is the bottleneck to the processing speed

and computational complexity is linear in D, J , K and W .

Once this decomposition is obtained, we can obtain the windowed

estimates of speech and noise as ŝw = AsXs and n̂w = AnXn

respectively, each of size D × W . Notice that there are multiple

approximations of the same time-frequency frame appearing over

multiple overlapping windows of these windowed estimates. To

remove this windowing effect and to obtain the frame level estimates,

we first append a zero matrix of size D× (T − 1) to the windowed

estimate, to get a matrix of size D × L, and consider it as a block

matrix having T block rows of size (D/T ) × L each. Let ŝw,τ be

the τ -th block matrix. The frame-level estimate of size (D/T ) × L
then obtained, similar to an overlap-add method, as:

ŝ =

T
∑

τ=1

→(τ−1)

ŝw,τ (4)

where,
→(τ)

(·) denotes right shifting a matrix by τ columns (prepending

τ columns of zeros on the left and deleting τ columns on the right so

as to maintain the original matrix size during addition). Averaging by

the number of overlapping windows is omitted as it will be cancelled

in the later processing stages. The frame-level noise estimate n̂ is

obtained in the same manner.
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Fig. 1. Block digram overview of the proposed system using modulation
spectrogram features and coupled dictionaries.

B. Method using Coupled Dictionaries

The proposed approach to obtain the DFT estimates using coupled

dictionaries is summarized in Fig. 1. In this approach, the NMF-based

decomposition is obtained in an additive and non-negative feature

space of choice which serves as the front-end of the speech enhance-

ment system. For simplicity, the front-end features are referred to

as “input exemplars” and the dictionary used to obtain the NMF

compositional model is denoted as Ain =
[

A
in
s
A

in
n

]

. This dictionary

has a size Din×(J+K), where Din is the dimensionality of the input

exemplar space. The observation data matrix in the input exemplar

domain Ψ
in is decomposed using A

in as explained in section II-A.

The resulting activations X
in are then applied with the output DFT

dictionary to directly obtain the windowed speech and noise estimates

in the DFT domain as ŝw = A
dft
s
X

in
s

and n̂w = A
dft
n
X

in
n

, respectively.

To obtain a reliable reconstruction of the underlying DFT esti-

mates, the mapping between the corresponding atoms in both the

dictionaries should nearly be one-to-one. Such an approximation

would work if the input and the output DFT exemplars are temporally

aligned and scale alike with signal strength. Regarding the last

criterion, signal representations that vary linearly with the input signal

strength work best in conjunction with the considered cost function

(2). These are achieved by properly choosing the input exemplars and

extracting the corresponding DFT exemplars from the same piece of

training data spanning T frames (ref. Fig. 1).

From the windowed estimates, the frame level estimates ŝ and n̂

are obtained by removing the windowing effect and the corresponding

time-varying filter is obtained by element-wise division as:

W = ŝ⊘ (̂s+ n̂) . (5)

This is then multiplied element-wise to the short-time Fourier trans-

form (STFT) of the noisy speech Y of size F × L, where F is the

number of frequency bins used to obtain the STFT. The enhanced

STFT, Ŝ = Y ⊙W, is converted to time-domain using overlap-add

method to obtain the enhanced speech. Notice that the DFT dictionary

is of size Ddft × (J +K), where Ddft = F · T and the time-varying

filter has the same size as Y. In short, the proposed method thus

can exploit the speech and noise separation capabilities for various

choices of input spaces and can generate a filter which has full-rank

in the DFT space.

III. CHOICE OF INPUT REPRESENTATION

The various choices for input representation that are investigated

in this work are explained in this section. Notice that the underlying

assumption in the exemplar-based approach is that the speech and

noise are approximately additive in the chosen exemplar spaces.

The processing chains for obtaining the coupled exemplars are

summarized in Fig. 2.

A. DFT Exemplars

First, the DFT space is chosen as the input exemplar space to

obtain the decomposition. To obtain DFT exemplars to create the

DFT dictionary, a segment of length T frames (Tt seconds in time

domain) of training data is chosen at random and its magnitude STFT

is used for non-negativity. Let the STFT be obtained using a window

length and hop size of tdft
w and tdft

h , respectively. This yields a spectro-

temporal representation of size F × T , where F is the number of

frequency bins used to obtain the STFT. This is reshaped to a vector

of size (F · T )× 1 to obtain the DFT exemplar. i.e., Ddft = F · T .

During evaluation, the NMF-based decomposition is done in the

DFT space after converting the noisy observation into its equivalent

DFT exemplar representation. The resulting activations are used to

obtain the frame-level speech and noise estimates, and the enhanced

speech is obtained as explained in Section II. This setting is chosen as

one of the baseline systems in this work and is denoted as DFT-DFT

setting.

B. Mel Exemplars

Mel exemplars are chosen for their lower dimensionality and robust

speech and noise separation performance in the presence of a variety

of noises. First, the Mel features for T frames of data are obtained

after applying Mel-integration of the magnitude STFT as depicted

in Fig. 2. This is done by multiplying the magnitude STFT by the

DFT-to-Mel matrix M which contains the magnitude response of

B Mel bands along its rows. The resulting representation of size

B × T is reshaped to a vector to obtain the Mel exemplar of length

Dmel = B ·T . The Mel dictionaries for speech and noise are denoted

as A
mel
s

and A
mel
n

, respectively.

During the test phase, the noisy data represented in the Mel

exemplar space is decomposed using the Mel dictionary A
mel =

[Amel
s

A
mel
n

] and the corresponding activations X
mel
s

and X
mel
n

are

obtained. Once these activations are obtained, we use it to evaluate

two systems.

First, another baseline system is defined which is denoted as

the Mel-Mel setting. In this setup, the windowed speech and noise

estimates are obtained using the Mel dictionary as A
mel
s

X
mel
s

and

A
mel
n

X
mel
n

, respectively. The frame level Mel estimates, ŝ
′ and n̂

′

are obtained as explained in Section II-A. These are then mapped to

the DFT domain using the pseudo-inverse of the DFT-to-Mel matrix,

M
† = M

⊺(MM
⊺)−1 to obtain the enhanced STFT as [12]:

Ŝ = Y ⊙
(

M
†
[

ŝ
′ ⊘ (̂s′ + n̂

′)
]

)

. (6)

It is evident that this setting has a lower computational complexity

as B ≪ F while performing the multiplicative updates. It is

also observed that Mel features have a better speech and noise

separation capability and generalize better for unseen noise cases

when compared to the DFT exemplars [21]. However, the pseudo-

inverse mapping in (6) will always fall in a subspace of rank B
spanned by the rows of M. The frequency response of the Mel filter-

bank being triangular, such a mapping is equivalent to a piece-wise

linear approximation of B points located at the central frequencies

of the filter-bank. It is thus clear that such a transformation may not

be able to model most of the speech and noise content in the full-

resolution DFT space with B ≪ F , which in turn may reduce the

speech enhancement quality. This issue will be further explored in

later sections.

For the second setting, we investigate the proposed approach

using Mel exemplars as the input features to deal with the low-

rank approximation in the Mel-Mel setting. Here, the underlying

(windowed) DFT estimates for speech and noise are directly obtained
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Fig. 2. Block diagram overview of the processing chains to obtain various exemplars. All the coupled exemplars are extracted from the same piece of recorded
data spanning T frames (Tt seconds in time-domain). The resulting representations along with their size are shown below in each of the steps. Figures are
not shown at the same scale.

using the Mel activations as ŝw = A
dft
s
X

mel
s

and n̂w = A
dft
n
X

mel
n

,

and are then used for speech enhancement (ref. Section II). This

is referred to as the Mel-DFT setting. Since in this setting, the

output DFT dictionary is coupled to the Mel input dictionary and

is overcomplete, a full-rank reconstruction of the estimates can be

enforced and a better noise suppression could be achieved.

C. MS Exemplars

The modulation spectrogram (MS) representation of speech was

proposed as part of a computational model for human hearing which

relies on low frequency amplitude modulation variations within fre-

quency bands [28]. These variations play a key role in the higher level

human auditory processing [29] and are computationally modelled

as modulation envelopes. The bottom row in Fig. 2 summarizes the

processing chain to obtain the MS representation for speech.

To obtain the modulation envelopes, the acoustic data is first

filtered using a filter bank containing B channels to model the

frequency discrimination property of the basilar membrane. The

resulting B bandlimited signals are half-wave rectified to model the

non-negative nerve firings followed by low-pass filtering to obtain the

modulation envelopes. The 3dB cut-off frequency of the low-pass

filter used is around 20Hz as human speech contains modulations

of very low frequency [30] and hence the spectrograms of these

envelopes, called the modulation spectrograms, can yield a more

effective representation [25]. Let the window length and hop size

used to obtain the MS representation be tMS
w and tMS

h , respectively. The

MS representation is typically obtained over longer window lengths

when compared to the DFT features (i.e., tMS
w > tdft

w ), to capture the

variation in modulation envelopes, which also allows larger choices

for tMS
h than tdft

h . This representation of speech has successfully been

used for blind source separation [31] and noise-robust ASR [32].

Notice that converting acoustic data into the MS space results in

a three-dimensional representation of size B × K × T , where B,

K and T are the number of input frequency channels, number of

modulation frequency bins and number frames in the acoustic data,

respectively. However, since the modulation envelopes are obtained

after a low-pass filtering operation, only a few bins in the MS will

contain significant energy and it is possible to truncate each of the

MS to the lowest few, say k, bins. These truncated B modulation

spectrograms, each of size k×T , are stacked to get a two-dimensional

representation of size (B ·k) × T , referred to as the MS features.

This representation is then reshaped to a vector to obtain the MS

exemplar. The dimensionality of an MS exemplar will thus be

DMS = B · k · T . In our previous works [21,33] we showed that

the approximate additivity assumption of speech and noise is valid in

the MS exemplar space as well. In comparison to the established Mel

exemplar-based approaches, the MS representation essentially retains

the same information within each frequency band for each frame,

but also more accurate information about the spectral distribution of

different modulation frequencies.

In this work, the MS exemplars are used as input exemplars

to obtain the NMF-based decomposition using the dictionary of

MS exemplars A
MS = [AMS

s
A

MS
n

] to obtain the activations X
MS.

However, since the processing chain to obtain the MS features

involves non-linear operations, there is no direct way to make use of

this decomposition to enhance the noisy speech as the inversion of

the MS features to the time domain is not unique. We propose using

the coupled DFT dictionary extracted together with the MS dictionary

to reconstruct the DFT estimates and to obtain speech enhancement,

i.e., the speech and noise estimates are approximated as A
dft
s
X

MS
s

and A
dft
n
X

MS
n

, respectively. The resulting frame-level estimates are

used to enhance the noisy spectrogram. This system is denoted as

the MS-DFT setting.
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However, any circular temporal shift (modulo the window length)

of the DFT spectrogram can yield the same MS representation and

makes the mapping many-to-one. To address this, we make use of

temporal oversampling, i.e., smaller tMS
h while obtaining the MS, to

reduce this ambiguity as pointed out in [34]. In our previous work,

setting tMS
h = tdft

h was found to be the best choice [33]. It is also

to be noted that increasing the low-pass cut of frequency beyond

20 Hz should be useful for a better speech and noise separation

when the data is corrupted by some noise having higher modulation

frequencies. This on the other hand requires a higher value of k
which increases the computational complexity and may lead to data

overfitting. Hence, a compromise must be pursued.

IV. EXPERIMENTAL SETUP

A. Databases

To evaluate and compare the various settings, two databases were

used. Preliminary experiments were conducted on the AURORA-2

database which is a small-vocabulary task and are then extended to

the large-vocabulary database AURORA-4 [35].

1) AURORA-2 Database: is a database based on the TI Digits corpus

containing utterances of digits from ’0-9’ and ’oh’ sampled at 8 kHz.

For training the acoustic models, a clean speech dataset and a noisy

training dataset each containing 8 440 utterances are used. The noisy

training set contains car, babble, subway and exhibition hall noises

added artificially at signal-to-noise ratios (SNRs) of 5, 10, 15 and 20

dB.

For testing, test sets A and B are used. Test set A contains one

clean subset containing 1 001 recordings of clean speech and its noisy

versions at varying SNRs -5, 0, 5, 10, 15 and 20 dB for every noise

type present in the training set, summing to a total of 28 subsets.

Test set B also has the same structure as in test set A but with four

different noise types which are not present in the training data. The

noise types in test set B are restaurant, train station, street and airport

noises.

2) AURORA-4 Database: is a large vocabulary continuous speech

database based on the WSJ-0 corpus of read speech. The database

contains training and test sets with additive noise and in presence of

channel variation. In this work, only the single microphone test set

with 16 kHz sampling frequency, which contains a noise free data

set (test 01 or test A) with six noisy sets (test 02-07 or collectively

test B) corrupted with car, babble, restaurant, airport, street and train

noises added artificially at varying SNRs between 5 and 15 dB in

steps of 1 dB, is used. A development set of the same structure as

the test set, but with different utterances, is also there for validation

and parameter tuning.

For training the acoustic models and preparing the dictionaries, the

clean and the multi-noise training sets containing 7 138 utterances

each were used. The multi-noise training set contains all noises

present in the test sets added at varying SNRs between 10 and 20

dB in steps of 1 dB.

B. Exemplars and dictionary preparation

The dictionaries used to obtain the decomposition were prepared

from the training data. The noise data used to create the noise

exemplars were obtained from the noisy training data using the two-

step procedure described in [27]. The dictionaries were created using

exemplars originating from random segments of length T frames

taken from the clean and noise training sets. Throughout this paper,

the choice of T used was 30 and 15 frames for the AURORA-2

and AURORA-4 databases, respectively as these values were found

to yield the best performance on similar tasks [10,12]. The value

of T for AURORA-4 is chosen to be lesser than the AURORA-

2 database as the former has a lot more variety of speech to be

modelled as opposed to the latter and it demands a larger dictionary to

reasonably model the large vocabulary speech data, which increases

the computational complexity.

Every chosen random segment of length Tt seconds was first

pre-processed by removing the DC component and applying a pre-

emphasis filter (a single order high-pass filter of coefficient 0.97).

The coupled exemplars were then extracted as follows (ref. Fig. 2):

1) The STFT of the samples were obtained using a Hamming

window of length tdft
w = 25 ms and a hop size tdft

h = 10
ms. The magnitude of the STFT is then obtained yielding a

representation of size F × T . This is then reshaped to obtain

the DFT exemplar of length F · T .

2) The magnitude STFT obtained in the step above is pre-

multiplied with the DFT-to-Mel matrix M of size B × F to

obtain the Mel-integrated magnitude spectra of size B×T . The

Mel exemplar is then obtained by reshaping the Mel spectra.

3) To obtain the MS representation, the time-domain signal is

first filtered into B band-limited signals using the equivalent

rectangular bandwidth filter banks implemented using Slaney’s

toolbox [36]. Each of these signals is then half-wave rectified

and low-pass filtered at a 3 dB cut-off frequency of 30 Hz

(as used in [33]) to obtain the modulation envelopes. The MS

representation is then obtained by taking the magnitude STFT

of these envelopes by keeping the hop size tMS
h = tdft

h = 10
ms and using a window length tMS

w = 64 ms as in [33].

K = 64ms × fs frequency bins are used to obtain the STFT,

where fs is the sampling frequency. i.e., the first frequency

bin corresponds to ≈ 15 Hz resulting in approximately 3
frequency bins below 30 Hz cut-off frequency including the

DC component. A value of k = 5 is chosen to capture the

frequency leakage during low-pass filtering and windowing.

The MS exemplar is then obtained as detailed in Section III-C.

Notice that the number of channels in the filter bank is the

same as the number of Mel filters used in the previous step.

This choice is made to have a fair comparison between the

performances of the Mel and the MS exemplars in separating

speech and noise.

For the experiments on the AURORA-2 database, the parameters

used were F = 128 and B = 23 used were whereas the AURORA-

4 setting used were F = 256 and B = 40. Zero-padding was

used while taking the STFT, whenever necessary. Then three cou-

pled dictionaries each for speech and noise were created with the

corresponding exemplars extracted from the same piece of training

data.

To create the speech dictionary, J = 10 000 exemplars were

extracted at random from the respective clean training data for

experiments on the AURORA-2 and AURORA-4 databases as used in

[21,33]. Evaluations on the AURORA-2 database used a noise dictio-

nary containing K = 10 000 exemplars, whilst for the AURORA-4

experiments, the noise dictionary used is comprised of two parts: a

fixed noise dictionary containing Kfixed = 5 000 exemplars extracted

from the noise training data and a small noise dictionary extracted

from the noisy test data to be enhanced itself, which are the cyclicly

shifted versions of its first T = 15 frames resulting in a total of

K = 5 015 noise exemplars as in [12,33]. Making use of the first

15 frames to model the noise is termed as noise-sniffing assuming

the first 15 frames of the noisy test data contain noise only. Notice

that the second noise dictionary is changed for every utterance and

is concatenated with the fixed noise dictionary.

Extracting the fixed part of the coupled dictionaries was done

only once per database and are kept fixed for all the experiments
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in this paper. The noise dictionaries for the AURORA-2 database

contain exemplars sampled from all the four noise types available

in the training data and the fixed noise dictionary for AURORA-

4 experiments contain all the six noise types in the training data.

No supervision was done to avoid silences in the speech exemplars

or adjusting the number of exemplars per noise type in the noise

dictionary.

C. NMF based speech enhancement

For testing, the noisy utterance is converted to the input exemplar

space to obtain the observation data matrix Ψ
in as explained in Sec-

tion II. Ψin is then decomposed using the respective input dictionary

using 600 NMF multiplicative updates (3) with X
in initialised as

(

A
in
)⊺

Ψ
in and the corresponding filters are obtained as described

in Section III. The resulting enhanced STFT is inverted to the time-

domain using the overlap-add method to obtain the enhanced speech.

For the AURORA-2 setting, the decomposition was obtained with

speech and noise sparsity penalties as λs = 1.5 and λn = 1 for the

Mel dictionary as used in [27] whilst for the decomposition using

the MS and DFT dictionaries, the values used were λs = 1.75 and

λn = 0.75 as in [21]. These values were obtained after doing a grid-

search in the range [0, 3] on a development set which is a subset of

100 files taken from the test set A.

For the AURORA-4 experiments, in contrast to the AURORA-2

setting, the noise sparsity penalty is fixed as 0.5 times the sparsity

penalty of speech, i.e., λn = λs/2 , to reduce the computational

effort while doing the grid-search [12] on the development set. The

decomposition using the Mel, MS and DFT settings used a λs equal

to 1.2, 1.6 and 1.7 respectively.

Speech enhancement was implemented using MATLAB and GPUs

were used for accelerating the NMF multiplicative updates using the

parallel computing toolbox. To evaluate and compare the speech

enhancement qualities, we used signal-to-distortion ratio (SDR),

segmental SNR (SegSNR) and PESQ measurements. SDRs were

obtained using the BSS evaluation toolkit [37], and the other two

measurements were calculated using an implementation by Loizou

[38]. The improvement of these quality measures over the noisy

speech is reported as ∆SDR in dB, ∆PESQ in mean opinion score

(MOS) and ∆SegSNR in dB..

D. ASR back-ends

1) HMM-GMM decoder for AURORA-2: For evaluating the ASR

performance on the AURORA-2 database, a GMM-HMM-based

recognizer using the Mel-frequency cepstral coefficients (MFCCs)

was used. The HMM topology had a total of 179 states comprised of

16 states describing each digit with 3 states for silence (16×11+3).
GMM models were trained on MFCCs with 13 static coefficients

along with the delta and delta-delta coefficients leading to a 39

dimensional feature space. The emission probabilities of each of

the HMM states were modelled using a GMM of 32 Gaussians

with diagonal covariance. The decoding is done using the Viterbi

decoder with a finite state language model as given in the AURORA-

2 benchmark [35] with all digits having the same word entrance

penalties.

2) Hybrid setting for AURORA-2: Preliminary experiments on the

AURORA-2 database revealed a complementarity in the number of

insertions and deletions between the MS-DFT and the Mel-DFT

systems. So a hybrid approach is proposed to combine the outcomes

of these two recognizers to achieve a better ASR performance. There

exist several ways to combine results from two systems like assuming

independence and then balance the two streams [10], minimum error

based approach [39], etc. In order to avoid extra parameters, we

propose to combine the two streams by simply multiplying the

likelihoods originating from the Mel-DFT and MS-DFT settings [10].

Equal weights are given to both the streams by raising both the

resulting likelihoods by 0.5. i.e.,

p′(yt|qt) = (pmel(yt|qt))
1/2 (pMS(yt|qt))

1/2
(7)

where, pmel and pMS are the likelihoods for the observation yt given

the HMM state qt resulting from the Mel-DFT and MS-DFT streams,

respectively. These are then fed to the Viterbi decoder to obtain the

ASR results.

3) HMM-GMM decoder for AURORA-4: For the AURORA-4 ex-

periments, the “recipe” recognizers in the Kaldi toolkit [40] are

used. The HMM-GMM-based recipe decoder for AURORA-4 makes

use of context dependent tied-state triphone models. Each model is

comprised of three states and there are around 2000 distinct HMM

states in total. GMM models are trained on 13 static MFCC features

from 7 consecutive frames upon which feature decorrelation is

applied using maximum-likelihood linear transform (MLLT) [41] and

linear discriminant analysis (LDA) [42], reducing the 91-dimensional

vector to 40 dimensions.

4) DNN-HMM decoder for AURORA-4: In this work, we also evaluate

the ASR performance using the DNN-HMM hybrid system, where

the posterior probability estimates for the HMM states are provided

by the trained DNNs [43]. DNNs are comprised of multiple hidden

layers stacked on top of each other which allow them to learn higher-

level information in the upper layers [44]. The recipe recognizer is

based on the implementation described in [45] with 6 hidden layers

comprised of 2048 sigmoid neurons per layer. The input layer used 40

Mel filterbank coefficients with a context size of 11 frames summing

up to 440 input features in total.

To train the DNN, pre-training based on restricted Boltzmann

machines (RBMs) [46] is done first in order to avoid issues with

random initialization of the layers resulting in poor local optima.

Once the pre-training is done, a DNN which classifies the frames

into triphone states is trained using the stochastic gradient descent

technique. Finally, the DNN is trained to classify the whole sentence

correctly. For the DNNs trained on clean training data, only the clean

part of the development set was used for cross-validation.

Average word error rates (WERs) are used as the performance

measure in all the ASR experiments. For training the acoustic models,

the original clean training data (referred to as clean training) and

the enhanced noisy training data processed by the corresponding

NMF-based front-ends (referred to as retraining) are used. Retraining

equips the GMMs and DNNs to learn the artefacts introduced by the

enhancement stage and thus can improve the ASR performance on

the enhanced noisy test data.

V. PILOT EXPERIMENTS ON AURORA-2

This section details the speech enhancement and ASR evaluations

performed on the AURORA-2 database. The results are reported on

the entire test sets including the 100 files used for tuning the sparsity

parameters. Some useful insights and discussions are also included

in this section.

A. Results on speech enhancement

∆SDR in dB averaged over the four noise types obtained for

various systems on the AURORA-2 database are summarized in Fig.

3. The shaded bars denote the baseline systems and it can be seen

that the proposed approach using coupled dictionaries results in better

SDRs in all cases. Notice that, even though the Mel-Mel setting

uses a pseudo-inverse, it yields almost the same SDRs as of the

DFT-DFT setting on test set A. This can be attributed to the better
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Fig. 3. Average SDR improvements in dB obtained on test sets A and B of the AURORA-2 database as a function of input SNRs in dB for various settings.
Legends are same for both plots.

TABLE I
AVERAGE WERS IN % OBTAINED FOR TEST SETS A AND B OF THE AURORA-2 DATABASE FOR VARIOUS SETTINGS WITH GMMS TRAINED ON CLEAN

AND ENHANCED NOISY TRAINING DATA. SHADED ROWS DENOTE THE BASELINE SETTINGS. BEST SCORES ARE HIGHLIGHTED IN BOLD FONT.

Test Set A Test Set B

Setting clean -5 0 5 10 15 20 Avg. (20-0) -5 0 5 10 15 20 Avg. (20-0)

GMM on clean training data

No Enhancement 0.3 76.9 48.7 22.4 9.2 3.6 1.6 17.1 77.2 46.9 20.7 7.7 2.8 1.2 15.9
Mel-Mel 0.4 31.2 12.4 6.1 3.6 2.3 1.4 5.2 58.2 30.3 12.4 5.8 2.7 0.9 10.4
DFT-DFT 0.3 34.7 17.5 7.8 3.1 1.7 0.9 6.2 70.8 40.1 16.9 6.1 2.3 1.0 13.3
Mel-DFT 0.4 31.1 12.4 6.0 3.5 2.1 1.2 5.0 58.0 30.1 12.4 5.7 2.7 0.8 10.3

MS-DFT 0.3 30.5 12.5 4.4 2.1 1.3 0.7 4.2 68.6 34.3 14.5 5.1 2.1 0.8 11.4
Hybrid 0.4 27.2 11.4 3.7 2.1 1.5 0.9 3.9 62.4 32.8 13.0 5.3 2.0 0.6 10.7

GMM on noisy training data (Retrained)

No Enhancement 0.8 61.9 24.9 6.8 2.6 1.2 0.7 7.2 64.3 26.2 8.5 2.9 1.4 0.8 8.0
Mel-Mel 0.5 25.1 8.9 3.3 1.5 0.9 1.0 3.1 52.8 20.8 6.8 2.6 1.2 0.7 6.4
DFT-DFT 0.4 21.4 8.5 2.5 1.1 0.7 0.5 2.7 58.1 24.5 7.5 2.4 1.0 0.6 7.2
Mel-DFT 0.5 25.2 9.0 3.1 1.4 0.7 0.6 3.0 52.6 21.0 6.8 2.7 1.2 0.6 6.4
MS-DFT 0.4 21.1 7.7 2.4 1.0 0.7 0.4 2.4 62.4 26.3 7.6 2.2 1.0 0.5 7.5
Hybrid 0.4 20.6 7.1 2.4 1.0 0.7 0.7 2.4 54.2 20.7 6.3 2.1 1.0 0.5 6.1

speech and noise separation achieved by the Mel exemplars when

compared to the DFT exemplars. It can also be seen that the Mel-

DFT setting yields better SDRs than the Mel-Mel setting for both

test sets, even though the decomposition in both the systems are done

in the Mel exemplar space. It reveals the effectiveness of using the

proposed coupled DFT dictionary approach to directly obtain the DFT

estimates over the low-rank approximation using pseudo-inverse.

From the SDR evaluations on test set B which contains unseen

noise cases, it can be seen that the speech enhancement obtained is

poorer when compared to that of test set A, as the noise dictionary

generalises poorly to the unseen noise cases. It can also be seen

that the Mel feature space is able to better generalise to the unseen

noise cases when compared to the DFT and MS exemplar spaces.

Using the proposed Mel-DFT approach can further increase the SDR

performance, which is a scenario where the proposed approach is

highly beneficial. It can also be seen that the MS space can yield a

better speech and noise separation at high SNRs when compared to

the Mel features.

B. ASR evaluation

The average WERs obtained on the enhanced AURORA-2 data

using the HMM-GMM based decoder and also using the hybrid

setting described in Section IV-D are summarized in Table I for

GMMs trained on the clean training data (clean training) and the en-

hanced noisy training data (retrained). It can be seen that the method

using coupled dictionaries yields improved WERs and retraining the

GMMs using the enhanced training data can further improve the

ASR performance. The Mel-DFT setting resulted only in a slight

improvement when compared to the Mel-Mel setting, even though the

former setting yielded a better speech enhancement in terms of SDRs.

This can be attributed to the simplicity of the AURORA-2 recognition

task as it has a limited vocabulary, and the digit classification is

not affected by the deformation introduced during the pseudo-inverse

step.

It is also observed that the use of the MS representation can result

in a WER improvement for test set A and poorer results for test set

B as it generalises poorly for unseen noise cases. Nevertheless, it

yielded complementary results in terms of insertions and deletions

when compared to the Mel setting and the proposed hybrid setting

was found to yield superior WER improvements on both test sets

by exploiting this complementarity. To the best of our knowledge,

average WERs of 20.6% (test A, SNR-5), 2.4% (test A, SNR(20-0))

and 6.1% (test B, SNR(20-0)) using the hybrid setting are among

the best results ever reported on the AURORA-2 recognition task

(reported in [10]). Overall, from SNR -5 dB to 20 dB, the hybrid

setting yielded WERs of 5.4% and 14.1% on test set A and B,

respectively.

Also notice that the method described in [27] directly makes use

of enhanced Mel features for the ASR back-end rather than going

back to the time-domain. Evaluations (not shown) revealed that this

setting and the Mel-Mel setting are equivalent as the ASR back-end

for the latter also goes back to the Mel domain by multiplication with

the same Mel matrix M to obtain the MFCCs.

C. A qualitative analysis

A qualitative analysis on the observations made during the pilot

experiments on the AURORA-2 database is discussed in this section.

The outcomes of interest resulting from these evaluations are visu-

alised in Fig. 4. The input noisy signal is an arbitrary signal from
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TABLE II
AVERAGE EXECUTION TIME IN SECONDS NEEDED FOR VARIOUS SETTINGS

EVALUATED ON THE AURORA-2 DATABASE. D IS THE NUMBER OF ROWS

IN THE DICTIONARY USED TO OBTAIN THE NMF-BASED DECOMPOSITION.
ALL DICTIONARIES HAD A TOTAL OF 20, 000 COLUMNS EACH.

Mel-Mel DFT-DFT Mel-DFT MS-DFT

Exec.time 5.8s 16.2s 6.0s 14.8s

D 690 3840 690 3450

the AURORA-2 database containing the utterance ”nine six zero”

(transcribed as 96Z) corrupted with babble noise at an SNR of 0 dB.

The filter weights used for enhancing the noisy STFT arising from

the various settings are shown in the middle row followed by the

resulting enhanced speech in the bottom row. For comparison, the

oracle binary mask is also included which yielded an output SDR of

10.9 dB. It is evident that the quality of enhanced speech depends

on how well these filter weights model the constituent speech and

noise contained in the noisy speech. The key aspects which decide

the performance of various settings are detailed below (ref. Fig. 4):

1) Low-rank approximation in the Mel-Mel setting: It can be seen that

the piece-wise linear approximation results in a set of filter weights

that are smooth which in turn cannot model the underlying harmonic

structure of the constituent speech signal and results in frequency

smearing. This setting thus will always result in a sub-optimal set of

filter weights. Also notice that this setting still yielded a reasonable

SDR improvement which can be attributed to a better speech and

noise separation achieved using the Mel exemplars.

2) Poorer speech and noise separation in the DFT exemplar space: It

can be seen that the filter weights arising from the DFT-DFT setting

are able to model the underlying harmonic structure of speech since

this setting can directly obtain the estimates in the full-resolution

frequency domain. However, a majority of these weights are close

to 1 even though the true SNR of the underlying speech is 0 dB,

which in turn retain most of the noise content and results in poorer

SDRs. Also notice that the noise in the speech inactive regions are

not properly suppressed. These happen because the speech exemplars

are also activated to model the babble noise contained in the noisy

input during the exemplar-based decomposition in the DFT space.

Similar instances of speech exemplars modelling noise are observed

for unseen noise cases also (not shown) [21]. This setting hence

results in a poorer SDR improvement even though the detrimental

mapping stage is absent.

3) Full-rank approximation in the Mel-DFT setting: The filter weights

obtained for the Mel-Mel and Mel-DFT settings arise from the same

set of activations obtained from the NMF-based decomposition in

the Mel exemplar space. It can be seen that the Mel-DFT approach

is able to better model the harmonic structure in speech and utilise

the better speech and noise separation properties of the Mel exemplar

space, yielding an SDR improvement of 0.9 dB over the setting where

the pseudo-inverse is used. This approach thus can yield a better

speech enhancement without any additional computational cost in

the matrix factorisation part, which is the most time-consuming part

of the method.

4) Coupled dictionaries as a reliable mapping from the MS space to

the DFT/time domain: It is evident from the filter weights obtained

for the MS-DFT setting that the MS exemplars can yield a good

speech and noise separation, and using the coupled DFT dictionary

can yield a reliable mapping of these estimates to the full-resolution

frequency domain.

D. Computational complexity vs performance

All the evaluated experiments in this work were accelerated using

GPUs. The computational complexity of these experiments depends

on the length of the temporal context T , the number of exemplars

(J + K) and the dimension of features per frame considered. The

average execution time needed for the experiments on the AURORA-

2 database, which used 10 000 exemplars each of speech and noise

with T = 30 frames for various settings are tabulated in Table II.
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TABLE III
AVERAGE WERS OBTAINED IN % FOR VARIOUS TEST SETS ON THE AURORA-4 DATA USING THE VARIOUS SETTINGS WITH THE HMM-GMM-BASED

AND HMM-DNN-BASED ASR BACK-ENDS. BEST SCORES ARE HIGHLIGHTED IN BOLD FONT. SHADED ROWS DENOTE THE BASELINE SYSTEMS.

(a) Retrained GMM

Test Sets

Setting A B
01 02 03 04 05 06 07 Avg.

No Enh. 5.7 6.2 11.5 22.3 16.7 10.9 15.8 13.9
Mel-Mel 5.1 5.6 8.4 10.6 9.8 8.1 10.1 8.8
DFT-DFT 6.0 5.8 8.9 12.2 10.3 8.7 11.2 9.5
Mel-DFT 4.9 5.4 8.0 10.7 9.8 7.7 10.2 8.6
MS-DFT 4.9 5.7 7.3 11.1 9.0 7.0 10.1 8.4

IMCRA 4.6 5.6 10.7 15.3 13.8 11.4 14.4 11.9

(b) Retrained DNN

Test Sets

Setting A B
01 02 03 04 05 06 07 Avg.

No Enh. 3.3 4.6 7.3 9.3 8.5 6.6 9.1 7.7
Mel-Mel 2.9 4.1 6.6 8.8 8.9 6.1 9.2 7.3
DFT-DFT 3.2 4.1 6.9 7.8 7.6 6.5 8.0 6.8
Mel-DFT 3.2 4.7 7.5 8.5 8.4 6.9 8.2 7.4
MS-DFT 3.0 4.2 6.0 7.4 7.1 5.3 6.9 6.2

IMCRA 2.9 4.1 7.2 9.4 9.6 7.6 9.0 7.8

From the evaluations, it is clear that the proposed Mel-DFT setting

results in a good ASR and SDR performance without much additional

computational cost.

It is also observed in [33] that increasing the low-pass 3 dB cut-

off frequency in the MS exemplar extraction stage can yield an

improvement both in terms of SDRs and WERs, in presence of

seen noise cases. However, this can have a detrimental effect for

signals corrupted with unseen noise and also results in an increased

computational complexity as the size of the MS exemplars should

also be increased.

Similar to the MS features, the performance of the DFT exemplars

depend on the type of noise and the true SNRs in the input noisy

signal, and its computational complexity depends solely on the

sampling frequency of the input data, given T and the window length

tdft
w used to obtain the STFT. On the other hand, the Mel and MS

features are more flexible in the sense that their dimensionality can

be adjusted by varying choices for B, tMS
w etc., depending on the

application and allowable computational complexity.

VI. EXPERIMENTS ON AURORA-4 DATABASE

A. Results on speech enhancement

∆SDR, ∆PESQ and ∆SegSNR averaged per test set obtained for

the various settings on the AURORA-4 database are presented in Fig.

5. As an additional baseline system, a speech enhancement algorithm

based on minimum mean-square error log-spectral amplitude estima-

tion [47] with the improved minima controlled recursive averaging

(IMCRA) technique for noise variance estimation [48] is included.

It can be seen that the proposed approach using coupled dictionar-

ies results in better SDRs in all cases, consistent with the observations

made during the AURORA-2 experiments. It can also be seen that

additional evaluations using the PESQ and SegSNR also yielded

promising improvements. IMCRA approach yielded better SegSNR

for some noise types, but poorer PESQ and SDR improvements were

obtained. The MS-DFT setting yielded superior improvements in

PESQ MOS evaluation reaffirming the effectiveness of using coupled

dictionaries to obtain a reliable reconstruction in the DFT space.

B. ASR evaluation

The average WERs obtained for the HMM-GMM-based and

HMM-DNN-based decoders on various test sets of the NMF-

enhanced AURORA-4 data are tabulated in Table III. The results

for the retrained scenarios only are presented for both the GMM and

DNN based settings.

For acoustic modelling based on retrained GMMs, it can be seen

that the various speech enhancement approaches can greatly improve

the ASR performance over a GMM trained and evaluated on noisy

test data. IMCRA yields the best performance on clean speech as

it introduces the least distortions on clean speech during speech

enhancement. It can also be seen that the MS-DFT setting yields the

best performance out of all the evaluated settings with a statistical

significance of p < 0.03 (over a total of 32 118 words using a

binomial independence assumption).

On the other hand, a DNN trained on noisy training data yields

around 40% relative improvement over the GMM-based system and

is even better than the best performing retrained GMM setting

(ref. Table IIIa), thanks to its multiple hidden layers which can

learn and compensate for the noise also. It can be seen that using

exemplar-based approaches for speech enhancement and retraining

can further improve its performance (ref. Table IIIb). Also notice

that all settings yielded a better WER for clean speech as well, which

can be attributed to the ability of sparse representations in moving

the test features closer to the training features, thereby minimizing

the speaker mismatches in the training and test sets as pointed out in

[49].

The MS-DFT setting yielded the best WERs here as well with

a statistical significance of p < 0.001 over all the other settings

yielding an average WER of 6.2% over test B of the AURORA-4

database.
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VII. CONCLUSIONS

In this work, we proposed using coupled DFT dictionaries, ex-

tracted jointly with the input dictionaries used in the exemplar-based

speech enhancement systems, for a better mapping from the input

space to the DFT space to obtain a better set of filter weights.

The approach was found to be effective in overcoming the low-

rank approximation where the input dictionary is created using lower-

dimensional Mel features and also to obtain a reliable mapping from

the MS space to the DFT space. The simulation results revealed that

the proposed approach can improve the performance of exemplar-

based techniques for both speech enhancement and automatic speech

recognition tasks.

The use of modulation spectrogram features, which are inspired

from the human auditory processing, was also introduced to the

field of exemplar-based techniques in this work, and we showed that

using coupled dictionaries can be a reliable way to reconstruct the

underlying speech and noise estimates in the DFT domain. The ASR

evaluation also revealed that feeding NMF-enhanced data can greatly

benefit both the HMM-GMM-based and DNN-HMM-based state-of-

the-art ASR systems with and without retraining.

The best performing settings in this work yielded overall average

WERs of 5.4% and 14.1% respectively for test sets A and B of the

AURORA-2 database, and 7.9% and 5.7% respectively for the GMM-

HMM-based and DNN-HMM-based ASR systems on the single

microphone sets (test01-test07) in the AURORA-4 database.
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