
tes
y.
n

al
f a

ti-
In

ter

-
ed
rt,
re
r-
ed
ral
ted
e.

eal
ub-

the
e”
al
ld

Automatic Transcription of Musical Recordings

Anssi Klapuri1, Tuomas Virtanen1, Antti Eronen1, Jarno Seppänen2

1Tampere University of Technology, P.O.Box 553, FIN-33101 Tampere, Finland
2Nokia Research Center, P.O.Box 100, FIN-33721 Tampere, Finland

{klap,tuomasv,eronen}@cs.tut.fi, jarno.seppanen@nokia.com
Abstract

An automatic music transcription system is described which is
applicable to the analysis of real-world musical recordings.
Earlier presented algorithms are extended with two new meth-
ods. The first method suppresses the non-harmonic signal com-
ponents caused by drums and percussive instruments by
applying principles from RASTA spectrum processing. The
second method estimates the number of concurrent voices by
calculating certain acoustic features in the course of an itera-
tive multipitch estimation system. Accompanying audio dem-
onstrations are at http://www.cs.tut.fi/~klap/iiro/crac2001.

1.  Introduction

Transcription of music is defined to be the act of listening to a
piece of music and of writing down the musical notation for the
sounds that constitute the piece. The scope of this paper is the
automatic transcription of the harmonic and melodic parts on
real-world musical recordings. Until these days, automatic
transcription systems have fallen clearly behind skilled musi-
cians in performance. Some progress has taken place in recent
years, however. See [1] for a review of transcription systems.

We have earlier proposed signal processing methods for
detecting the beginnings of discrete acoustic events in musical
signals [2], and for estimating the multiple pitches of concur-
rent musical sounds [1]. The multipitch estimator was shown to
work reliably in rich polyphonies and to outperform the aver-
age of ten trained musicians in musical interval and chord iden-
tification tasks. However, the number of concurrent sounds was
known in beforehand and noisy operating conditions were not
properly addressed. The idea of this paper is to combine the
mentioned algorithms and to add what is needed to extend the
application area of the system to realistic musical signals.

Overview of the system is shown in Figure 1. The two new
algorithms to be proposed in this paper belong to the multipitch
estimation stage, and are indicated by rounded boxes in the
bottom panel of Fig. 1. Essentially, two modules had to be
added to apply the earlier presented multipitch estimation algo-
rithm in real musical signals. The first, noise suppression refers
to the suppression of all signal components that do not belong
to the harmonic and melodic parts, in practice, drums and per-
cussions. Secondly, number of concurrent voices must be esti-
mated to stop the iterative multipitch estimation algorithm.

2.  Overview of earlier presented algorithms

2.1   Onset detection

The onset detector has been originally proposed in [2]. The
algorithm employs bandwise processing, building upon the

idea that incoming energy at some frequency band indica
the beginning of a physical event that is producing the energ

A fundamental problem in the design of an onset detectio
algorithm is distinguishing genuine onsets from gradu
changes and modulations that take place during the ringing o
sound. As a solution for this problem, we proposed differen
ating the logarithm of the amplitude envelopes at each band.
this case, oscillations in the amplitude envelope do not mat
too much after the sound has set on.

2.2   Multipitch estimation

Multipitch estimation forms the core of the transcription sys
tem. The algorithm consists of two main parts that are appli
in an iterative succession, as illustrated in Fig. 1. The first pa
predominant pitch estimation, refers to the crucial stage whe
the pitch of the most prominent sound is estimated in the inte
ference of other harmonic and noisy sounds. This is achiev
by utilizing the harmonic concordance of simultaneous spect
components. In the second part, the spectrum of the detec
sound is estimated and linearly subtracted from the mixtur
This stage utilizes the fact that the spectral envelopes of r
sound sources tend to be continuous. The estimation and s
traction steps are then repeated for the residual signal.

3.  Noise suppression

Acoustic noise suppression has been extensively studied in
domain of speech processing. Here the definition of “nois
differs considerably from that in speech processing. Music
recordings practically never have continuous noise that cou
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Figure 1:System overview (top), and the parts of the
multipitch estimation algorithm (bottom).
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be estimated over a longer period of time. Instead, non-har-
monic parts are due to drums and percussive instruments which
are transient-like in nature and short in duration.

Due to the non-stationary nature of the noise, we propose
an algorithm which estimates and removes noise independently
in each analysis frame. Signal model for a harmonic sound
contaminated with additive and convolutive noise is

(1)
whereX(k) is the observed power spectrum of a discrete input
signal, andS(k) is the power spectrum of the vibrating system
whose fundamental frequency should be measured, for exam-
ple a guitar string.S(k) has been filtered byH(k), which repre-
sents the frequency response of the operating environment and
the body of the musical instrument. Suppression of convolutive
noise can thus be seen as whitening of the spectra of sounds.
N(k) is the power spectrum of unknown additive noise, here
represented by all signal components that do not belong to the
harmonic part.N(k) cannot be assumed to be stationary.

As a first attempt, we tried to remove additive and convolu-
tive noise in two consecutive stages. First, additive noise was
estimated and subtracted in the power spectrum, constraining
resulting negative values to a small positive value. Second, log-
arithm was taken and an estimate of the convolutive noise was
subtracted in logarithmic magnitudes. Confirming the reports
of earlier authors, two noise reduction systems in a cascade do
not produce appropriate results [3]. The overall system tended
to work better when either stage was completely bypassed.

Successful noise suppression was achieved by removing
both additive and convolutive noise simultaneously, following
the lines of RASTA spectral processing [3]. First, the observed
power spectrumX(k) is transformed as

. (2)
The value ofJ acts to scale the input spectrum so that the
numerical range for additive noise staysN(k)«1, and spectral
peaks of the vibrating system [S(kp)H(kp)]»1, wherekp corre-
sponds to the frequency of a spectral peakp. In this case, addi-
tive noise goes through a linear-like transform, whereas
spectral peaks, affected byH(k), go through a logarithmic-like
transform. Applying a specific spectral subtraction forY(k)
removes additive noise. The spectral envelope of the peak val-
ues is flattened by the logarithmic operation itself.

An optimal value ofJ was found to depend on the level of
both the additive noise and the spectral peaks. After experi-
menting with several different models, the best performance
was achieved using the relatively simple expression:

, (3)

which basically calculates the average of the spectrum in the
specified frequency range via the cubic root. Indecesk0 andk1
correspond to frequencies 50 Hz and 6.0 kHz, respectively, and
are determined by the frequency range utilized by the multip-
itch estimator. Optimal value forα was found to be 1.0.

The noise componentM(k) in Y(k) is estimated by calculat-
ing a moving average overY(k) in ERB critical-band frequency
scale. More exactly, the magnitude ofM(k) for k=ki is obtained
by calculating a Hamming-window weighted average overY(k)
values aroundki, where the widthW of the Hamming window
depends on the center frequencyf corresponding toki :

. (4)

In brief, W(f) is β times the ERB critical-band width. Optimal
value forβ was 4.8. More important than this constant, how
ever, was the observation that estimating noise over ERB f
quency scale was clearly advantageous over a linear or
Bark critical-band scale. Among these three, ERB scale is clo
est to a logarithmic scale, picking an equal amount of spect
fine structure of harmonic sounds over a wide range of fund
mental frequency values.

The estimated noise spectrumM(k) is linearly subtracted
from Y(k) and resulting negative values are set to zero:

.
The resulting enhanced spectrumZ(k) is passed to the multip-
itch estimator, which operates on this enhanced spectrum wi
out returning to the linear magnitude scale.

The accompanying web-page contains audio demonst
tions for noise-suppressed musical signals.

4.  Estimating the number of concurrent voices

The problem of estimating the number of concurrent voices
music is analogous to voicing detection in speech, with the d
ference that the output gets integer instead of binary values

The difficulty of estimating the number of voices is compa
rable to that of finding the pitch values themselves. Huron h
studied musician’s ability to identify the number of concur
rently sounding voices in polyphonic textures [4]. According t
his report, the accuracy in performing the task drops marked
already in four-voice polyphony, where the test subjects und
estimated the number of voices present in more than half of t
cases. Musical mixtures often blend well enough to virtual
bury one or two sounds under the others.

We took a statistical approach to solve the problem. Ra
dom mixtures from zero to six concurrent harmonic sound
were generated by allotting sounds from 26 musical instr
ments of the McGill University Master Samples collection
The mixtures were then contaminated with pink noise or ra
dom drum sounds, signal-to-noise ratios (SNR) varyin
between 23 dB and dB. The drum sounds were taken from
Roland R-8 mk II drum machine.

The iterative multipitch estimation system was run for th
generated mixtures, the polyphonies of which were know
Different characteristics of the signal were measured in t
course of the iteration – in search for a feature which wou
indicate the stopping of the iteration after all sounds have be
extracted. A number of features were measured, reflecting
level of the extracted sound, residual spectrum, etc.

It turned out to be necessary to perform polyphony estim
tion using two different models. The first detects voicing, i.e
if there are any harmonic sounds in the input, and the seco
estimates the number of concurrent voices, if any.

4.1   Voicing detection

Drum sounds turned out to be the biggest problem in voicin
detection. Approximately half of the acoustic energy of th
sound of bass drums, snares and tom-toms is harmonic, res
ing from the drum membrane which vibrates at mode freque
cies. This tends to mislead a voicing detector. On the contra
for pink noise alone, the voicing detector can be designed
work almost perfectly, even though the harmonic sounds the

X k( ) S k( )H k( ) N k( )+=

Y k( ) 1 J X× k( )+{ }ln=

J α
k1 k0–

X k( )1 3⁄
k k0=

k1∑
---------------------------------------

 
 
 
  3

=

W f( ) β 24.7× 4.37
f
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 =
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selves vary from the double bass to the transverse flute.
A model for voicing detection in musical signals was found

using the procedure described above. A single best feature to
indicate voicing was the likelihoodL1 of the sound outputted
by the predominant pitch estimator at the first iteration (see
Fig. 1). The algorithm for calculating the likelihood in the mul-
tipitch estimator has been described in [1]. The best compound
feature was derived by combiningL1 with features related to
the signal-to-noise ratio of the input signal:

, (5)

wherePX is the power of the observed spectrumX(k) in the
spectral region between 50 Hz and 6 kHz after the signal has
been scaled withJ. PM is the power of the estimated noise
spectrum in the same frequency region, calculated by trans-
forming M(k) back to power spectral domain by an inverse
transform of Eq. (2). Signal is determined to be voiced when
V0 is greater than a fixed thresholdV0 > Tvoicing.

Table 1 shows simulation results for this model in the pres-
ence of drum noise. The results have been averaged over the
different polyphonies and over the five different SNRs between
23 dB and dB. Undetected voicing takes place mostly in the

dB SNR, which can be noticed from the results in parenthe-
ses which have been averaged for noise levels 23 dB…3 dB.

A model which is comparable in accuracy to that of Eq. (5)
and does not require the calculation of the algorithm-specific
valueL1 can be calculated as

, (6)

wherePZ is the power ofZ(k), the enhanced spectrum.

4.2   Number of concurrent voices

In the case that a section in music has been determined to be
voiced, another model is used to control the stopping of the
iterative multipitch estimation system, i.e., to estimate the
number of sounds to be extracted.

The likelihoodLi of a sound detected by the predominant
pitch estimator at iterationi was again a single best feature for
controlling the iteration stopping. However, the likelihood val-
ues are affected by the SNR,Li getting smaller in noise. The
bias can be explicitly corrected, resulting in the measure

. (7)

As long as the value ofVi stays above a fixed threshold, the
iteration is continued and the sound detected at iterationi is
included in the output of the multipitch estimator.

The measures of Eqs. (5) and (7) appear as contradictory,
but are correct. The SNR-related terms have different roles in
these two equations, and thus the different signs. In the estima-
tion of the number of voices, the latter terms corrects for small
likelihood values which are due to noise. This is needed to

detect soft sounds in noisy polyphonic signals. For voicin
detection, there is usually at least one sound prominent enou

Overestimating the polyphony leads to extraneous notes
the transcription, which has a very disturbing audible effec
Underestimating the polyphony is not very dangerous, sin
the faintest notes are often not heard out even by human list
ers. Overestimation error rate should be very low in all case

Figure 2 illustrates the distribution of values ofVi as calcu-
lated in a 93 ms frame in the course of the iteration for diffe
ent polyphonies and drum noise levels. For each polyphonyP
and noise level there are three lines on top of each other, in
cating the value ofVi growing smaller in the course of the iter-
ation. The top lines indicate the mean and standard deviation
Vi for which i<P, i.e., Vi values before reaching the actua
polyphony. The lines in the middle stand forVi values for
which i=P, i.e., for the last legal iteration. The bottom lines
stand forVi at extraneous iterations. Ideally, a thresholding lin
for Vi should stop the iteration between the stacks of midd
and bottom lines. However, to minimize the rate of overestim
tions, underestimations have to be accepted in rich mixtures

Table 2 shows the results of the estimation of the numb
of concurrent voices, averaged over different noise levels.

A model for polyphony estimation which has an acceptab
accuracy and does not require the calculation of the algorith
specific valuesLi can be calculated as

, (8)

wherePi is the power of the sound detected at iterationi. Pi is
obtained by selecting frequency samples fromZ(k) from the
positions of the harmonic components of the detected sou
transforming them to power spectral domain, and by summi

5.  Sound separation and stream formation

The space permits only a brief mention of the sound separat
and stream formation modules. In [5], we have presented
method for the separation of concurrent harmonic sounds. T
method is based on a two stage approach, where the descr
multipitch estimator is applied to find initial sound parameter
and in a second stage, more accurate and time-varying sinu
dal parameters are estimated.

For real musical signals, sound separation is significan
more difficult than for artificial mixtures of clean harmonic

V0 4 L1( )ln
PX

PM
-------- 

 ln+=

Table 1:Voicing detection results.

Problem constraints
extraneous
voicing (%)

undetected
voicing (%)

93 ms frame, drum noise 1.8 6.1 (2.5)

190 ms frame, drum noise 1.8 1.6 (0.1)
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Figure 2:Distribution of the values ofVi in the course of the

iteration for polyphonies from 1 to 6, with the drum noise

levels dB for each polyphony. Horizon-
tal line shows the threshold where iteration is stopped.
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sounds. However, provided that the correct sounds are detected
by the multipitch estimator, and that drums do not dominate a
musical signal too badly, separation works rather well.

A preliminary attempt towards stream formation from the
separated notes was performed by utilizing acoustic features
used in musical instrument recognition research [6]. Mel fre-
quency cepstral coefficients, the fundamental frequency, the
spectral centroid, and features describing the modulation prop-
erties of notes were used to form 17 dimensional feature vec-
tors, which were then k-means clustered. Based on the
observations, sream formation according to sources is possible
provided that the timbres of the sound sources are different
enough, and that the distinctive characteristics do not get lost in
the separation process.

6.  Simulation results

Table 3 shows the statistical error rate of the overall multipitch
estimation system after the noise suppression and polyphony
estimation parts were integrated to it. The results have been
averaged over three different SNRs: 23 dB, 13 dB, and 3 dB.
The test cases were randomly generated from the McGill Uni-
versity samples, pitch restricted between 65 Hz and 2100 Hz.
Drum sounds were from the Roland R-8 mk II drum machine.

The error rates in Table 3 have been calculated by sum-
ming together inserted, deleted (missing), or erroneously tran-
scribed notes, and dividing the sum by the number of notes in
reference. Among the errors, about two thirds were deletions,
which is the least disturbing error type. The amount of inserted
notes stays around 1 %. The rest are erroneous notes. Noise
suppression allows reliable pitch estimation still in 3 dB SNRs.

Together with the onset detector, the system is applicable
as such to the transcription of continuous musical recordings.
Since exact musical scores were not available for real music,
no statistics on the performance are provided. Instead, excerpts
from the original signals and synthesized transcriptions for
them are available for listening at the accompanying web-page.

Accurate and realistic evaluation of a transcription syste
is best achieved by transcribing synthesized MIDI-song
These have the advantage that the exact reference scor
available in the MIDI-data. High-quality MIDI-songs are avail-
able that are complex enough to simulated real performanc
A simulation environment was created which allows readin
MIDI-files into Matlab and synchronizing them with an acous
tic signal synthesized from the MIDI. Unfortunately, at the
time of writing this paper, the transcription system still suf
fered from certain defects which prevent from publishing erro
statistics for MIDI-songs. Figure 3 gives an example of a rel
tively well transcribed song. The piece has regular rock drum
not shown in the score. One defect is that long-duration soun
are detected several times at successive onsets. This resul
insertion errors.
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Table 2:Estimation of the number of concurrent voices.

Actual
number of

voices

Estimated number of voices

93 ms frame 190 ms frame

drum noise pink noise drum noise pink noise

1 1.1 1.0 1.1 1.0

2 1.9 1.8 2.0 2.0

3 2.6 2.5 2.9 2.8

4 3.1 3.0 3.6 3.4

5 3.5 3.3 4.1 4.0

6 3.6 3.8 4.7 4.4

Table 3:Note error rates in the presence of drum sounds.

Analysis
frame size

Polyphony

1 2 3 4 5 6

190 ms 6.9 11 14 20 29 39

93 ms 14 20 29 41 51 61

40 41 42 43 44 45

Jackson: "Billie Jean"

time (seconds)

Figure 3:Transcription of a synthesized MIDI-song. Cir-
cles denote the original score and crosses the transcriptio
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