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Blind Separation of Audio Mixtures Through
Nonnegative Tensor Factorisation of Modulation

Spectograms
Tom Barker, Tuomas Virtanen

Abstract—This paper presents an algorithm for unsupervised

single-channel source separation of audio mixtures. The approach

specifically addresses the challenging case of separation where no

training data is available.

By representing mixtures in the modulation spectrogram (MS)

domain we exploit underlying similarities in patterns present

across frequency. A 3-dimensional tensor factorisation is able

to take advantage of these redundant patterns, and is used to

separate a mixture into an approximated sum-of-components

by minimising a divergence cost. Furthermore, we show that

the basic tensor factorisation can be extended with convolution

in time being used to improve separation results and provide

update rules to learn components in such a manner. Following

factorisation, sources are reconstructed in the audio domain

from estimated components using a novel approach based on

reconstruction masks which are learned using MS activations,

and then applied to a mixture spectrogram.

We demonstrate that the proposed method produces superior

separation performance to a spectrally-based nonnegative matrix

factorisation approach (NMF), in terms of source to distortion ra-

tio. We also compare separation with the perceptually-motivated

IPS metric and identify cases with higher performance.

Index Terms—NMF, Source Separation, Factorization, Speech

Enhancement

I. INTRODUCTION

R

EAL audio recordings usually consist of contributions
from multiple sound sources, for which it is often useful

to have access to each separately. The separation of mixtures
into constituent sources is known as sound source separation.
There are multiple applications of such a process, including
speech enhancement [1], musical transcription [2], de-noising
and increasing robustness in automatic speech recognition [3],
[4], and improving quality in hearing-aid applications [5], [6].

Many current source separation techniques rely on de-
composition of a mixture signal into a linear combination
of components; so-called compositional models (CM) [7].
Generally, the most effective of these utilise a representation
which expresses the signal as a matrix describing the energy
in frequency bins or bands at each time-frame. The frequency
resolution varies in different representations, but the spec-
trogram (alternatively called short-time Fourier transform or
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STFT), is popular, along with the perceptually motivated mel-
band [8] and constant-Q [9] scalings. These mixture matrices
are typically factorised into spectral basis patterns (sometimes
referred to as atoms), in one dimension and their time-varying
activations in another [10], [11]. The basic paradigm can
also be extended to include convolutional models which learn
time-varying spectro-temporal patterns, as in [12], [13], [14].
These CM techniques are practical for separating multiple
audio mixture types, since many naturally occurring sounds
can be effectively represented using a fixed spectrum and
time-varying gains. Most established CM approaches do not
generally take advantage of structure present across frequency
though. In the case of nonnegative matrix factorisation (NMF)
of a mixture spectrogram, the frequency relationship between
bins is not exploited in the factorisation model, and each DFT
bin is independent of all others within the factorisation. For
example, permuting the position of any matrix rows prior to
factorisation will produce the same results for that row in
either the new or original position; the values of a frequency
bin in the matrix spectrogram are not considered relative
to any others. However, extensions to NMF which are able
to take advantage of dependence between frequencies in the
factorisation model do exist. Convolutive NMF in frequency
[15], for example, allows translation in frequency for specific
spectral patterns, where harmonic atoms are used with a
logarithmic frequency axis. With this technique, an underlying
relationship between partials of a fundamental can be learned
and used to represent sounds with similar spectral structure at
varying pitches.

Source separation can be generally divided into supervised,
semi-supervised or unsupervised processes. These describe the
availability of a training data for all sources, some sources,
or no sources present in the mixture, respectively. Neural-
network based methods have recently started to be used
for supervised and semi-supervised separation and speech
enhancement [16], [17], whilst compositional models are an
established technique across all approaches. Generally, use
of prior knowledge about the constituent sources within a
mixture will improve separation performance, and it should
be expected that a well-matched supervised approach should
outperform an unsupervised approach. Unsupervised separa-
tion, where very little or no prior knowledge is used is often
referred to as ‘blind’ separation and where no training data
is available a blind separation approach must be employed.
Blind separation is highly challenging, and particularly where
the problem is under-determined, meaning that there are fewer
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Fig. 1: Diagrammatic representation of modulation spectrogram feature tensor production from a time-domain audio mixture
signal.

observations available than sources to be separated. Although
less constrained in terms of requirement for a priori knowl-
edge, blind separation does not suffer from over-fitting of
training data, and is therefore useful as a general approach. It
is with this in mind that we consider the challenging problem
of single-channel blind separation of naturally occurring ev-
eryday sounds, and present our approach which relies only on
the underlying sources having internal harmonicity, a common
feature of sounds produced via natural physical processes.

The modulation spectrogram (MS) representation was pro-
posed in [18], where it is argued that such a representation is
somewhat analogous to that encoded by the human auditory
system, and as such is robust to rapid temporal variations
caused by effects such as reverberation. MS features have
been successfully employed in automatic speech recognition
(ASR) systems as described in [18], [19], [20], [21], [22] and
in speech emotion recognition in [23]. Unlike in separation,
signal reconstruction is not required for recognition uses.
Reconstruction from the modulation domain is non-trivial, so
introduces an additional challenge to source separation from
modulation-based representations.

Mixture signals in the MS domain are represented as a 3-
dimensional tensor. Nonnegative tensor factorisation (NTF)
has been used previously to separate multichannel audio
mixtures via decomposition in [24], [25], but until recently
the application of NTF to single channel audio separation has
not been widespread. The first uses of NTF for single-channel
source separation were in [26], which this paper is a direct
extension of, and [27]. Additionally, separation of unison
musical sounds based on tensor factorisations of modulation
patterns is presented in [28], whilst a complex-valued tensor
factorisation for speech enhancement is shown in [29].

Unlike most of the compositional models that use a time-
frequency representation, our sound-source separation ap-
proach is based on the decomposition of a modulation spec-
trogram (MS) representation. Such a representation captures
the intrinsic redundancy in harmonic and modulation structure
across frequency sub-bands. By separating signals in the 3-
dimensional MS domain using an NTF model, a mixture
is reduced to a sum of components. The aim is that each
component models the activity of acoustic features grouped
based on harmonic similarity.

This paper provides a thorough analysis of our modulation

spectrogram based nonnegative tensor factorisation (MS-NTF)
algorithm which we originally demonstrated in [26]. We
extend this work by providing a set of convolutive update
equations for the factorisation of MS tensors, which can
provide increased separation performance under certain con-
ditions and demonstrate the effectiveness on various material
types. Additionally, we propose a novel reconstruction method,
where activations learned with the MS-NTF model are used
to initialise a reconstruction of sources from a spectrogram
representation.

The structure of the rest of the paper is as follows: Section II
introduces the modulation spectrogram and how it is obtained
from a time-domain audio signal. In Section III, the tensor
factorisation model is presented, alongside extended update
rules for obtaining a decomposition which is convolutive in
time. Toy separation examples and an analysis of the number
of parameters of representations with varying rank are also
provided. The novel method for reconstructing sources from
factorised modulation spectrograms is presented in Section IV.
In Section V, we describe the evaluation approach for the
proposed MS-NTF source separation method, and compare
its effectiveness to NMF-based separation. We also show the
results of the simulation experiments and a discussion of the
outcomes. Finally in Section VI we present conclusions and
address the implications of the presented algorithm on speech
separation.

II. MODULATION SPECTROGRAM REPRESENTATION

In this section we provide an overview of the analysis of
the effects and contributions of the various processing steps
required to produce the MS domain representation.

The modulation spectrogram is the spectrogram of the low
frequency amplitude envelope of the signal present in each
MS-channel. We use the term channel to denote a certain
sub-portion or sub-band of the spectrum. Audio data in the
time domain is transformed into the modulation spectrogram
domain through the application of the following steps:

1) Passing the signal through a filterbank.
2) Obtaining a modulation envelope for each filterbank

channel via halfwave rectification and lowpass filtering.
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Fig. 2: Spectrogram of a male spoken /e/ sound. Similar
frequency modulation is present in each partial.

3) Generation of the spectrogram of each modulation enve-
lope via short-time-Fourier transform (STFT) and taking
the absolute value of each bin.

4) Removal of unnecessary frequency bins, for frequencies
much higher than the lowpass filter cutoff, to reduce
model and factorisation complexity.

This processing (see Figure 1) produces a 3-dimensional data
representation, with filterbank channel, STFT bin, and STFT
frame being represented across each dimension.

The MS representation of a signal captures the structure
present in the low-frequency modulation patterns present
across frequency sub-bands, but not rapidly-varying fine tem-
poral structure. Harmonically related sounds such as the par-
tials present in voiced speech, or pitched musical instruments,
have similar modulation envelopes within different sub-bands
(see [26]), and the MS-NTF separation is able to utilise this
by capturing the resulting spectral similarities within each sub-
band.

When harmonicity exists within a signal, as is common
in speech, for example, the fundamental f0 generally co-
modulates along with the harmonics (Figure 2). Each indi-
vidual harmonic will have a similar modulation frequency,
and therefore envelope. This similarity of envelopes produces
similar spectra, whereas the spectral content of each sub-
band will only reflect content at in-band frequency bins. This
similarity in cross-channel patterns allows the use of a single
representative component in the factorisation model. As the
activity of a particular source varies, the cross channel gains
for a harmonic relationship stay constant, but will co-modulate
over time. The application of half wave rectification (HWR)
and lowpass filtering captures the low-frequency modulating
envelopes of the signal in each channel. The spectral shape
of these exhibits more similarity than direct filterbank channel
outputs (Figure 3).

Rectification of a narrowband signal such as produced by
a bandpass filter, introduces spectral components centred at
0 Hz. An approximation to the power spectral density (PSD)
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(f) of the output y(t) of the HWR operation applied to a
signal x(t) with zero-mean has been shown in [30] to be:
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Fig. 3: Lowest 7 channels of magnitude spectra of filterbank
outputs for a spoken /e/ vowel sound. Left column, prior to
rectification and lowpass-filtering, right column, as modulation
envelope spectra (log amplitude for clarity).

where �

2
x

is the variance of the signal,  
x

(f) is the input
PSD and and �(f) denotes a unit impulse function. As in
[31], we equally consider the output of the gammatone filter
as approximately a narrowband signal with bandwidth B,
centred at f

c

. The rectification of a signal with such a power
spectrum additionally produces an amplitude scaled DC-
component equivalent to the autoconvolution of the original
power spectrum (see the third term in Equation 1), as well
as reduced-amplitude versions of the DC-term at multiples
of f

c

(Figure 5). Lowpass filtering can be used to remove
the original spectrum and higher frequency terms leaving
only the signal centred around DC. Considering a single
filterbank channel in our MS model as an approximation to
the narrowband filter described in [31], similarities in spectral
modulations across channels then begin to become apparent as
a result of the HWR operation. Where the shape of the PSD
within a particular band is similar to those in other bands,
(e.g. as with the regular spacing of the harmonic peaks in
speech or other harmonic sounds), it follows that the result
of autoconvolution and shape of spectral patterns present at
baseband will be similar.

III. TENSOR FACTORISATION MODEL

The factorisation model approximates a 3-dimensional ten-
sor as a sum of rank-1 components; this factorisation model
[32] is known as the PARAFAC decomposition (also canonical
polyadic decomposition (CPD) or CANDECOMP factorisa-
tion). Components are learned such that they minimise a diver-
gence cost between the target and estimated components. The
3-dimensional structure ensures that for a single component,
there exists similarity of modulation spectra across channels
with variation only in activation magnitude. Cross-channel
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similarity existing in simple signals in the MS-domain can
therefore be efficiently encoded by a single component within
the tensor model.

A. Factorisation Model

The 3-dimensional tensor representing the MS has dimen-
sions of size of number of filterbank channels, DFT samples,
and observation frames. This mixture tensor is denoted as X ,
and the factors which approximate this are stored in matrices
G, A and S. The outer product of each column in the matrices
form the components which sum to form ˆX , the approximation
of X .

The model ˆX is described by:

X
r,n,m

⇡ ˆX
r,n,m

=

KX

k=1

G
r,k

A
n,k

S
m,k

(2)

where GR⇥K (size R⇥K) is a matrix containing the auditory
channel dependent gain, AN⇥K the frequency basis functions
which model the spectral content of a modulation envelope
feature, and SM⇥K is the time-varying activation of the
component. Subscripts r, n,m are the channel, modulation
spectral bin, and time frame indices, respectively, whilst k

denotes the index of a particular component. The model there-
fore essentially describes each component’s fixed modulation
spectrum existing at different levels across channels, being
activated at various points in time.

The model parameters contained in G, A and S are esti-
mated by minimising the generalised Kullback-Leibler (KL)
divergence between X and ˆX , notated D,

D(Xk ˆX ) =

X

r,n,m

X
r,n,m

log

X
r,n,m

ˆX
r,n,m

�X
r,n,m

+

ˆX
r,n,m

. (3)

KL divergence is widely used to estimate the components in
source separation by nonnegative matrix and tensor factori-
sation [11], and is more sensitive to low-energy observations
than Euclidean distance, an alternative measure of reconstruc-
tion error proposed in [33].

ˆX =

Modulation
spectrogram
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Fig. 5: An approximation to X the mixture tensor, ˆX is formed
by the sum of outer products between rank-one tensors. Each
rank-one tensor is a column of the component matrices G, A,
and S and represents a different component in the separation.
Update equations aim to minimise the divergence between X
and ˆX .

The divergence D can be minimised by applying update
rules to G, A, and S which iteratively perform gradient
descent with respect to each variable. The specific update
rules given in this paper are derived in [24] and [34] although
generalised multi-dimensional PARAFAC type updates such as
presented in [35] can be applied, where the tensor is unfolded
into a product of matrices and then updated via NMF matrix
update rules.

The tensor factorisation algorithm applied is carried out as
follows:

1) Generate modulation spectrogram tensor to be decom-
posed, X .

2) Initialise matrices G, A and S with random non-
negative values. Matrix dimensions are defined by the
corresponding dimensions of X , and the number of
components into which X should be decomposed.

3) Apply update rules to minimise the divergence between
the sum of factors in G, A and S and the tensor which
they model.

The update rules applied in stage 3 of the algorithm are:

G
r,k

 G
r,k

P
n,m

C
r,n,m

A
n,k

S
m,kP

n,m

A
n,k

S
m,k

(4)
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(5)

S
m,k

 S
m,k

P
r,n

C
r,n,m

G
r,k

A
n,kP

r,n

G
r,k

A
n,k

(6)

where C = X/

ˆX elementwise and is recalculated after
application of each update equation.

The update rules guarantee a reduction of the cost value,
D, but do not ensure that the global minimum is reached. The
update rules are applied until there is no longer significant
reduction in D.

B. MS-NTD Model

Here we present a convolutive extension to the basic NTF-
factorisation. By use of the convolutive factorisation, recurrent
patterns across time or channel can be modelled within a single
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factorisation component. We term this process modulation
spectrogram nonnegative tensor deconvolution, or MS-NTD.

The use of a convolutive model is motivated by the as-
sumption that a recurrent pattern present within a source may
span more than a single time-frame or frequency channel. A
convolutive factorisation model is able to represent such struc-
ture. In this way, a single component is able to represent more
complex redundant structures than the non-convolutional case,
and the lowest frequency changes which can be represented
is covered by the context across multiple frames, rather than
within a single frame.

Convolutive extensions to the basic NTF algorithm can span
both/either time and/or frequency dimensions; we performed
initial tests of separation performance with components which
learn shifts over both channels and time. Temporal shifts
produced most promising initial separation performance, and
are also somewhat more intuitive in their data representation.
For this reason we use and explain the model for shifts over
time, although other cases can be covered by permuting the
time and channel dimensions in the presented equations.

For spectral convolution over time, the basis functions
containing spectra are estimated as a matrix, by summation
over all convolutional time shifts. The algorithm is different
compared to that presented in Section III-A in that the K

spectral basis vectors are modified to become spectral basis
matrices, and so increase their dimensionality.

The convolutive extension to the NTF factorisation model
minimises the KL-divergence between the 3-dimensional MS
tensor X and a linear combination of approximated factors,
G0 A0, S0 which form the approxiative model ˆX 0 :

ˆX 0
r,n,m

=

KX

k=1

DX

d=0

G0
r,k

A0
n�d,k

S0
m,k,d

. (7)

Update rules for a convolutive model with a maximum time
shift of D frames are given as:

G0
r,k

 G0
r,k

P
n,m,d

C0
r,n,m

A0
(n�d),kS

0
m,k,dP

n,m,d

A0
(n�d),kS

0
m,k,d

(8)

A0
n,k

 A0
n,k

P
d,r,m

C0
r,(n+d),mG0

r,k

S0
m,k,dP

d,r,m

G0
r,k

S0
m,k,d

(9)

S0
m,k,d

 S0
m,k,d

P
r,n

C0
r,n,m

G0
r,k

A0
(n�d),kP

r,n

G0
r,k

A0
(n�d),k

(10)

where C0
= X/

ˆX 0 element-wise, recalculated after each
application of update equations.

C. Simulation Examples

In this section we provide an example to show how the
MS-NTF factorisation is able to learn meaningful structure
more effectively than NMF. In cases where the structure
of individual sources in both time and frequency is well
represented, good separation can be achieved. We illustrate
the structure learned in matrix and tensor factorisation cases,
and demonstrate via a toy example that it is the combination
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Fig. 6: Spectrograms for individual toy example sources and
mixture.

of the tensor model alongside the MS representation which is
able to separate components.

Factors are learned by minimisation of a divergence func-
tion. We can evaluate the accuracy of the learned factors by
comparing them with the oracle factors. Oracle factors are
produced by rank-1 factorisation of the unmixed individual
sources present in a simple mixture signal and allow us to
gain intuition about the basic structure present in a signal.
Inspection of the learned components relative to the ora-
cle allows us to compare how each model captures source
structure. The factors producing minimised divergence for a
mixture approximation will not necessarily reflect the structure
of individual sources, but in this toy example the NMF-
derived factors show less similarity with the structure of each
individual source than the NTF-derived factors.

Factorisation of simultaneous signals: Here we inspect the
structure obtained by factorisation of two differently modu-
lated tones. Consider the synthetic signal with the mixture
spectrogram shown in Figure 6. Each source in the mixture is
a 3-partial harmonic, amplitude modulated at either 3 Hz or
11 Hz.

Source 1 has an f0 of 207 Hz and is modulated at a rate
of 3 Hz, modulation depth 0.7. Source 2 has an f0 of 257 Hz
and is modulated at a rate of 11 Hz, modulation depth 0.7.
The mixture is created by summing the time domain source 1
and source 2 signals.

We factorise the mixture into 2 factors in both the 2-
dimensional spectrogram representation (NMF), and the 3-
dimensional MS domain as well as a matrix factorisation of
the unfolded MS mixture tensor. Unfolding, or tensor matri-
cization (see [35]) is performed over the channel dimension,
so that the tensor of dimensions R⇥N⇥M becomes a matrix
of size (R⇥N)⇥M .

Figure 7 shows components learned with the NTF model
whilst Figure 8 shows the factors learned in the NMF separa-
tion. Figure 9 and 10 show the factors learned with the matrix
factorisation of the MS tensor unfolded over the channel
dimension.

The spectral basis functions obtained with NMF have sig-
nificant contribution bleed from the interfering source, and
components are not well separated from one another. The NTF
model better learns the distinct components comparable with
the oracle factors in this example, and peaks in the channel
activation dimension are learned at the same location as in
the oracle examples. It could also be argued that there is
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greater similarity of time activations. The source interference
apparent with the NMF applied to the MS demonstrates that
it is the combination of the tensor factorisation with the
representation which make the proposed method effective at
separating sources.

D. Model Complexity

The MS-NTD model is able to approximate much of the
energy in the mixture representation using relatively fewer
parameters than other approaches. Fewer parameters means
less chance of over-fitting in production of the separated
components, resulting in a more meaningful source separation.
We can compare and describe the number of parameters
in different factorisation approaches, for factorisation rank
K. As rank increases, it should be expected that a better
approximation to the mixture can be achieved.
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Fig. 10: Clarified view of portion of factors obtained through
matrix factorisation of modulation spectrogram. Components
have similar and overlapping shapes, resulting in poor separa-
tion.

In an NMF spectrogram factorisation, the number of en-
tries in factorisation matrices, and hence parameters is K ⇥
(P + M). For the MS-NTF model (referring to dimension
definitions in Section III-A), we have K ⇥ (R + N + M)

parameters. If the MS is unfolded over frequency channels
and factorised as a matrix, we introduce many more degrees of
freedom in the spectral dimension, requiring K⇥(R⇥N+M)

parameters. Where the NTD model is used, for a shift of D

frames, K ⇥ ((D ⇥N) +R+M) parameters are needed.
Since N is the length of a truncated spectrum based on

the lowpass frequency used in producing the MS, in practice
R +N < P resulting in many fewer parameters in MS-NTF
than NMF for equivalent factorisation rank.

In Figure 11 we show the normalised residual power calcu-
lated from subtraction of the factorisation approximation from
the target in different factorisation models and summation over
all dimensions. Normalisation was carried out by dividing the
power (absolute value squared) of the residual by the initial
power present in the representation. Values were calculated
with R = 30, N = 64,M = 256, P = 1024.

The results of this experiment demonstrate the ability of
the MS-NTF model to represent a signal more compactly,
by taking advantage of redundancies. Even the convolutive
factorisations, spanning several frames have fewer parameters
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Fig. 11: Average residual energy present after factorisation
of signals with 3 different approaches, NMF, MS-NMF and
MS-NTD plotted against number of model parameters. MS-
NTD is shown with varying shift lengths. For a given number
of parameters, the proposed MS-NTD model has lower error
in the approximation. For equivalent factorisation rank, the
MS-NTD model has fewer parameters. Increasing convolution
length within the MS-NTD approach increases number of
parameters for a given rank but produces increased residual
energy for a given number of parameters. Results shown
averaged over 50 speech mixtures as used in later evaluation.

than the single frame NMF-based models. A compact repre-
sentation does not necessarily ensure good separation capabil-
ity though, however we address the separation performance of
such models in more detailed evaluations in Section V.

IV. SOURCE RECONSTRUCTION

Reconstruction of audio from the modulation spectrogram
is an inherently challenging problem, due the MS not being
directly invertible. The filterbank (FB) stage can be inverted if
an appropriate function is used (an oversampled analysis FB
allows perfect reconstruction with the correct synthesis recon-
struction FB [36]). Lowpass-filtering discards high-frequency
information however, which is difficult to recover, as does the
non-linearity resulting from halfwave rectification, and taking
the absolute value of STFT frames. Inversion of modulation
envelopes (not spectra) has been addressed in [37] via efficient
optimisation of a cost function. Such an approach assumes
that the signal-representation for inversion was derived from a
real signal rather than being estimated from a mixture signal.
Inversion of arbitrary signals such as those derived from esti-
mated separation may not produce meaningful time-domain
waveforms though. Informal testing of such an approach
produced worse separation performance than our existing and
proposed methods for sources reconstructed from estimations
obtained via factorisation and so was not explored further.

In [26] we presented a method for source synthesis based
on the activations learned in the NTF model. Using learned
temporal activation, full bandwidth basis functions were ob-
tained through factorisation of a reconstruction tensor. In this
work, we propose a new method for reconstruction of sources

separated in the modulation spectrogram domain. A similar
approach of maintaining initial source activation values is
used, but instead of factorisation of a 3-dimensional MS-
derived tensor, a less-complex data representation based on
a simple spectrogram is used in the second stage reconstruc-
tion factorisation. The use of this 2-dimensional spectrogram
allows for less computation and a more intuitive method. The
new approach also seems to produce better source-to-distortion
values for reconstructed sources compared with the approach
in [26] (see Section V-B).

Keeping the time-varying activations obtained during the
MS-NTF stage fixed, a matrix factorisation is subsequently
used to produce spectra bases to approximate a reconstruction
matrix. The reconstruction matrix, V is produced by taking the
magnitude spectrogram of the time-domain mixture signal. V
is subsequently decomposed into approximative factors in B
which are estimated using fixed activations A, from the initial
MS-NTF and MS-NTD model factorisations.

Matrix B contains factors which produce minimal KL-
divergence for a given set of activations and the structure of
these will vary depending on the structure of sources within
the mixture. Where source spectra have structure which is
inherently low rank e.g. for harmonic sounds such as the
example shown in Figure 6, B is able to learn components
which have frequency content at those bins present in the
sources. Where a low-rank representation can not accurately
model the sources, such as with speech, the components in
B just represent the bins with most activity for that source
estimate.

A. Non-convolutive reconstruction

In the non-convolutive case, reconstruction is performed
using NMF update rules. Spectral bases in the matrix B are
estimated according to the model

V ⇡ ˆV = BA> (11)

by minimising the KL-divergence

KL(V| ˆV) = ||V ⌦ log

V

ˆV
�V +

ˆV|| (12)

via NMF updates of B for the fixed activations in A learned
during initial factorisation. Wiener filters are derived from
factors which minimise Equation (12). These filters are applied
to the mixture spectrogram as in [38], before inversion to
obtain time-domain waveforms.

B. Convolutive reconstruction

Reconstruction of mixtures factorised with MS-NTD, makes
use of the convolutive NMF model, as in [12] but updates only
the spectra, forming an approximation to the reconstruction
matrix ˆV0:

ˆV0
=

D�1X

d=0

B
d

d!
H (13)

where we use activations obtained from MS-NTD,

H = A0>
, (14)
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and d! is a non-circular shift of the matrix d columns to the
right. Where D = 1 the model reduces to the non-convolutive
case.

To minimise KL(V| ˆV0
) as in Eq. 12, B is updated via:

B
d

 B
d

⌦
V
V̂0

d!
H>

1
d!
H>

(15)

as in [12].
Following convergence of the cost function, each of the K

sources are reconstructed by generating a Wiener filter soft-
mask from each base at the k’th index. Filters are applied
to the complex mixture spectrogram, Y so that source k’s
spectrogram is:

Source

k

= Y ⌦
P

D�1
d=0 B:,k,d

d!
H

k,:

P
K

k=1

P
D�1
d=0 B:,k,d

d!
H

k,:

(16)

where Y has a frequency resolution defined by the analysis
frame length.

Time domain reconstruction for each source is performed
by inversion of the resulting spectrogram via the inverse DFT
of each frame followed by the overlap-add operation.

V. SIMULATION EXPERIMENTS

We compare our blind single-channel MS-NTF approach
to blind single-channel NMF, in both non-convolutive and
convolutive implementations. The separation performance of
the methods is demonstrated on 4 classes of mixture signal,
each containing two sources, which are common in everyday
life and often used in source separation evaluations. The four
mixture classes we evaluate on are Speech-Speech, Speech-
Musical Instrument, Speech-Noise and Music-Music mixtures.

Speech-Speech mixtures provide a challenging separation
task, since the properties of each source tend to be more
similar to each other. The musical-instrument mixtures gen-
erally contain highly harmonic content (although unpitched
percussive test material is also part of the evaluation). Where
single musical notes are present for each source, the underly-
ing structure is not complicated and lends itself well to low-
rank models. Speech-noise mixtures are a common separation
task, for which unsupervised separation approaches are highly
appropriate due to the non-deterministic nature of real world
noise.

A. Test material

For each class of mixture, 500 test examples were cre-
ated. Speech-speech mixtures were generated by summing
a single utterance from each of two different randomly se-
lected speakers from the CMU-Arctic database [39]. Speech-
noise test mixtures were generated again using speech and
noise mixtures from a single microphone channel in the
CHiME3 database [40]. For each mixture, a noise type was
selected at random from CHiME3 and a 3-second section was
summed with a 3-second speech segment from a randomly-
selected talker. Speech-music mixtures were generated with a

randomly-chosen 3-second speech sample from the CHiME3
database summed with a randomly selected 3-second mono-
phonic sample of different musical instruments from the
RWC musical instrument database [41]. Music-music mixtures
were generated by summing two randomly-selected 3-second
monophonic samples from the same RWC database. The fixed
3-second length across all mixtures allows for meaningful
comparison of algorithm performance on each mixture type.
Sources were RMS normalised prior to mixing so that each
source contributed equal power to the mixture. Test mixtures
were re-sampled to 16 kHz in cases where original material
was at a different samplerate.

B. Evaluating separation performance

The proposed convolutive MS-NTD method was used to
separate the test mixtures and the results were compared with
those produced using unsupervised convolutive NMF [12].
For the case of a single convolutive frame shift, the model
is equivalent to MS-NTF. For MS-NTD, two reconstruction
methods were preliminarily tested; both the novel reconstruc-
tion method (with respect to modulation spectrogram based
source separation) described in Section IV and the method in
[26], modified to make use of the convolutive update rules in
Section III-B. Following the results of these tests, the novel
method was considered to produce better performance and so
used in all further evaluations. In all experiments, test-mixtures
were separated directly into 2 components. In [26], the blind
2-factor separation cases outperformed naive clustering ap-
proaches using more components prior source assignment.
This additionally detaches the effect of clustering algorithms
from any analysis, and allows comparison of solely a method’s
separation performance for simple additive mixtures.

To determine performance we computationally assess the
separation for a large number of mixtures. Separation was
evaluated according to widely-used metrics from the BSS and
PEASS toolkits [42], [43] which provides objective measure-
ments for source separation quality. Source-to-distortion ratio
(SDR) is a measurement of energy contributions from the de-
sired source compared to unwanted energy from interference,
noise, and artefacts and so is a good and widely used evalu-
ation of separation quality. A high SDR could be expected to
lead to good enhancement results in a computational speech-
recognition test, for example. Since the separated sources are
also often used in human evaluations, their subjective quality
should also be considered. A lot of energy in a low frequency
region may not be highly-audible to a human listener, but
may have a large effect on SDR ratings. For this reason, it
is also beneficial to consider perceptual separation metrics.
Interference-related perceptual score (IPS) is a measure from
the PEASS toolkit, where an overall score is calculated based
on a model created by the toolkit’s authors and obtained from
listening test ratings. We considered this the most appropriate
PEASS metric in terms of quantifying source separation
algorithm performance, although other PEASS measures were
also calculated and displayed similar general trends.

It should be stated that it can be problematic to measure
meaningful separation performance of truly ‘blind’ separation
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Fig. 12: Source-distortion-ratio performance with reconstruction based on Wiener-like filters derived from NMF of a
reconstruction spectrogram-matrix (NMD-NMF, proposed method) vs. from a reconstruction tensor (NMD-NTF, from [26]).
Analysis window 1024 samples (64 ms). Subplots show results for different material type averaged over 500 test mixtures.

approaches. Since in practice the sources are not defined,
evaluation procedures are inevitably constrained to a particular
type of material, which may not describe the performance on
other types of source. Even in these so-called blind separation
cases then, some assumption tends to be made about the
mixture to be separated. For example, that the mixture contains
speech or that sources are harmonic, or will have a certain
level of statistical independence. We attempt to give an accu-
rate description of comparative real-world source separation
performance using the stated metrics.

C. NTF Reconstruction Results

Figure 12 shows the SDR performance of sources recon-
structed with each method across various material types and
convolution lengths, averaged over 500 test mixtures. Perfor-
mance with a 1024 sample (64 ms) analysis window is shown,
but a similar result was obtained for window lengths of 512,
2048 and 4096 samples. Superior SDR values are obtained
using the MS-NTD derived activations within a reconstruction
matrix spectrogram as proposed in Section IV as opposed
to the use of a reconstruction tensor in [26]. The proposed
method also provided higher perceptual IPS scores across
all window lengths and material types. For all subsequent
evaluation, sources separated with the MS-NTD model are
reconstructed using the method in Section IV.

D. Algorithm Parameters

The choice of parameters, such as window length and func-
tion for generating representations for non-negative decompo-
sition will clearly have an effect on separation performance.
Depending on the specifics of a particular mixture signal, one
particular analysis function may outperform another.

We perform our experiments using a range of parameters,
although exhaustive trials of all implementation variations are
impossible. We present the results with the aim of using
the MS-NTD approach as a general separation approach, and
attempt to provide intuitions and explanations about how and
why parameter variation influences separation performance.

1) Window size: We evaluate our approach with analysis
window sizes of 32 ms, 64 ms, 128 ms and 256 ms (512,
1024, 2048, 4096 samples). NMF-based methods typically
use analysis frames in the order of 30-100 ms [44], and
previous work [6], [44], [45] has shown that this range works
well in both the NMF and MS-NTF algorithms. The window
length limits the minimum within window frequency which

can be meaningfully represented, according to the relationship
f

min

= 1/T . The minimum frequency within a 32 ms window
is 31.25 Hz whilst for a 256 ms window is 3.91 Hz. However,
low frequency temporal structure variation information can
still be encoded by such an approach, as the sliding window
analysis allows the convolutive factorisation model to represent
changes spanning multiple overlapping frames.

2) Hop size: In conjunction with window size, analysis-hop
size will affect the temporal context represented by a single
component in the convolutive implementation. a 20-frame
convolution with a short hop might represent less context than
a 10-frame convolution at a longer hop length. For all frame
lengths, we evaluated hop sizes of 64, 128 and 256 frames, as
well as hop sizes relative to window length, by using a hop
of 50% of window length.

3) Filterbank choice: An FIR gammatone filterbank with
30 channels of equivalent rectangular bandwidth (ERB) [46]
was used as the analysis filterbank in the creation of MS-
domain mixtures, and was implemented with the LTFAT
toolbox [47]. We do not make the assertion that a gammatone
filterbank will produce the absolute best performance, however
this filterbank has some properties (as do others) which pro-
duce useful structure in the production of the MS. Its extensive
use in auditory modelling, for example in F0 estimation
[48], influence our use of such a filterbank here however.
As Bregman points out in [49], the ability to estimate F0 in
the presence of other sounds means the correct assignment of
spectral components to sound sources, and gammatone-based
methods have been successful in achieving this.

Increasing bandwidth with centre frequency means that
multiple harmonics can be covered in a single band even
as frequency increases. Overlapping filters provide mutual
information across channels, which aid in a single component
representing redundant information across channels in the
factorisation.

An insight into the effects of various filterbank parameters
can be observed in Figure 13, where the results of preliminary
performance tests are shown. We compare SDR and IPS
for separated sources with a variety of filterbanks in the
generation of the MS tensor. The number of channels in a
gammatone filterbank is varied, and the effect on separa-
tion performance shown. Also, a different filterbank spacing,
constant-Q transform (CQT) spacing is compared. There is
less overlap between channels with this filterbank.

From these initial results, it can be seen that there is a
performance disadvantage to using CQT filters,
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Fig. 13: Separation performance for a fixed window and hop
size, and different MS filterbank functions. Filter type and
number of channels shown in legend. Note different y-axis
scale across plots.

4) Truncation length: The MS signals are lowpass filtered
at a fixed frequency during their generation. With different
analysis frame lengths, the DFT bin relating to cutoff fre-
quency varies. The truncation length can be changed accord-
ingly. We vary truncation length with frame size to remove
information above a fixed frequency, and truncate at 1/16th of
frame size.

5) Convolution Length: Convolution lengths of 1, 3, 5, 10,
20 frames were used in the MS-NTD factorisation. This, in
combination with the hop size, determines how much context
(and resulting variation) is captured in a single component.

E. Results

Separation results for each mixture type are presented in
Figures 14 and 15. Figure 14 shows results with a fixed hop
size of 256 samples, whilst Figure 15 shows results with a hop
size proportional to the analysis window length at 50% overlap
and allows comparison for larger hop sizes. Hops of 64 and
128 frames (across all analysis frame lengths) were also tested
but on average produced inferior performance compared with
a 256 frame hop, so are not shown here.
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Fig. 14: Hop length 256 separation source-to-distortion-ratio
(SDR) and interfering source perceptual suppression (IPS) for
convolutional modulation spectrogram NTF (MS-NTD) and
NMF (NMD) for different material types. Different analysis
window lengths are compared. Note different y-axis scale
across plots.

The MS-NTD separation approach gives consistently higher
separation performance than NMF in terms of SDR for all
analysis window lengths and across all material types. For the
proposed MS-based representation, convolutive factorisation
(MS-NTD) increases SDR performance over non-convolutive
(MS-NTF) for at least one convolution length in each case
when a 256 frame hop is used. However, for longer analysis
frames, as with a 50% hop for frame lengths � 1024, con-
volutive shifts tend to reduce separation SDR. In these cases,
the overall context time covered by multiple frames is enough
that a single component can not properly model the changes
present.

For MS-NTD, a window length of 1024 samples produces
the best within-method separation quality, for all material types
except speech-noise mixtures, where a window of 512 samples
produces better separation.

Although the plotted results show a difference in mean
separation performance, the statistical significance of differ-
ences between mean separation across methods should also
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Fig. 15: HOP 50% Separation source-to-distortion-ratio (SDR)
and interfering source perceptual suppression (IPS) for convo-
lutional modulation spectrogram NTF (MS-NTD) and NMF
(NMD) for different material types. Different analysis window
lengths are compared. Note different y-axis scale across plots.

be considered. A paired t-test was used to determine whether
the differences in mean performance measured over 500 test
mixture samples was statistically significant. Significance was
assessed across separation method (MS-NTD vs. NMF) and
in terms of effect from convolution length. For SDR, for each
window length and convolution length, the mean improvement
observed with MS-NTD over NMF was highly statistically
significant (P < 0.001). Within the MS-NTD results, the
statistical significance of improvement using convolutional
factorisation compared to single-frame factorisation was also
tested. For the best performing window length of each material
type, the key results and statistical significance can be seen in
Table I. Such results validate the use of the convolutional MS-
NTD model over MS-NTF.

Within the perceptual separation metrics, neither the non-
negative matrix deconvolution (NMD) or MS-NTD is con-
sistently producing better performance. Superiority of one
method over another depends more on material type. Mixtures
containing speech have a higher mean IPS score for NMD sep-
aration than the proposed MS-NTD. For mixtures containing

TABLE I: Statistical significance of SDR improvements
achieved with convolutive factorisation model and 256 sample
hop

Material+
Window Length

NTF
SDR
Mean
(dB)

Convolution
Length
(Frames)

NTD
SDR
Mean
(dB)

P-Value

Speech-Speech
512

3.52 20 3.78 1.5e-07

Speech-Noise
512

4.77 20 5.01 8.20e-07

Speech-Music
1024

6.56 10 6.94 0.0011

Music-Music
1024

14.82 10 15.67 2.9e-05

music, for similar analysis window lengths we observe similar
performance across both methods. A window of 512 produces
the best IPS scores across all material types.

F. Discussion

There is a clear variation in performance for different types
of material. The differences are likely due to the differences
in structural complexity (underlying rank) of each signal type.
Representing complex signals accurately using a only a single
component will never be totally effective if the inherent rank
of an individual signal is much greater than one. This is true
regardless of the domain in which signals are represented. This
shortcoming can be addressed by factorising mixtures using
higher-rank models, but this introduces the need to assign
factors to specific sources, a challenging problem in its own
right [50], [51].

A large amount of overlap in time-frequency points also
makes separation of sources more challenging. For speech-
speech mixtures, each source will tend to have greater statis-
tical similarity than other material types since speech tends
to occupy specific frequency ranges, whereas noise and music
have a much looser expectation in terms of frequency range,
so have lower expectation of overlap between sources. In
comparison of IPS score with SDR, we notice that for material
types which produce higher mean SDR values also produce
higher mean IPS.

Generally an improvement in performance with convolutive
mixtures could be attributed to a higher number of parameters
compared to the single frame factorisation. In the results
presented, all frames overlap by 256 samples (16 ms) effective
convolution over 10 frames captures temporal variations of the
order of 160 ms. For mixtures containing speech, temporal
variation is higher than the music-music mixtures, which
would explain why the frame length 512 (32 ms) gives better
results than longer context. It can also be expected that certain
other factorisation constraints which have been shown to help
separation performance in NMF-based separation, such as the
introduction of enforced sparsity may also improve separation
performance.

The described evaluations and comparisons should be con-
sidered as measure of each technique’s general separation
performance but will not ensure superiority in all cases. In
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practical applications, one can use the results presented to
make informed decisions about implementation parameters of
a particular separation approach, based on expected source
material.

VI. CONCLUSION

This paper has presented a sound separation technique based
on the factorisation of mixture signals in the modulation
spectrogram representation. Non-negative factors are estimated
for each source by minimisation of the Kullback-Leibler
divergence between factors and a mixture tensor. Through use
of iterative update rules, a single component is learned for
each source within a mixture, from which individual source
estimations can be reconstructed.

We have proposed a convolutive extension to our original
MS-NTF algorithm, termed MS-NTD, and shown that it can
produce a statistically-significant mean improvement in SDR
for separated signals. Furthermore, we presented a novel
reconstruction method for audio signals separated using MS-
NTD factorisation, which makes use of the estimated source
activities in order to learn reconstruction masks in the STFT
domain.

Computational tests across many mixtures on various real
world mixture types show that the proposed methods out-
perform spectrogram based NMF, in terms of SDR. For the
perceptually-derived IPS metric, NMF produces better perfor-
mance on mixtures containing speech, although we consider
this evaluation criterion less relevant.

The results suggest that a large advantage can be gained
by the use of blind MS-NTF compared to NMF in producing
higher mean separation metrics in terms of SDR, but do not
necessarily produce an expected improvement in terms of
perceptually estimated IPS.
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