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Abstract

This paper proposes an algorithm for separating monaural au-
dio signals by non-negative tensor factorisation of modulation
spectrograms. The modulation spectrogram is able to repre-
sent redundant patterns across frequency with similar features,
and the tensor factorisation is able to isolate these patterns in
an unsupervised way. The method overcomes the limitation
of conventional non-negative matrix factorisation algorithms to
utilise the redundancy of sounds in frequency. In the proposed
method, separated sounds are synthesised by filtering the mix-
ture signal with a Wiener-like filter generated from the esti-
mated tensor factors. The proposed method was compared to
conventional algorithms in unsupervised separation of mixtures
of speech and music. Improved signal to distortion ratios were
obtained compared to standard non-negative matrix factorisa-
tion and non-negative matrix deconvolution.

Index Terms: Non-negative matrix factorisation, non-negative
tensor factorisation, modulation spectrogram, sound source sep-
aration

1. Introduction

Sound source separation is useful in many areas of speech en-
hancement, recognition and manipulation. There are currently
numerous techniques for performing sound source separation,
providing different performances for differing optimal condi-
tions. Non-negative matrix factorisation (NMF) provides state-
of-the-art single-channel blind source separation [1]. Basic
NMF techniques decompose a mixture signal into a sum of
components having a fixed spectrum and time-varying gain,
which when multiplied approximate the mixture spectrogram.
The effectiveness of NMF stems from its ability to isolate re-
dundant patterns in an unsupervised manner. One major short-
coming of basic NMF decomposition is that it does not fully
utilise redundancy of sounds across frequencies, though. For
example, random permutation of a spectrogram’s frequency
bins does not affect the outcome of regular NMF. Many nat-
ural sounds exhibit consistency in structure across their spectra,
and it can be beneficial to take advantage of this fact. Current
variations of NMF which take account of harmonic structure
exist, but require a prior knowledge of source specific param-
eters [2]. Non-negative matrix deconvolution (NMD) [3] is an
extension of NMF where a component spectrum is modelled as
a convolution between a spectrum and filter. Source-filter NMF
(SF-NMF) [4] models each component spectrum as multiplica-
tion of an excitation and filter spectrum. Both NMD and SF-
NMF are capable of utilising the redundancy of audio spectra
and modelling their structure. However, they require more pa-
rameters for representing spectra than conventional NMF and

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 290000 and Academy of Finland
grant number 258708

Tuomas.Virtanen@tut.fi

are therefore prone to over-fitting if no other restrictions are
used.

Conventional NMF algorithms operate on the magnitude or
power spectrogram, whilst in the human auditory system the
sound is transduced to a representation based on the low fre-
quency amplitude modulations within frequency bands, known
as the modulation envelope. Modulation patterns are likely
some of the cues utilised in higher level processing of stream
information in the brain [5, 6] and it can be shown that these
are present within harmonic sounds [7]. The spectrogram of
a modulation envelope is termed the modulation spectrogram
(MS), and it has been shown to be beneficial in representing
speech signals [8].

In this paper, we propose the use of the MS to represent the
signal so that structurally related content in different bands will
exhibit similar features.

We propose to use non-negative tensor factorisation for de-
composing the MS into component factors. The proposed non-
negative tensor factorisation (NTF) technique utilises MS in-
formation redundancy between frequency bands. To our knowl-
edge, this is the first use of NTF for a single-channel source sep-
aration problem; previous applications of NTF have focussed
solely on multi-channel source separation [9].

2. Modulation spectrogram feature
representation

The generation of the MS is based on a computational model
of the cochlea, the structure in the ear where transduction of
acoustic vibration to an electrical signal occurs. Components
must be sufficiently distinct in frequency to be perceived as sep-
arate, partly due to the physical resonance properties of the in-
ner ear structures. Components similar in frequency can there-
fore be considered to reside in the same auditory filter ‘channel’.
The cochlear output is modelled by a bank of overlapping filters
whose output approximates the excitation of a particular physi-
cal location sensitive to a specific frequency. The firing rate of
hair-cells attached to the basilar membrane roughly translates to
the instantaneous excitation power of a filterbank channel out-
put.

The method for obtaining the MS features used in factori-
sation is now described. The mixture signal is filtered using a
gammatone filterbank, from the Patterson-Holdsworth cochlea
model [10] and each band linearly spaced according to the
equivalent rectangular bandwidth of the filter. This was im-
plemented using Slaney’s Auditory Toolbox [11]. Each band
is half-wave rectified (hair cells within the ear can not have a
negative firing rate) and low-pass-filtered to obtain the modu-
lation envelope (ME) using a single pole recursive filter with
-3dB bandwidth of approximately 26Hz.

The modulation spectrogram is obtained for each channel
from the ME of each channel. Envelopes are segmented into
a series of overlapping frames and (Hamming) windowed be-



ultiple Channel
Output

—
— 3

—>
=

—>
Halfwave Rectification,
Lowpass filter

—>

Mixture Signal

Gammatone
Filterbank

—_—

Feature Tensor, X’

STFT |—>=

STFT Frame data

size N

2
d}ee 0},‘0
< 9'0 STFT Frames
é?(; size M
P, N
s

Figure 1: Block diagram overview of the process used to produce features used in tensor fflctorisation.
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(a) Time and frequency domain representations of a continuous
note played on a clarinet.
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(b) Time and frequency domain representations of two non-
adjacent filterbank channel outputs.
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(¢c) Time and frequency domain representations of two non-
adjacent filterbank channel outputs after rectification and low-
pass filtering. Signals have the same period. There is greater
similarity between spectra as a result of the processing.

Figure 2: Demonstration of the use of modulation spectrograms
on a continuous note played on a clarinet. The spectral magni-
tude content for non-adjacent filterbank channels with and with-
out the modulation envelope as a feature is shown. (Axes scaled

for clarity).

fore the short-time discrete Fourier transform (STFT) is per-
formed on each channel and the magnitude of the result re-
tained. The output from the STFTs are truncated to 150 pos-
itive frequency bins, since low-pass filtering removes much of
the high frequency content, which has no meaningful effect dur-
ing the factorisation. The resulting data representation is there-
fore a 3-dimensional tensor, X' (Figure 1) with dimensions of
(number of filterbank channels x size of truncated STFT x num-
ber of observation frames). Harmonically related content has a
similar modulation envelope and Figure 2 demonstrates the re-
dundancy present between modulation envelope spectra for two
non-adjacent channels of filterbank output compared with con-
ventional magnitude spectra. Passing a harmonic signal (Fig-
ure 2a) through a filterbank produces a generally unrelated fre-
quency magnitude spectrum output for each channel (Figure 2b)
unless the ME is used as a feature (Figure 2c).

3. Tensor factorisation model

The mixture data modulation spectra tensor X has dimensions
R x N x M which are the number of filterbank channels, trun-
cated STFT length and number of observation frames, respec-
tively. We model & as a sum of K components. Each com-
ponent is modelled as a product of three factors G, A and S,
each of which characterises one of the tensor dimensions. The
model, X, for X is given as:

K
Xr,n,m ~ Arnm = ZGr,kAn,kSm,k (1)

k=1
where G®*¥ contains the auditory channel dependent gain,
AN*E the frequency basis function which models the spec-

tral content of a modulation envelope feature, and ™ * ¥ is the
time-varying activation of the component. The model is there-
fore able to describes a component’s ME existing at different
levels across channels, being activated at particular points in
time. The model parameters are estimated by minimising the
generalised Kullback-Leibler (KL) divergence D,

D(X[X) = ) Xonumlog Armm
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between X and X. KL divergence is widely used in non-
negative tensor and matrix factorisation, [12] and provides ef-
fective results in comparison to other divergence measures for
the baseline case to which this factorisation model is compared
[1,13].

Iterative update equations for minimizing the KL divergence
can be derived as in [9, 14], and initialising G , A and S to non-
negative values ensures non-negativity throughout updates. The
update equations use the definition of C = X'/ X, element-wise.
The update rule for G is:

Zn,m Cr,n,mAn,kSm,k

G+ G, 3
K K S A kS 3)
Similarly, the multiplicative update rule for A is:
Z Cr,n,mGr,kSm,k
Anx+— A, L 4
K K > GrSok C))
S is updated using:
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C is reevaluated between each update of G, A and S. In
our tests, sufficient convergence to the KL solution had been
reached after 200 iterations.

The total number of entries in the factor matrices G, A and S
is KX(M+R+N). N is atruncated discrete Fourier transform
(DFT) result, so in practice is much smaller than the dimension
of the DFT, (P) used in conventional NMF. A total of K X
(M + P) entries is required for the NMF factor matrices and it



can be seen that in our implementations, where R = 20, N =
150 and P = 513 (redundancy in the 1024 bin DFT output
allows removal of complex conjugates) , NTF requires fewer
parameters than NMF, SF-NMF and NMD which can minimise
over-fitting compared to the other approaches.

4. Synthesis of components from factorised
tensors

Following factorisation of the mixture signal into components,
G, A and S, where separation is achieved in the modulation
envelope domain, reconstruction is carried out in a Wiener-
filtering-like reconstruction approach. The basis functions A
are in the modulation envelope domain, but for effective Wiener
reconstruction, parameters are required in the STFT domain of
the original mixture signal. Full bandwidth spectral basis func-
tions for reconstruction are estimated using the channel and
temporal activations G and S. A component synthesis tensor, }V
is generated by taking the STFT of the output of each auditory
filterbank channel when filtering the original mixture signal. V
is complex-valued, but only the magnitude of each value is used
for factorisation. Conceptually, the generation of V is much like
that illustrated in Figure 1, with the rectification and low-pass
stage removed. Truncation of STFT frequency bins is not per-
formed, so the resulting tensor dimensions are R x P x M. The
matrix of signal reconstruction basis functions, B (dimensions:
P x K) is estimated by minimising the Kullback-Leibler diver-

gence between |V| and its approximation D)| |)>| is calculated
from components G, B and S:

K
|V|'r,p,m = ZGT,kBp,ksm,k (6)
k=1

Defining £ = |V|/ |l>\ allows repeated application of update
rule: S & G, .S
rom CTP,mEr kO m k
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after B has been randomly initialised with non-negative values.
200 iterations were used in our experiments. The Wiener filter
formed from G, B and S is applied to V, to produce K sepa-
rated components, V¥ in the STFT domain thus:

Ve pm = Ve ek Bk Sm ®)
” Zk’ G'r,k’Bp,k’Sm,k/
Conversion of each of the K sets of STFTs back to the time do-
main frames is performed by the inverse DFT of the p dimen-
sion. Overlap-add reconstruction for successive frames gener-
ates sets of channel outputs which can be summed over r to pro-
duce the separated time-domain components from which sepa-
ration performance can be measured.
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5. Simulation experiments

The separation performance of the proposed algorithm was
evaluated against existing techniques, with a variety component
clustering approaches. The different approaches provide in-
sight into the basic separation ability of the proposed algorithm
alongside practical usage performance (blind clustering). Test-
ing over a large set of randomly generated mixture signals was
performed computationally with separation performance evalu-
ated using the BSS Eval Matlab toolbox [15].

5.1. Acoustic material

Acoustic mixture material was generated by mixing speech data
from the CMU Arctic database [16] with music data from the
jazz and classical styles within the RWC database [17]. Material
was re-sampled to 16kHz for these tests. A complete speech

utterance was chosen at random from the CMU database, as was
a piece of music from RWC. A portion of the music of the same
length as the speech was randomly selected and extracted from
the music. The RMS power of each signal was normalised, and
the speech and music samples combined, retaining the originals
for later evaluation of separation performance. A test set of 100
unique mixtures was used.

5.2. Evaluated algorithms

The proposed method was evaluated against a general monaural
audio non-negative matrix factorisation of spectral magnitude,
as well as non-negative matrix deconvolution [3] (NMD), per-
forming convolution only in frequency. The basic NMF method
is similar to that of Virtanen in [1] although excluding tem-
poral continuity constraints. Enforced sparseness was imple-
mented and trialled, but produced negligible difference com-
pared to standard NMF. Signal reconstruction was performed
using a Wiener-filtering-like approach, as in [18] and Equation
8. It should be noted that many modifications to basic NMF
exist which can improve its performance for particular signal
types. Extension of many NMF modifiers to the extra dimen-
sionality of the tensor factorisation could also be performed in
many cases.

A Hamming analysis window of length 1024 samples and
50% overlap was used in all methods. The length of the analy-
sis window used affects the performance obtained; it was found
through preliminary tests on development material that was not
part of the test set that a length of 64ms (1024 samples at
16kHz) worked well and has also provided good results in pre-
vious similar separation tasks [18] by providing a fair compro-
mise between temporal resolution and sufficient representation
of low-frequency content. Reasonable performance could also
be obtained with other window lengths, however. An auditory
filterbank of 20 channels was used in the NTF approach, this
number also being chosen after providing good performance on
development material. All factorisations were run for 200 it-
erations as sufficient convergence was reached at this point. A
convolution filter length of 10 frequency bins was used in the
NMD implementation. KL-divergence was used as the minimi-
sation criterion in all methods.

5.3. Clustering of components

Three separate clustering approaches were used: Oracle clus-
tering, blind clustering based on MFCCs, and blind cluster-
ing based on factor activations. Each approach allocated sep-
arated components to either of two sources, ‘speech’ or ‘mu-
sic’. The ‘oracle’ approach employed knowledge of the original
speech and music signals in assignment of separated compo-
nents which removed the clustering algorithm’s influence from
separation performance evaluation. In oracle clustering, each
component was compared to both original sources of the mix-
ture using the signal distortion ratio (SDR) of the BSS toolkit
[15] and assigned to the source producing the higher SDR fig-
ure. Practically, an oracle approach can not be used in blind
source separation though, and so blind clustering methods pro-
vide an indication of the potential application value of sepa-
ration techniques. It should also be noted that using the ora-
cle clustering approach with large numbers of bases will gen-
erally provide an unrealistically good separation performance
since increasing numbers of bases reduces the minimal unit
from which the sources can be reconstructed.

5.4. Blind component clustering

The use of blind clustering approaches for comparison of sep-
aration technique performance introduces a dependence on the
selected clustering method into the evaluation. Where possible,
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Figure 3: Stylised representation of the generation of similarity
vectors used in clustering of components

features used in clustering should be equivalent across separa-
tion approaches, so that the clustering does not unduly affect
the separation performance results obtained. Due to the dif-
ferent feature representations between factorisation approaches,
equivalence is not always possible. The use of MFCCs cal-
culated from time-domain components ensures equivalence of
clustering features across several separation approaches, al-
though may not be the most effective blind clustering method.
Factors obtained from the NTF, NMF and NMD could also be
used for clustering. Temporal activation factors (e.g columns of
matrix S) exist in both the NTF and NMF separations and so can
be considered analogous for use in clustering, as can the mix-
ing matrix obtained through NMD to a lesser extent. A feature
vector of a component consists of its similarities to the other
components, and the vectors of all the components are clus-
tered using the k-means algorithm. Similarities between pairs
of components are measured using the features mentioned pre-
viously: MFCCs or temporal activations.

The peak normalised cross correlation value between feature
pairs are stored as shown in Figure 3. For the MFCC cluster-
ing, 13 channel MFCCs are calculated using Slaney’s auditory
toolbox [11]. Similarity vectors are calculated for each cepstral
coefficient and concatenated to form the input into the k-means
algorithm.

5.5. Results

The average of the separated speech and music SDRs was used
to produce a single separation metric for each trial mixture. 100
mixtures were compared for each number of components for
conventional NMF, NMD and the proposed modulation spec-
trogram NTF (MS-NTF) separation technique. Three separate
clustering methods were used; the average SDR performance
for each is shown in Figure 4. Oracle clustering highlights the
baseline separation performance of each separation approach,
where it can be seen that the separation ability of MS-NTF out-
performs the other methods on trial below 10 components, after
which NMF surpasses it. MS-NTF’s superior basic separation
performance for low component numbers translates into supe-
rior blind clustering performance since the correct assignment
of all components becomes less likely with increasing compo-
nent number. Of the blind clustering features used, temporal
activations appear to be the more useful feature. It is interesting
to note that once blind clustering is introduced, performance
generally decreases with increasing numbers of components,
except with temporal activations and NMF, where it tends to
increase. Separating directly into 2 components with MS-NTF
produces on average the best separation performance using a
blind clustering approach.
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Figure 4: Separation performance across different separation
and clustering approaches. Legend in the top panel applies to
all plots.

6. Conclusions

This paper has proposed a novel algorithm for monaural sound
source separation which used the modulation spectrogram as a
feature in non-negative tensor factorisation. The model makes
use of redundancy in spectral similarities across frequencies
during the factorisation of a mixture signal into its constituent
components. The proposed approach was evaluated against
other source separation techniques on the decomposition of
mixtures of 2 sound sources into varying numbers of compo-
nents. For low numbers of components, MS-NTF produced bet-
ter source separation performance than conventional NMF and
NMD for the speech-music mixture signals under test. With or-
acle clustering, separation performance increased with increas-
ing component numbers, and NMF approaches outperformed
the proposed MS-NTF algorithm above 10 components. The
utility of the proposed method is demonstrated by results ob-
tained with lower number of components, where in the practical
use case of blind clustering, superior performance is obtained
compared to the established techniques of NMF and NMD.
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