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Abstract

Speech recognition systems intended for everyday use must be able to cope
with a large variety of noise types and levels, including highly non-stationary
multi-source mixtures. This study applies spectral factorisation algorithms
and long temporal context for separating speech and noise from mixed sig-
nals. To adapt the system to varying environments, noise models are ac-
quired from the context, or learnt from the mixture itself without prior
information. We also propose methods for reducing the size of the bases
used for speech and noise modelling by 20–40 times for better practical
applicability. We evaluate the performance of the methods both as a stan-
dalone classifier and as a signal-enhancing front-end for external recognisers.
For the CHiME noisy speech corpus containing non-stationary multi-source
household noises at signal-to-noise ratios ranging from +9 to -6 dB, we re-
port average keyword recognition rates up to 87.8% using a single-stream
sparse classification algorithm.

Keywords: automatic speech recognition, noise robustness,
non-stationary noise, non-negative spectral factorization, exemplar-based

1. Introduction

These days we are surrounded by devices and services, which could
potentially use speech as their input. Possibly the largest hindrance to
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widespread adoption of automatic speech recognition (ASR) systems is their
limited performance in noisy environments. In everyday situations, the pres-
ence of noise can be considered the norm rather than the exception. There-
fore robustness against noise is a fundamental requirement for a recogniser
intended for common use.

While current state-of-the-art speech recognition systems achieve near-
perfect recognition rates on carefully pronounced speech recorded in clean
conditions, their performance deteriorates quickly with decreasing signal-to-
noise ratio (SNR). Many of the methods proposed for dealing with additive
noise focus on increasing the system’s sensitivity to the desired patterns
over an undefined, roughly uniform noise floor. When the sound level of
noise events becomes comparable to that of the target signal, it becomes
increasingly important to model noise explicitly. This has been previously
accomplished with, for example, model compensation techniques (Acero
et al., 2000; Gales and Young, 1996) which allow modelling the interaction of
speech and noise. Such techniques have been successfully used to recognise
speech in mixtures of multiple speakers, given prior information on each
speaker (Hershey et al., 2010).

Since non-negative matrix factorisation (NMF) algorithms were intro-
duced for widespread use (Lee and Seung, 2001), they have been applied
to numerous source separation problems. In audio signal processing, NMF
has been successfully employed to separate signals consisting of multiple
speakers, music, and environmental sounds by modelling a signal as a lin-
ear non-negative combination of spectral basis atoms (Heittola et al., 2011;
O’Grady and Pearlmutter, 2007; Schmidth and Olsson, 2006; Smaragdis,
2007; Virtanen, 2007). Given a set of basis atoms (also known as dictio-

nary) representing the expected sound sources — in robust ASR, speech
and noise — observations can be modelled as a sparse linear combination
of atoms. This representation can be used to do speech or feature enhance-
ment, proved useful as a preprocessing step for robust speech recognition
(Gemmeke et al., 2011c; Raj et al., 2010; Weninger et al., 2011). Alterna-
tively, when speech atoms are associated with speech classes such as phones,
the activations of atoms can provide noise robust likelihoods for hybrid de-
coding in an approach dubbed sparse classification (Gemmeke et al., 2011b;
Hurmalainen et al., 2011b).

In the most straightforward approach of spectrograms factorisation, each
frame is processed independently. However, in real-world situations, the
short-term spectral characteristics of noise events can closely resemble ac-
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tual speech, making the approach prone to misclassifications. Basic NMF
methods have later been extended with prior models (Wilson et al., 2008b),
smoothness constraints (Cichocki et al., 2006), temporal dynamic mod-
elling and regularisation (Mysore and Smaragdis, 2011; Wilson et al., 2008a)
and adding derivative features to the feature vectors (Van Segbroeck and
Van hamme, 2009). Meanwhile, there has been an increasing interest in
long context spectro-temporal templates for speech modelling. Example-
based methods and longest matching segment searching have been pro-
posed for large vocabulary speech recognition (Sundaram and Bellegarda,
2012; Wachter et al., 2003, 2007), dereverberation (Kinoshita et al., 2011)
and denoising (Ming et al., 2011). Multi-frame atoms have also been com-
bined with additive spectral modelling in NMF-based speech separation
and enhancement (Smaragdis, 2007; Vipperla et al., 2011; Weninger et al.,
2011). In our earlier work, we have found further support for the potential
of multi-frame spectrograms as features for robust ASR (Gemmeke et al.,
2011b; Hurmalainen et al., 2011b; Hurmalainen and Virtanen, 2012; Virta-
nen et al., 2010; Weninger et al., 2012). While the benefits of the model
have been demonstrated in robust speech recognition, the problem of ac-
quiring effective dictionaries — especially for non-stationary noise — has
not been plausibly solved.

In this work, we have three goals. First, we propose a new method for
acquiring speech basis atoms from a training set. Thus far, the best recog-
nition accuracy in NMF-based recognition has been obtained by using a
large number of atoms, which makes the approach computationally expen-
sive. Therefore methods are needed for selecting smaller sets of atoms that
still manage to model speech and noise accurately. The proposed algorithm
yields sets of speech basis atoms that are much smaller than the previ-
ously employed exemplar sampling methods, which improves the practical
applicability of the framework through reduced computational costs.

Second, we propose a method to learn noise basis atoms directly from
noisy speech, rather than from pure noise sources. Previous studies show
that impressive separation and recognition results can be obtained when
accurate prior information on the noises is available. However, when the
pre-generated noise model is inaccurate or mismatching, the performance
of the methods degrades substantially (Gemmeke et al., 2011b). In our
earlier work we employed a technique that samples noise basis atoms from
the immediate context of an utterance, similar to the use of a voice activity
detector (VAD) to estimate the characteristics of noise during speech inac-
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tivity as employed in other noise-robust ASR approaches (Demuynck et al.,
2011). Nevertheless, in very noisy conditions a VAD will become unreliable,
and for non-stationary noises the estimate acquired during speech inactivity
may not match exactly to the noise observed during speech. It is also pos-
sible that no reliable source for noise-only segments is available in the first
place. In order to overcome these obstacles, we propose to use spectrogram
factorisation to learn the noise model using only the noisy speech obser-
vation itself as the source for the model. The factorisation algorithm will
construct its own noise atoms during separation without prior information
or assumptions on the noise events.

The final goal of the paper is to present the current state-of-the-art in
spectral factorisation based, single-stream noise robust ASR through the use
of spectrogram dynamics and binaural features. Temporal deltas and stereo
features are added to the model for increased separation and recognition
accuracy.

The rest of the paper is organised as follows: Section 2 describes the
spectrogram factorisation tools that are used as the basis for the proposed
methods. Section 3 proposes methods for speech and noise model acquisi-
tion and adaptation. In Section 4 we present an experimental set-up based
on the CHiME noisy speech corpus (Barker et al., 2012) used for public
evaluation in CHiME workshop in 2011 (Barker et al., 2011). In Section 5
we present our recognition results, obtained with both sparse classification
and front-end speech enhancement based recognition. Discussion and con-
clusions follow in Sections 6 and 7, respectively.

2. Factorisation-based separation and recognition

2.1. Non-negative spectral modelling

NMF-based separation takes place in a spectro-temporal magnitude
domain, where the temporal dimension consists of partially overlapping
frames, and the spectral dimension of a number of frequency bands. In
this work, the base unit used for additive modelling is a B×T spectrogram
window of B Mel bands and T consecutive frames. These are the dimen-
sions of each observation window in our system, and also of the atoms,
which form the basis for modelling the observation.

We can represent noisy speech as a sum of two parts; a speech model ŝ

consisting of speech atoms as weighted by activations xs,
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ŝ =
J∑

j=1

xs
ja

s
j, (1)

and a noise model n̂ using atoms an and activation weights xn,

n̂ =
K∑

k=1

xn
ka

n
k. (2)

The model uses J atoms for speech and K for noise. The total speech-noise
model for noisy observation y thus becomes

y ≈ ŝ + n̂ (3)

and the estimated noisy observation

ŷ =
J∑

j=1

xs
ja

s
j +

K∑

k=1

xn
ka

n
k, (4)

using all in all L = J + K atoms and weight coefficients. For now, we
treat basis atoms and the observation as generic feature vectors and ignore
their true spectro-temporal ordering, assuming only that they match. All
variables are assumed to be strictly non-negative.

The fundamental task is to find the activation vectors xs (length J) and
xn (length K), or together simply x, which optimise the model under a
chosen quality function. We optimise a cost function consisting of a sum of
two factors; first, the generalised Kullback-Leibler (KL) divergence between
the observation y and its approximation ŷ

d(y, ŷ) =
∑

(yi,ŷi)∈(y,ŷ)

yi log
yi

ŷi

− yi + ŷi (5)

and second, a penalty term for non-zero activations weighted elementwise
by a sparsity vector λ

f(x) = ||λ⊗ x||1 =
L∑

l=1

λlxl. (6)

The total cost function to be minimised becomes d(y, ŷ) + f(x). The
first factor measures spectral representation accuracy by generalised KL-
divergence, which has been found to perform better than e.g. Euclidean dis-
tance or other tested error measures in source separation (Virtanen, 2007).
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The second factor induces sparsity to the activation vectors, optionally using
a customisable weight for each individual basis atom or group of atoms.

2.2. Sliding window factorisation

In this work we have used two different approaches for processing utter-
ances longer than the window length T . The first is factorising the utterance
in overlapping, independent windows (Gemmeke et al., 2011b). To process
an utterance consisting of Tutt frames, we advance through it with a step
of one frame so that the first window covers frames [1 . . . T ], and the last
[Tutt − T + 1 . . . Tutt]. Consequently, we have W = Tutt − T + 1 overlap-
ping observation windows over the utterance. Each observation window
spectrogram is reshaped to a vector yw (w ∈ [1,W ]). Similarly, each basis
atom is reshaped to a vector al (l ∈ [1, L]). The vectorised observations
are collected in a matrix Y = [y1 . . .yW ], and the atoms in a basis matrix

A = [a1 . . . aL]. Then we solve for the L×W activation matrix X so that

Y ≈ AX, (7)

while minimising the cost function defined by equations (5) and (6). This
can be achieved by applying iteratively the update rule

X← X⊗
AT(Y/(AX))

AT1 + Λ
, (8)

where ⊗ is elementiwse multiplication and all divisions are also elementwise.
1 is a Y-sized all-ones matrix. Λ is a sparsity penalty matrix defined ele-
mentwise for each entry of X, consisting of a λ vector for each observation
window.

2.3. Convolutive factorisation

An alternative for handling temporal continuity over multi-window ob-
servations is non-negative matrix deconvolution (NMD), also known as con-

volutive non-negative matrix factorisation (Smaragdis, 2007) or convolutive

sparse coding (Wang et al., 2011; Wang, 2008). Whereas in the sliding
window approach (herefrom called simply ‘NMF’) each observation window
and its corresponding activation vector is an independent entity, in NMD
the whole utterance spectrogram Yutt is estimated jointly by all activations
via convolutive reconstruction. It has been applied earlier to speech sep-
aration (O’Grady and Pearlmutter, 2007; Smaragdis, 2007), and to noise-
robust speech recognition (Hurmalainen et al., 2011a,b; Vipperla et al.,
2011; Weninger et al., 2011).
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In this work, we use NMD as in (Hurmalainen et al., 2011a,b). In par-
ticular, we only use windows completely within the utterance spectrogram,
not ones with their last frames extending beyond Tutt as in some implemen-
tations. Therefore the activation matrix size is L×W like in sliding window
NMF. The update rule used for activations is

X← X⊗

∑T

t=1 AT
t

←(t−1)

[Yutt

Ψutt

]

∑T

t=1 AT
t

←(t−1)

1 + Λ

, (9)

where each At is a B ×L matrix containing frame t of all basis atoms, and
the estimated utterance spectrogram Ψutt is calculated by

Ψutt =
T∑

t=1

At

→(t−1)

X . (10)

Operators
←i

(·) and
→i

(·) denote a matrix shift, where the entries are moved left
or right by i columns, respectively.

2.4. Speech enhancement

Spectrogram factorisation methods can be used to enhance the input
signal before it is passed to a conventional recogniser back-end. Signal en-
hancement is performed by computing the estimated utterance spectrogram
Ψutt as in Equation (10) using the final X and A matrices. We also com-
pute an estimated speech spectrogram Ψs

utt by only using the basis atoms
and activation rows corresponding to speech. In sliding window NMF the
model is similar, except that we average the overlapping window estimates
by dividing the frame columns of Ψutt and Ψs

utt by the number of windows
contributing to each utterance frame, varying from 1 at the begin and end,
to T in the midmost frames.

The clean speech spectrogram estimate is obtained by filtering it in the
FFT domain. Because the factorisation model uses Mel-scale spectral reso-
lution, we map the estimates to FFT resolution by inverting the Mel filter-
bank transform. Denoting the original FFT → Mel scale transform matrix
by M, we determine its pseudoinverse M+, and multiply the estimated Mel
spectrograms by it from the left. A complex FFT-resolution spectrogram
Ỹutt of the original noisy utterance is computed at the temporal resolution
of the system. It is then filtered elementwise by the estimated speech/total
ratio to get complex speech spectrogram estimate Ỹs

utt as
7



Ỹs
utt = Ỹutt ⊗

M+Ψs
utt

M+Ψutt

. (11)

Finally, an enhanced signal is generated with overlap-add synthesis, which
inverts the spectrogram derivation.

2.5. Recognition via sparse classification

Instead of using factorisation for signal enhancement, the activations
can also be used directly for classification (Virtanen et al., 2010). In this
approach, dubbed sparse classification (SC), speech basis atoms are associ-
ated with sequences of speech labels such as HMM-states. The activations
of speech basis atoms serve directly as evidence for the associated speech
labels, and the combined speech activations yield a state likelihood matrix,
which is used in a hybrid HMM-based recogniser. In previous work it was
observed that recognition of noisy speech using sparse classification leads to
more accurate results than enhancement-based recognition (Gemmeke et al.,
2011b). We have also found the performance of SC to improve in some sce-
narios by replacing the canonical HMM-based labelling of exemplars with
atom-state mapping learnt from training set factorisation (Mahkonen et al.,
2011).

3. Speech and noise modelling

3.1. Overview

To separate sound mixtures, we need atoms to model the contained
single source components. In noise robust ASR this means models for pure
speech and pure noise. In this section we describe on a general level our
methods for generating speech and noise bases from training data, and
propose methods for generating noise bases adaptively from the context or
from the noisy utterance itself.

3.2. Pre-sampled exemplar bases

Both speech and noise bases can be acquired by sampling exemplars,
instances of spectrograms extracted from the training material as demon-
strated in our previous work (Gemmeke et al., 2011b; Hurmalainen et al.,
2011b). For speech, this can produce plausible models with high classifi-
cation capability. For noise, it is not guaranteed that similar sound events
will be encountered in actual use cases. In our work on AURORA-2, we saw
error rates increasing by up to 60% for mismatched noises (Gemmeke et al.,
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2011b; Hurmalainen et al., 2011a). Because a noise mismatch degrades the
effectiveness of speech-noise separation, and keeping a generic database for
all possible noise types would be infeasible, methods for context-sensitive
noise modelling are needed for practical applications.

3.3. Context-based noise sampling

To reduce the mismatch between observed noise events and the noise
basis, we can switch from using a generic noise database to sampling noise
exemplars from the nearby context of the utterances to be recognised. It
is generally plausible to assume that in ASR the input is continuous, and
that there are moments when the target voice is not active. Since exemplars
sampled from the immediate noise neighbourhood of utterances are likely
to contain sources similar to those in the noisy speech, we exploit these
moments without speech activity to update our noise model.

During development of our recognition system, we managed to reduce
the error rates by 10–20% by switching from random to context-based noise
sampling. The difference depends on the level of mismatch between train-
ing data and observed noise. Sampling the local noise context allows more
compact bases, lower computational costs, and generally a better match to
the noise encountered during speech. The context-based set-up uses anno-
tated ‘oracle’ endpointing to sample its atoms from known noise segments,
and exploits both preceding and following temporal context. Although in
this work oracle endpointing was used in this work to reduce the num-
ber of factors affecting the results and to keep correspondence to earlier
work, in (Hurmalainen et al., 2012) preliminary experiments are reported
on VAD-based noise segment selection and dynamic basis management for
continuous inputs.

3.4. Compact speech bases

Previously we have employed large, semi-randomly sampled speech bases,
which typically consist of 4000–5000 exemplars per speaker (Gemmeke et al.,
2011b; Hurmalainen et al., 2011b). Experiments have also shown, that fur-
ther gains in recognition accuracy can be achieved by increasing the num-
ber of exemplars. Conversely, a small basis sampled in this manner does
not model speech sufficiently well for sparse classification (Gemmeke et al.,
2011a). While the large, partially redundant exemplar bases allow accurate
modelling of observed speech, they may become difficult to acquire and
manage for ASR tasks employing a larger vocabulary.
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It is possible to use factorisation algorithms to learn the speech bases
from training material. This has been previously used for speech separation
(Smaragdis, 2007) and speech modelling for denoising (Vipperla et al., 2011;
Weninger et al., 2011). Unsupervised learning from diverse speech data will
ideally discover recurrent phonetic patterns, which can be used for speech
modelling. However, NMF-based algorithms may also separate the spec-
tra of speech patterns into multiple overlapping atoms, or learn short-term
events lacking the long temporal context preferred in sparse classification
and robust separation. In our preliminary experiments, too much frag-
mentation has typically taken place in large training set learning for its
application to speech basis generation.

To address the issue of basis sizes, in this work we propose modelling
speech using template atoms with more controlled acquisition and less re-
dundancy. The method is based on constructing an atom for each HMM
state in the recognition system, including its typical context. According to
HMM state labelling acquired via forced alignment, spectrograms of train-
ing data instances corresponding to the chosen state are gathered together,
and a characteristic template of the state and its neighbourhood is con-
structed by averaging. The exact procedure for the CHiME database used
in this study is described in Section 4.3.

The variant presented in (Weninger et al., 2011) learns a single basis
atom from concatenated instances of one word at a time, making it concep-
tually similar to the templates used in this work. The main difference lies
in our algorithm’s capability to model words longer than a single window.
By using multiple templates centered around one sub-word state at a time,
the system is able to model words of arbitrary length. The partially re-
dundant, state-centered templates can also model speed variations in long
word pronunciation by combining multiple activations of sub-word atoms
over time.

3.5. Learnt noise bases

Whereas speech training data is generally single-source and can be used
as-is to model atomic speech events, noise training data and observations of-
ten contain multiple overlapping sources. Therefore learning the noise bases
either from noise-only segments or noisy mixtures by applying factorisation
algorithms may help us to discover recurrent single-source noise components
from mixed signals. In the previously mentioned NMD experiments (Vip-
perla et al., 2011; Weninger et al., 2011), bases were learnt from segments
known to contain only noise. The difference between sampled and learnt
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atoms primarily depends on the nature of the data. If the co-occurrence of
noise sources is low, we can expect the bases to become fairly similar. Some
fragmentation of noise events may take place in NMD learning if too many
atoms are trained with insufficient sparsity constraints on activation. For
strongly multi-source inputs, learning will become more favourable due to
its ability to discover atomic sources from mixtures.

A different kind of scenario arises, if no source of pure background noise
is available. In this case, we still have an option to learn and separate likely
noise artefacts from the noisy utterance itself. Given a sufficiently accurate
speech basis, we can factorise a noisy utterance by including self-learning
noise atoms in the basis. In this approach, the speech basis is kept fixed,
and only the noise part is updated on the fly.

Applying learning to sliding window NMF has some theoretical pitfalls,
primarily due to having to learn multiple shifted versions of all noise events.
A large learnt basis would be required, which in turn increases the risk of
modelling speech with it as well. Preliminary experiments have not pro-
duced any promising results on this variant. The NMD model, on the other
hand, is well suited for noise learning. Sparsity and a small number of noise
atoms act as the restricting factors for isolating new noise events.

Basis learning can be included in the procedure given in Section 2.3.
After each iteration of the activation update (9), Ψutt is re-estimated using
Equation (10), and the basis is in turn updated by

At ← At ⊗
Yutt

Ψutt

→(t−1)

X

T

1 ·
→(t−1)

X

T
∀t ∈ [1, T ]. (12)

Learning can be performed for all atoms in the basis or only for a subset of it.
In the latter, only the entries of basis and activation matrices corresponding
to the atoms to be updated are included in the equation arrays. Afterwards
all modified atoms are reweighted to unitary 2-norm.

Ideally, any parts of the spectrogram which cannot be accurately ex-
plained with speech exemplars will be captured by the online-learnt noise
atoms. This requires some careful calibration to ensure that co-occurring
speech features are not captured together with the noise. The primary tool
for this is the sparsity weight vector λ described in Section 2.1. However, we
assume that even cautiously applied noise learning can detect and remove
the largest instances of noise, thus filtering out the most harmful artefacts.
This is a highly desirable goal for newly encountered noise events, for which
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we have no prior information.

4. Experimental set-up

4.1. CHiME corpus

For our experiments, we use the CHiME noisy speech database, pub-
lished in 2010 to address the challenges posed by non-stationary multi-
source noise environments (Barker et al., 2012). For its speech content, the
database uses the GRID corpus, where 34 different speakers read simple six
word command sentences with linear grammar (Cooke et al., 2006). Each
utterance follows the syntax verb-colour-preposition-letter-digit-adverb. The
word classes have cardinality of 4/4/4/25/10/4, respectively. Recognition
performance is scored by the percentage of correctly classified letter and
digit keywords. A baseline recogniser employing HTK binaries (Young et al.,
2005) with acoustic models trained on clean speech is provided.

The database consists of following sets:

1. Training speech: 500 clean utterances per speaker

2. Training noise: 6+ hours of pure background noise

3. Development set: in total 600 utterances from all speakers, repeated
over six SNRs ranging from +9 to -6 dB at 3 dB steps.

4. Test set: As development set, but with different utterances

Test and development utterances are provided in a long noise context as
‘embedded’ files with the utterance locations annotated. Development ut-
terances are also available as clean speech. By ‘clean’ we denote audio
without additive noise. All CHiME data is convolved with a room reverber-
ation response, so none of the utterances are truly clean like their original
GRID counterparts. All audio is binaural and sampled at 16 kHz.

Additive noise consists of actual household sounds, including appliances,
family members, impacts and other sound events. Most of the events are
momentary and highly varied, in many cases unique. Different SNRs have
been generated by selecting noise segments which produce the desired dB
ratio by themselves without scaling. Therefore all SNR-versions of the same
development/test utterance contain different noise events.

4.2. Feature space

The feature space used in our experiments consists of magnitude spec-
trogram segments as described in Section 2.1. The Mel filterbank covers
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frequencies from 64 to 8000 Hz, divided evenly on a Mel scale with B bands.
For the temporal resolution of frames, lengths between 8 and 256 ms have
been previously studied (Smaragdis, 2007), and window shift usually varies
between 10 and 32 ms. Often a longer frame is used for enhancement
than for classification. However, we fix the frame parameters to 25/10 ms
for compatibility with CHiME default models and sufficient resolution for
sparse classification. In separation and enhancement, it appears that the
total duration of atoms, measured in physical time, is more important than
temporal resolution within the window (Smaragdis, 2007).

We have previously found repeated evidence for the optimality of window
length of 20–30 frames (215–315 ms) for robust enhancement and recogni-
tion (Gemmeke et al., 2011b; Hurmalainen et al., 2011a,b). Durations used
in other work include 70 ms (Vipperla et al., 2011), 80 ms (Wang, 2008),
176 ms (Smaragdis, 2007), 224 ms (O’Grady and Pearlmutter, 2007) and
256 ms (Weninger et al., 2011, 2012). Based on previous results and a grid
search on the development data over a range of T values, we set the NMF
window length to 20 frames (215 ms), but use 25 frames (265 ms) for NMD,
which appears to favour slightly longer context (Hurmalainen et al., 2011a).

We have achieved improvements by increasing the number of Mel bands
from 26 (Hurmalainen et al., 2011b) to 40 (Hurmalainen and Virtanen,
2012). For even larger numbers of frequency bands, the gains were negligi-
ble. Therefore B was set to 40 for these experiments.

The factorisation algorithms support processing signals using stereo fea-
tures by concatenating the features pertaining to each individual channel.
In previous work we observed that the use of stereo features only has a
minor impact on the separation quality, while it doubles the data size and
computational costs (Hurmalainen and Virtanen, 2012). Therefore the re-
sults were mostly computed using mono features averaged in the spectral
magnitude domain. However, in the same study we found out that aug-
menting the static features with temporal derivatives (‘deltas’) similarly as
in conventional GMM-based modelling (Young et al., 2005) does improve
the recognition rates. Even though the long temporal context of atoms
manages to model spectral behaviour over time to some extent by itself,
adding explicit delta features will emphasise modulations, which contain
significant information on speech and noise events. To generate enhanced
signals and recognition results reflecting the current best performance of
our framework, stereo features and temporal dynamics as in (Hurmalainen
and Virtanen, 2012) were included in the final experiment of this work.
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4.3. Basis generation

4.3.1. Speech

In this work, all our speech bases are speaker-dependent, and the knowl-
edge of test speaker identity is exploited by selecting the corresponding
speaker’s basis. We use two variants; sampling large bases from the train-
ing material as described in Section 3.2, and using compact template bases
introduced in Section 3.4.

The first method is to sample training utterances semi-randomly (Hur-
malainen et al., 2011b). For each speaker, the 500 training utterances are
split into 300 for basis generation and 200 for learning the mapping be-
tween speech exemplars and speech labels. The utterances selected for basis
generation are sampled by extracting windows with a random step of 4–8
frames. The resulting, densely sampled sets of more than 10000 exemplars
per speaker are reduced to 5000 while maximising the flatness of included
word distribution. This mainly reduces the amount of exemplars from the
originally overrepresented non-keyword classes that contain only four word
options each. However, no attempt is made to control the exact position-
ing of exemplars within utterances. They may cover word boundaries, thus
modelling specific word transitions.

The second method is based on constructing compact bases of state-
centric speech templates. As in the provided CHiME recogniser models,
our framework uses 250 speech states (4–10 states per word) to label speech
basis atoms. For each state in the system, we select all instances of the
word, which contains the chosen state. Based on a forced alignment by the
CHiME recogniser, the words are positioned in a length T window with the
target state in its midmost frame. We then take the median within each
single spectrogram bin over all word instances to generate a prototype of
each state and its immediate context. The process is illustrated in Figure 1,
where template construction is shown for the third state (out of six) of the
word ‘green’.

The midmost frames, always representing the nominal state, are most
likely to match each other in the spectral domain. Therefore the spectral
model is also most consistent in the middle of a template. As the temporal
distance increases towards template edges, there is higher variation in the
spectrogram content due to differences in pronunciation style, speed and
coarticulation. Consequently, the edges fade out when a median is taken
over instances. Especially, multiple neighbouring words candidates all have
different spectrogram profiles. Consequently the median template model
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Figure 1: Forming an atom template for a speech state and its neighbourhood. Training
data spectrograms containing the state are placed in a B × T window, and bin-wise
median is taken over the instances. In this example, the third state of word ‘green’ is
modelled with a 40 × 25 template. In addition to the state itself, a large part of the
word is captured as well, thus increasing the temporal context being modelled.

will generally remove the fragments of other words and continuity over word
boundaries. For example, in the last training data instance in Figure 1 we
can see a high-pitched fricative from a preceding word, whereas very little
spectral activity remains in the first frames of the resulting template.

The compact bases cannot model all possible temporal alignments re-
quired by independent NMF windows, but they are suited for NMD’s tem-
poral model, which can find the best locations for a few temporally sparse
activations. By losing word transition modelling and replacing redundant
exemplars with median templates, the basis size is reduced to 1/20th of the
large NMF bases.

4.3.2. Noise

In this work, we employ three different methods for modelling the addi-
tive, non-stationary noise in CHiME data:

1. Context-based sampling of the utterance’s noise neighbourhood as
presented in Section 3.3 and our earlier CHiME experiments (Hur-
malainen et al., 2011b). The ‘embedded’ wave files are sampled to
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both directions from the target utterance, and exemplars are extracted
at random intervals of 4–7 frames from segments containing only noise.
As before, we use 5000 noise exemplars for the NMF experiments.
With these parameter settings, approximately 4.5 minutes of noise
context got sampled into the basis (from 5–7 minutes of overall au-
dio context with the skipped neighbouring utterances included). The
nearest available noise segments were used so the amount of forward
and backwards context was roughly symmetric, except at the ends of
embedded recording sessions where only one direction is available.

2. The same algorithm, but used to generate a small noise basis of 250
exemplars for NMD. Because less temporal redundancy is required in
the NMD model, the sampling interval is increased to 10–15 frames.
Still, the overall context covered is reduced to approximately a tenth
in terms of physical time span (∼ 30 seconds of pure noise data).

3. Finally, we study noise modelling using neither context nor prior
knowledge. Instead of passing a pre-generated basis to the factori-
sation algorithm, we randomly initialise ⌈Tutt/T ⌉ noise basis atoms
— just enough to cover every frame of an utterance once — and up-
date them in the NMD iteration loop as described in Section 3.5. The
on-line updated atoms will adapt themselves to spectrogram patterns
not matching to the speech basis, thus learning and modelling noise
events found in the mixture.

The generic background training material was not used in any of these
experiments. While potentially a sound option in some scenarios, it is de-
batable if a universal noise basis can be modelled for real world use. For
reasons pointed out in Section 3.3, we favour context-aware noise modelling
to improve the adaptivity to new noise environments.

4.3.3. Basis weighting

Earlier we have been using two-way normalisation of the basis. Each
vectorised atom spectrogram was scaled to unitary Euclidean norm. In
addition, the Mel band weights of the full basis were scaled so that the
Euclidean norms over all spectral content within each band were equal.
To satisfy both conditions together, ten alternating normalisation rounds
were performed iteratively for an approximate solution. (Gemmeke et al.,
2011b). In this work, we still normalise individual atoms as is preferable
for the NMF update rules. However, fixed weights are acquired for Mel
bands by gathering all training speech spectrograms, and computing weights

16



which equalise the Euclidean norms over their Mel band content. Using a
fixed band weighting profile stabilises and simplifies the model, because the
two-way normalisation step can be omitted, and the weighting no longer
changes in every noise basis update. When various band weighting methods
were compared, the fixed, speech-normalising profile was found to perform
comparably to two-way normalisation (Hurmalainen and Virtanen, 2012).

4.4. Factorisation

Activation matrices were computed using the update rules described in
Section 2. We used CUDA GPU hardware, MATLAB and the GPUmat
toolbox (The GP-You Group, 2010) for computation. Single precision vari-
ables and 300 iterative updates were used in all experiments.

In many previously reported implementations, the sparsity parameter
λ has been set to a fixed value. However, its sparsifying effect is related
to the 1-norms of the basis atoms, which will vary as a function of the
dimensionality of the feature space. To make the level of sparsity more
independent of the window parameters that determine the dimensionality,
the penalty weights were set proportionally to the mean of the 1-norms
of basis atoms. By conversion from the fixed parameters used in earlier
experiments (Hurmalainen et al., 2011b; Hurmalainen and Virtanen, 2012),
the sparsity value governing speech basis atoms was set to 0.1 of the mean of
norms, and sparsity of noise basis atoms to 0.085. In basis-learning NMD,
noise sparsity was increased after brief development data experiments to 0.1
to avoid bias toward the freely adapting atoms and consequently modelling
speech with them as well.

4.5. Decoding

All our recognition methods are fundamentally based on the CHiME
baseline recogniser and its language model. Variants for enhancement and
sparse classification are employed as follows.

4.5.1. Signal enhancement

In signal enhancement, we synthesise the filtered spectrogram as de-
scribed in Section 2.4. The enhanced wave files are recognised using HVite
and two models with different training. First, we use the default CHiME
models trained on reverberated, ‘clean’ training files to produce results com-
patible with the baseline system. The second system is trained on multi-
condition data consisting of the 17 000 clean utterances and the same utter-
ances mixed with random training noise. Mean-only maximum-a-posteriori
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(MAP) adaptation is used for generating the speaker-dependent models.
These models are exactly the same as used in (Weninger et al., 2011) and
later in our multi-stream recognition experiments (Weninger et al., 2012).

Neither of these models is retrained on speech data processed with our
enhancement framework. Such a task would be laborious, considering that
the enhanced output will differ slightly for all factorisation parameters, and
that there is no standard training material with noise context as required
by our adaptive algorithms. Therefore we only employ generic clean- and
multi-condition trained models. A benefit of this choice is that earlier results
exist for both models, allowing direct comparison.

In closely integrated recognition systems with matching spectral param-
eters, it would be possible to use the enhanced Mel scale spectrogram by
itself for deriving the MFCC features. However, our separation framework
and the two external recognisers all use slightly different parametrisation
for their spectral features (e.g. Mel band count and preprocessing filters).
Therefore enhanced speech was passed as time domain signals, which are
universally accepted by all external recognisers regardless of their internal
spectral representation.

4.5.2. Sparse classification

For direct classification via speech basis atom weights, we use label ma-
trices representing the probabilities of different speech states over atom
duration (Virtanen et al., 2010). In canonical labelling, labels are acquired
directly from a forced alignment, and the matrices are binary so that for
each frame of a speech basis atom only the nominal state is active with
weight 1.

However, especially when using speech templates without transition con-
text, some basis atoms may in practise match several different words in the
CHiME state model. While phonetically similar, the words are denoted by
different states in the system. For example, the first phones of “please” and
“place” appear essentially the same. In order to reduce the risk of misclas-
sification due to incorrect or overly strict label associations, we learn the
mapping from activations to states by factorising the 200 training utter-
ances not used for the basis, and calculating the mapping matrices using
ordinary least squares (OLS) regression (Mahkonen et al., 2011). The non-
binary conversion matrices acquired this way are able to model the multiple
word associations of some speech atoms, improving the results in scenarios
with more phonetic ambiguity (Hurmalainen et al., 2011b).

Preliminary experiments showed that OLS mapping improved the re-
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sults of small basis experiments, thus this technique was used for the final
sparse classification results. For large bases with static features, the re-
sults were mixed, with a small overall decrement in average score. With
dynamic features included, the results of mapping were uniformly detri-
mental. Therefore no learnt mapping was used for large basis NMF ex-
periments. The varying benefits of OLS are explained by the accuracy of
canonical labels, and the amount of training data. For the large bases with
full coarticulation context, the canonical labelling is already reasonably ac-
curate, and no improvements were achieved by learning the mapping from
limited training material (200 speaker-dependent utterances). Conversely,
the templates constructed from multiple instances have indefinite labels to
begin with, and better mapping can be learnt via training factorisation.

The utterances are decoded as described in (Hurmalainen et al., 2011b).
In NMF decoding, we normalise the activation vectors of all windows to uni-
tary sum. In NMD’s temporal model, the activity levels may vary greatly
across windows so no normalisation is applied to the basis activations. The
resulting likelihood matrix is passed to a modified CHiME baseline recog-
niser, which performs the final recognition using the generated likelihoods
and the default CHiME language model.

5. Evaluation

5.1. Modelling, factorisation and decoding methods

To compare the different methods for modelling speech and noise, the
test set was factorised using three models:

1. Sliding window NMF, 5000 speech and 5000 sampled noise exemplars,
T = 20 (‘Large basis NMF’)

2. NMD, 250 speech atoms, 250 sampled noise exemplars, T = 25 (‘Small
basis NMD, sampling’)

3. NMD, 250 speech atoms, online-learnt noise model, T = 25 (‘Small
basis NMD, learning’)

The 5000-atom sampled speech bases (used in model 1) and 250-atom tem-
plate bases (models 2 and 3) are described in Section 4.3.1. The three noise
models correspond to those described in Section 4.3.2.

Previously, we have got mixed results for applying NMD to large bases
(Hurmalainen et al., 2011a,b). For CHiME data, no improvements were
seen, while the computational complexity increases significantly. The large
bases seem to contain sufficient temporal redundancy for NMF, which in
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Table 1: Test set results for different factorisation configurations: large basis NMF,
small basis NMD with sampled noise, and small basis NMD with online-learnt noise.
All are decoded using feature enhancement (FE) with clean-trained (CHiME) and multi-
condition trained (MC) models described in Section 4.5, and sparse classification (SC).
Unenhanced baseline scores and two alternative enhancement systems are also shown.

SNR (dB) 9 6 3 0 -3 -6 avg

Baseline scores of FE recognisers (unenhanced)
CHiME 82.4 75.0 62.9 49.5 35.4 30.3 55.9

MC 91.3 86.8 81.7 72.8 61.1 54.5 74.7

Large basis NMF
FE, CHiME 92.2 88.8 85.8 80.5 73.3 61.4 80.3

FE, MC 92.8 92.3 90.7 87.6 82.2 75.7 86.9
SC 92.4 90.4 90.0 88.0 79.8 73.8 85.8

Small basis NMD, sampling
FE, CHiME 91.3 87.0 83.5 76.2 68.2 56.3 77.1

FE, MC 93.0 91.2 90.0 85.2 79.0 72.9 85.2
SC 89.8 89.0 84.3 81.8 73.9 65.8 80.8

Small basis NMD, learning
FE, CHiME 87.7 83.2 77.2 68.8 60.0 55.4 72.0

FE, MC 91.3 89.8 86.2 80.0 74.2 72.0 82.2
SC 87.8 83.5 79.8 75.0 66.4 60.6 75.5

Alternative NMD enhancement results
EURECOMa 84.6 79.3 69.4 61.8 50.4 43.2 64.8

TUMb 90.6 88.3 87.7 84.1 79.2 75.6 84.2
a Vipperla et al. (2011)
b Weninger et al. (2011)

turn produces better results via multiple averaged estimates. Regarding
compact bases, the 250+250 atom set-up was tested using both sliding
window NMF and NMD. The scores were uniformly worse for NMF than for
NMD (0.4–3.5% absolute, 2–20% relative decrement in recognition rates),
confirming that the sliding window model is not as well suited for small
bases with insufficient temporal alignment variants over the atoms.

All activation matrices acquired from different factorisation types were
used for enhancement and recognition with the two GMM-based recognisers;
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clean-trained original CHiME models (‘CHiME’) and the multi-condition
trained model (‘MC’), and also recognised using sparse classification (‘SC’).
The results are shown in Table 1. The unenhanced baseline performance
of the external recognisers is shown on the first rows. Two alternative im-
plementations for NMD enhancement, ‘EURECOM’ (Vipperla et al., 2011)
and ‘TUM’ (Weninger et al., 2011) are also included on the last rows for
comparison.

Table 2: Large basis NMF results for static-only mono features, and features with tem-
poral dynamics and stereo channels included. Feature space extensions are applied in-
dividually as well as together. Results are shown for multi-condition trained feature
enhancement (FE, MC), sparse classification (SC), and three external system combina-
tions reflecting state-of-the-art results on CHiME data.

SNR (dB) 9 6 3 0 -3 -6 avg

Mono, static features only
FE, MC 92.8 92.3 90.7 87.6 82.2 75.7 86.9

SC 92.4 90.4 90.0 88.0 79.8 73.8 85.8

Stereo, static features only
FE, MC 93.2 92.2 91.0 87.8 82.4 76.3 87.1

SC 92.4 90.4 90.2 88.4 80.7 73.5 85.9

Mono, static and dynamic features
FE, MC 93.3 92.1 90.0 87.7 83.1 76.6 87.1

SC 93.0 91.5 90.8 89.2 82.2 76.3 87.2

Stereo, static and dynamic features
FE, MC 92.9 92.3 90.7 88.2 83.4 77.3 87.5

SC 92.8 91.7 91.1 89.3 83.4 78.6 87.8

Alternative systems for CHiME data
FAUa 95.1 92.6 92.8 88.3 83.3 79.8 88.7
NTTb 95.8 94.2 93.7 92.3 88.3 85.6 91.7

TUM/TUTc 96.4 95.7 93.9 92.1 88.3 84.8 91.9
a Maas et al. (2011)
b Delcroix et al. (2011)
c Weninger et al. (2012)
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5.2. Derivative and stereo features

As an additional evaluation, we recomputed the large basis NMF re-
sults while including binaural features and temporal dynamics as in (Hur-
malainen and Virtanen, 2012). In stereo processing, features were extracted
for both channels separately and treated like another set of spectral bands
in feature vectors. Temporal dynamics were modelled by applying a delta
filter, spanning two frames forward and backwards, to the static magnitude
spectrograms. The newly acquired difference spectrogram was split into two
parts, one containing positive delta values and another the absolute values
of negative entries in order to keep the features non-negative. In other
words, the two derivative spectrograms captured event on- and offsets, re-
spectively. Both were concatenated with the static magnitude features of
atoms and observations for separation. However, after acquiring the activa-
tion weights, only static magnitudes were used for generating the enhanced
spectrogram and signals.

The results for multi-condition trained enhancement (‘FE, MC’) and
sparse classification (‘SC’) using extended feature spaces are shown in Ta-
ble 2. Stereo features and temporal dynamics are first applied each alone
and then together. The scores are compared to static-only mono features,
and three alternative systems presented in recent literature (Delcroix et al.,
2011; Maas et al., 2011; Weninger et al., 2012).

6. Discussion

6.1. Findings

From the results in Table 1, showing the evaluation of different speech
and noise modelling methods, we can make the general observation that
larger bases and more context information produce better results. This is
theoretically sound — the more information available, the better models
for individual sources can be constructed. In sparse classification, there is
approximately a 5% drop (absolute) in average recognition rate from large
basis NMF to small basis NMD, and further to no-prior noise learning.
Lower accuracy can already be observed in the cleanest conditions, suggest-
ing that the small bases cannot classify words as accurately as the large
bases. However, even the last SC variant performs at least 31%, and on av-
erage 44% better than the original CHiME recogniser, measured by relative
word error rate reduction.

Interesting results can also be seen in the recognition rate differences
between SC and the enhanced signal recognisers. We notice that SC nearly
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always exceeds the clean-trained CHiME recogniser, while the MC recog-
niser is mostly better than SC. Especially the small speech basis experiments
favour the GMM-based recogniser with robust training. Only 1.7% reduc-
tion can be observed in the average score from the 10 000 atom NMF basis
to 500 atom NMD. Another 3.0% decrement takes place, when all prior
information on noise is removed. Still, enhancement using compact speech
modelling and blind noise learning is able to reduce the error rate by up to
38% (relative) in the noisiest end, and by 30% on average in comparison to
the same recogniser with unenhanced signals.

The results are also compared to other NMD-based enhancement sys-
tems tested on CHiME data. We observe that all our denoising algorithms
perform better than the EURECOM approach, where noisy speech was
modelled using 100 speech atoms, 100–200 noise atoms from the background
data, and 20 atoms from the local context (Vipperla et al., 2011). The re-
sults were scored using the standard CHiME recogniser, which therefore
should be used as the point of comparison. It is likely that a part of the dif-
ference in recognition rates arises from the temporal context, which in our
experiments is 20–25 frames (215–265 ms) in comparison to EURECOM’s
4 frames (70 ms).

The NMD enhancer used in TUM’s CHiME experiments (Weninger
et al., 2011) and in our joint work (Weninger et al., 2012) employed 51
speech atoms, 51 noise atoms learnt from the general background, and 256
ms window length. The temporal resolution was 64/16 ms, and the spec-
tral resolution full 1024 FFT bins. The recogniser was the same as the MC
model used in this work. We notice that the large basis NMF enhancer per-
forms better than the TUM set-up. Small basis NMD with sampled noise
works better in all but the lowest SNRs, and NMD without a noise model
only at the highest SNRs. Especially the second case gives some insight
to the two systems, which are in many ways similar but also differ in their
parametrisation and modelling, primarily in spectral and temporal resolu-
tion. It should be inspected further, whether the resolution or the basis
generation method plays a larger role in enhancement quality. Differences
in the level of sparsity may affect the quality as well.

The final experiment (Table 2) on extended NMF feature spaces reveals
more aspects regarding the choice between sparse classification and sig-
nal enhancement. Whereas in both static-only set-ups (mono and stereo)
features enhancement works better, we notice that including dynamic in-
formation improves the SC quality more, making it in turn slightly better.
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However, the differences are small, so the true order probably depends on
implementation details such as external back-end training and the accuracy
of atom-to-state mapping in SC. Nevertheless, both recognition methods
benefit from dynamic features in separation, especially in the noisy end.
The contribution of magnitude-domain stereo information is significantly
smaller.

Three alternative recognition systems were also included in Table 2 for
comparison. The first one (Maas et al., 2011) is a binaural signal enhance-
ment front-end for a robust Sphinx-4 recogniser employing triphone HMMs.
Its noise robustness is generally similar to the proposed system, while its
initial clean end recognition rate appears better, probably due to more so-
phisticated back-end modelling. The NTT approach (Delcroix et al., 2011)
combines multiple enhancement and model compensation steps to simul-
taneously exploit spectro-temporal and spatial information for separation.
The TUM/TUT system, also combining multiple streams, consists of GMM
recognition, a BLSTM network and a word-spotting version of our sparse
classifier (Weninger et al., 2012). This multi-stream system managed to
surpass all of its individual streams, and produced the best known average
results on CHiME data at the time of writing. We can conclude that system,
feature and stream combinations are currently producing state-of-the-art re-
sults in noise robust ASR. Factorisation-based methods are well suited for
use in such combinations, but other features such as spatial information
should also be considered in an efficient overall solution.

6.2. Computational complexity and costs

Regarding the computational complexity of factorisation-based speech
and noise modelling, we can consider three aspects:

1. Training data requirements

2. Memory allocation

3. Computational costs

We have observed that a large basis of exemplars provides the best accu-
racy in modelling, and consequently the best recognition results. However,
constructing a 5000+5000 atom basis using the approach taken in our NMF
experiments requires significant amounts of training data, and for a larger
vocabulary the requirements for similar coverage would increase further.
Explicit modelling of large word segments and word transitions would re-
quire even larger bases, which would only be feasible with dynamic basis
management. Fortunately, we have shown that both speech and noise bases
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can be reduced to a fraction of this size with only a modest decrement in
recognition rates. On the other hand, the best results (smallest decrements)
were observed using signal enhancement, where some of the training and
modelling complexity is shifted on an external back-end.

The memory requirement for NMF bases is B · T · L scalars, which
for 10 000 single-precision 40 × 25 atoms is 40 megabytes. The amount
can be reduced significantly by more efficient basis construction, phonetic
modelling, and shifting the classification to a conventional recogniser. For
example, our 500-atom bases only require 2 megabytes, and with learnt
noise atoms even less. Therefore the memory requirements of exemplar-
based factorisation are not unbearable for modern devices, including mobile
ones.

The computational costs of NMF depend on data sizes, algorithms and
naturally the hardware platform. On a dual core E8400 1333 MHz CPU,
MATLAB implementation of the large basis (5000+5000 atoms) factori-
sation takes on average 80.8 seconds per utterance (46× audio duration).
On a consumer-grade GeForce GTX260 graphics card, the same compu-
tation takes 7.0 seconds per utterance (4.0×). When the basis is reduced
to 500 fixed atoms (16× reduction on data size, taking into account the
increased window length), NMF execution times become 5.5 seconds (3.1×
audio duration) and 0.62 seconds (0.35×) for the described CPU and GPU
platforms, respectively. In CPU computing, the speedup factor is close to
linear, whereas GPU computing scales better to large arrays due to heavy
parallelisation.

Using NMD for factorisation complicates the comparisons. While fixed
basis NMF can be computed trivially with elementary matrix operations
which also parallelise directly, the NMD speed is highly dependent on al-
gorithm design. The current small basis NMD implementation takes 3–6
seconds per utterance on a GPU, depending on whether basis learning is
included. However, the same algorithm for a large basis takes approxi-
mately 10 seconds. This highly nonlinear correspondence to problem size
illustrates, how the increased computing costs of NMD arise primarily from
the overhead of additional algorithm steps. Code optimisation and possibly
low-level implementation instead of interpreted MATLAB code would be
beneficial in finding out the true performance of NMF and NMD. Neverthe-
less, it appears ultimately feasible to run the proposed set-ups in real time
on parallel platforms.
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7. Conclusions and future work

We presented several alternative methods for modelling speech and noise
in factorisation-based speech recognition. Local context was used for adap-
tive noise modelling instead of acquiring a universal noise model from generic
training data. The best results were achieved using a large exemplar-based
basis consisting of actual instances of training and observation data. Mean-
while, we also demonstrated how significantly smaller bases can be employed
for the task with only small losses in quality compared to the reduction fac-
tor in model size. Furthermore, we managed to model non-stationary multi-
source noise using online-updated atoms without any prior information or
context for the noise.

We found additional support for the optimality of 200–250 millisecond
window length for both of our recognition methods; signal enhancement
for external back-ends and sparse classification based on exemplar labels.
When using large bases and dynamic features in addition to static spec-
tra, we achieved better results by sparse classification than by enhance-
ment. However, if the speech bases are reduced to generic templates with-
out word transitions or pronunciation variance, signal enhancement for a
multi-condition trained GMM recogniser performed better.

It appears that the current factorisation framework can produce plau-
sible separation results for well-modelled data. Therefore even more effort
should be spent on learning compact yet accurate speech and noise mod-
els for diverse use cases. The different noise acquisition methods (univer-
sal, local context, in-place learning) should be combined to maximise the
model accuracy. Preliminary experiments suggest that such combination
is indeed feasible, and a noise basis can be updated adaptively in continu-
ous recognition using voice activity detection to locate noise-only segments.
Recognition rates comparable to informed noise segment sampling have been
achieved by using VAD-based basis adaptation without exploiting any look-
forward context (Hurmalainen et al., 2012). For speech, the variations in
pronunciation can be possibly handled via clustering or other techniques,
which are able to represent the spectro-temporal space volumes with a small
number of atoms per phonetic pattern. Switching from word-based to pho-
netic state models will be eventually needed for large vocabulary recogni-
tion.

One important feature type not exploited in this work is the spatial
information available in binaural signals. It alone can act as a powerful sep-
aration method. Thereby introducing time-domain phase information to the
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framework might give significant improvements in multichannel recognition.
Regarding final recognition accuracy, there is a lot of potential in multi-

stream algorithms, which combine enhancement, sparse classification, and
complementary methods (Weninger et al., 2012). Different system combi-
nations should be tested for better joint recognition rates. Especially the
clean speech recognition rate, which in our standalone sparse classification is
still suboptimal, can be improved by introducing alternative streams to the
recogniser. Finally, it would be beneficial to optimise the practical imple-
mentation of NMF/NMD algorithms to best exploit current hardware, and
thus allow actual deployment of separation-based robust ASR to everyday
applications.
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