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ABSTRACT

For real-time or close to real-time applications, sound source separa-
tion can be performed on-line, where new frames of incoming data
for a mixture signal are processed as they arrive, at very low delay.
We propose an approach which generates the separation filters for
short synthesis frames to achieve low latency source separation, based
on a compositional model mixture of the audio to be separated. Filter
parameters are derived from a longer temporal context than the cur-
rent processing frame through use of a longer analysis frame. A pair
of dictionaries are used, one for analysis and one for reconstruction.
With this approach we are able to increase separation performance
at low latencies whilst retaining the low-latency provided by the use
of short synthesis frames. The proposed data handling scheme and
parameters can be adjusted to achieve real-time performance, given
sufficient computational power. Low-latency output allows a human
listener to use the results of such a separation scheme directly, without
a perceptible delay. With the proposed method, separated source-to-
distortion ratios (SDRs) can be improved by over 1 dB for latencies
below 20 ms, without any affect on latency.

Index Terms— Non-negative matrix factorisation, NMF, source
separation, real-time, low-latency.

1. INTRODUCTION

Sound source separation is a topic which has received lots of research
effort in previous years, but the majority of separation approaches rely
on off-line methods, where the entire audio mixture is available prior
to separation. Such approaches are able to make effective use of long
temporal context, and can for example, in frame-based approaches,
look ahead to glean useful separation information relevant to current
frame processing, such as in [1] . In on-line approaches, data must be
processed as it becomes available, and subsequent frames can not be
used. Such an application, would be for example in real-time source
separation for a hearing-aid user, where processing must be performed
with the lowest possible latency, typically smaller than 20 ms [2] and
even delays of about 3 to 6 ms are detectable [3]. Any noticeable
audio-processing delay can cause the effect of received sound being
asynchronous with the sound source, which is uncomfortable for
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Fig. 1: Schematic diagram of the proposed source separation ap-
proach. As new frames to be processed are formed from incoming
data, previous data are retained to provide greater temporal context
with which to produce separation filter coefficients.

the hearing-aid user. Generally, low-latency single-channel speech-
enhancement or source separation approaches are based on spectral
subtraction or classical Wiener filtering approaches [4], where some
estimate of the noise statistics are derived from the noisy signal.
Where the sources within a mixture are statistically similar, e.g. in
two-talker mixtures, such methods are less effective though.

Compositional model approaches such as exemplar-based non-
negative matrix factorisation in [5, 6, 7] represent an audio mixture
spectrogram as a summation of non-negative components. In super-
vised separation approaches, such as proposed in this paper, each
sound source present within a mixture is modelled by a non-negative
combination of units known as atoms, which are selected from a
pre-learned dictionary. These approaches have been shown to be very
effective in sound source separation where a well-matched dictionary
exists for each source [5], even where sources are of similar types,
such as two-talkers. So far though, the effectiveness of such ap-
proaches at very low-latency (< 20 ms) has not been well addressed.

Real-time non-negative matrix factorisation based source separa-
tion has been considered in [8], where a semi-supervised approach
updates the atoms representing noise in the current observation frame
from data within a sliding window of variable number of frames with
a fixed length of 32 ms. The supervised case is also considered, but
frames being separated with this approach are explicitly limited to
only their own time context, and is essentially the basic NMF model
applied to each observation vector individually. In [9], on-line meth-
ods are again considered, with a focus on learning the statistics of
unknown sources in the mixture without a-priori information, once
again making use of longer analysis frames (64 ms, 75% overlap).



Real-time separation with pitch-based methods is considered in [10],
but pitch estimates are formed over a series of frames, giving a la-
tency greater than 200 ms.This approach is extended specifically for
hearing-impaired listeners in [11].

Although low-latency separation using these techniques can be
directly implemented by simply using short analysis frames to achieve
the desired latency, (as mentioned in [8, 9]), performance is poor
when analysis frames are too short and no literature currently exists
addressing compositional model based separation with frame lengths
below about 20 ms.

With this considered, this paper proposes a low-latency separation
approach through parts-based audio representations. The limitation of
short analysis frames is overcome by utilising two separate temporal
contexts for signal analysis and separated source reconstruction.

By constructing a dictionary for analysis, and coupling each atom
within that dictionary to a shorter corresponding reconstruction atom,
longer temporal context and hence more information becomes avail-
able for modelling each observation vector based on the contributions
from two speakers, which improves separation quality. Similar dual-
dictionary separation approaches were independently proposed in
[12], however this work is more does not explicitly address the low-
latency case, which is the focus of this paper.

The remainder of this paper is structured as follows: First, an
overview of source separation using compositional models is given,
followed by a brief description of the effects of window-length on
latency. The proposed model is then described in Section 4, which
includes the process by which speaker-specific dictionaries are con-
structed using such an approach. An evaluation of the effectiveness
of the proposed model over the basic single dictionary compositional-
model-based separation approaches is presented in Section 5, fol-
lowed by a summary of the presented work and implementation
considerations in Section 6.

2. SOURCE SEPARATION USING DICTIONARY BASED
COMPOSITIONAL MODELS

Separation through approximation using linear models has been
shown to be effective, in [7]. The spectral magnitude of a mix-
ture is approximated through non-negative summation of components
stored within pre-trained dictionaries, with the contributions from
each dictionary being used to produce a Wiener filter which is applied
to the mixture spectrogram for each source.

A dictionary is defined for each source present within the mixture.
Each frame x to be separated is approximated as a sum of dictionary
atoms dk, weighted by non-negative weights wk as

x ⇡ x̂ =
KX

k=1

wkdk. (1)

An observation vector x is therefore described by the sum of K com-
ponents from dictionaries and their respective weights w, where wk

is estimated to minimize a divergence function (typically Kullback-
Leibler divergence) between the observation vector, x, and its approx-
imation, x̂. Equation (1) can be rewritten as:

x̂ = Dw (2)

where the dictionaries matrix D is partitioned
D = [D1D2] (3)

with D1 and D2 containing atoms trained on source 1 and source 2
respectively. The weights pertaining to each source are notated w1

and w2, and the model can be described as:

Table 1: Summary of some of the notations used consistently through-
out this paper.

Symbol Description
at Time-domain analysis frame
st Time-domain synthesis frame
A Length in samples of at

L Length in samples of st
y Real-valued feature vector formed from at

s Complex-valued synthesis vector formed from st
A Analysis dictionary
R Reconstruction dictionary
R:,k The k-th column of dictionary R.
w Weights vector for a single output frame
sn The reconstructed frame for the n-th source in a mixture
n Subscript referring to the n-th source in dictionaries, weights, or

reconstructed frames.

x̂ = [D1D2]


w1

w2

�
. (4)

Sources are separated using the above compositional model in the fol-
lowing way. If the complex-valued observation vector to be separated
is y, then the separated contribution of the source 1, s1 is extracted
by

s1 = y ⌦ D1w1

D1w1 +D2w2
(5)

and similarly for source 2, using the appropriate dictionary and
weights in the numerator of Equation 5. The operation can be con-
sidered a Wiener filter in the frequency domain, and ensures that
reconstructed source estimates sum to the original mixture.

3. DATA PARTITIONING AND LATENCY

For low-latency systems, the time-delay between samples being avail-
able for processing and being output as audio should be as low as
possible. In frame-based processing schemes, a whole frame of data
must be collected and stored before it can be processed for output.
We refer to the theoretical minimal delay between a sample incoming
into the algorithm and being processed and available for output as
‘algorithmic latency’, Ta, whereas the actual processing time taken
can be called ‘computational latency’, Tc. The overall latency T is
the sum of these values,

T = Ta + Tc. (6)

We consider only the constraints of realising low algorithmic la-
tency, since depending on the parameters of a particular processing
schema, hardware etc., computation time is non-deterministic.

Since synthesis frames are processed in a block-based manner, a
whole frame of input must be captured before the first sample can
be output. From a purely algorithmic perspective, sample output can
occur as soon as a frame has been processed, regardless of frame
overlap. The algorithmic latency of such an approach is therefore the
synthesis frame length.

Computational complexity is reduced for non-overlapping frames,
but this can result in discontinuities between the last sample of one
output frame and the first sample of the next. Greater overlap provides
more information which should provide better separation quality
than non-overlapping frames, but increases the minimal achievable
computational latency.

4. PROPOSED MODEL

In order to maintain low algorithmic latency, processing is applied on
short incoming data frames, whilst the filter weights are established
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Fig. 2: Feature vector creation. Dictionary atom n for both the
analysis and filtering dictionaries are formed from data in the same
randomly sampled window.

by examining longer previous temporal context. Since two different
frame sizes are used to gather time-domain data for processing, two
different atom lengths exist across the coupled dictionaries used in
the additive model. For each source, we therefore create separate
dictionaries for analysis and reconstruction.

An incoming audio mixture signal is analysed and processed in
a frame-based manner, with feature vectors derived from each time-
domain frame. Separation is performed by representing feature vec-
tors with a compositional model, where the atoms in each dictionary
sum non-negatively to approximate the spectral features of the sources
within the mixture. Individual dictionary atoms therefore have the
same dimensions as the feature vectors formed from the mixture
signal, which are either analysed or filtered in terms of the dictionary
contents.

4.1. Frame Lengths and Feature Vectors

For clarity, we now define time domain frame lengths and feature
vectors derived from them. Variables are also summarised in Table 1.
We refer to the the frame data which is processed for the purposes of
separated source reconstruction as the synthesis frame s

t of length L.
A buffer at of previous incoming samples, length A, is maintained
(where A > L and A/L is an integer) and referred to as the ‘analysis
frame’; the temporal context from which the filters to be applied
to the processing frame can be derived. The relationships between
frames is depicted in Figure 2. Both frames are updated every L/2
samples (50% overlap), achieving an algorithmic latency of L whilst
reducing computational costs which would be present with higher
overlap values.

The analysis feature vector, y, is formed from a

t by taking the
absolute value of the positive frequencies of the discrete Fourier
transform (DFT) of analysis sub-frames length L with 50% overlap,
and concatenating the resulting ( 2AL � 1) subframe outputs into a
single vector. The vector effectively describes the magnitude of
frequencies present during the past A samples (see Figure 2). The
complex-valued frequency-domain synthesis vector s is formed by
taking only the positive frequencies the DFT result of real-valued data
in s

t , and so has length (L/2) + 1. A Hanning window is applied
prior to each DFT on all vectors. s is filtered at each frame output to
produce the separated source estimates as described in Section 4.3.

4.2. Model Dictionaries

For additive model based separation, a dictionary of atoms is typi-
cally learned for each speaker in the mixture. We propose the use of
coupled dictionaries for each talker, whereby a dictionary of longer
analysis atoms is produced alongside a dictionary for source recon-
struction.

Explicitly, in 2-talker mixture model, we use one dictionary matrix
A for analysis, and one for source reconstruction, R where each
dictionary comprises talker-specific regions as in Equation 3. The
portion of a dictionary trained on source n is notated by the subscript,
e.g. An, thus:

A = [A1A2] (7)
and

R = [R1R2]. (8)
The k-th atom in the in each dictionary is coupled to the atom at the
same index in the alternate dictionary,

R:,k () A:,k (9)

by the fact that each was obtained from the same portions of training
data, the analysis atoms being derived from a longer previous context
than synthesis atoms. The actual dictionary atom creation process is
similar to that of feature vector creation depicted in Figure 2. Analysis
dictionary atoms are obtained by the same processing as to produce
y. Reconstruction dictionary atoms are created similarly to s, except
that the real-valued absolute value of the DFT result is stored, as
opposed to the complex-valued result present in each s.

Atoms in A are formed from time domain data of length A whilst
L samples are used to form atoms in reconstruction dictionary R.
The atoms in A are used to estimate the weights applied to atoms in
R, in order to form the frequency-domain Wiener filters applied to
the complex-valued synthesis frame s.

4.3. Analysis and reconstruction using coupled dictionaries

Analysis is performed by learning the weights w which minimise
KL-divergence between analysis vector y and a weighted sum of
atoms from dictionary A (Equation 10).

minimize
w

f(w) = KL(Y||Aw) (10)

We employ the ASNA algorithm [7, 13] to find the optimal solu-
tion due to its rapid computation time and guaranteed convergence,
although NMF-based approaches such as in [5] could equally be used,
and may offer speed advantages on GPU-based processor architec-
tures.

The learned weights w are applied to the corresponding coupled
dictionary atoms in dictionary R to form the reconstruction Wiener
filters. Filters are applied to the synthesis vector s at each frame
processing step so that the positive frequencies of each frame the of
separated source 1, s1 are reconstructed:

s1 = s⌦ R1w1

R1w1 +R2w2
. (11)

The separated time-domain sources are reconstructed by generating
complex conjugates of sn and performing the inverse DFT for each
frame to be overlap-add reconstructed into a continuous time output.

5. EVALUATION

The separation performance was evaluated computationally, using the
source-to-distortion-ratio metric, as defined in [14]. 100 test mixtures
were generated, and separated using the proposed approach, with
dictionaries being trained on material not part of the test set.
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Fig. 3: Separation SDR values for different dictionary sizes. Equal analysis and synthesis frame conditions are marked by ⇤.

5.1. Acoustic Test Material

Acoustic test material was taken from the CMU Arctic corpus [15],
utterance set B. Pairs of sentences from separate talkers were ran-
domly selected, and summed to form the test mixture. Where one
utterance was shorter than the other, the shorter file was padded with
zeros prior to summation. All sentences had a samplerate of 16 kHz.

5.2. Dictionary generation

Dictionaries for each speaker and test condition were produced by
sampling utterance set A from the CMU Arctic corpus.

For each speaker in the test set, and each test condition (synthesis
vs. analysis window length), a dictionary of either 100, 500, 1 000 or
10 000 atoms was used to model the mixture. It has been shown in [7]
that larger dictionaries produce greater separation performance since
they are able to better model the sources present in a mixture. Larger
dictionaries result in greater factorisation times, so shorter dictionaries
are worth investigating for time-critical applications. Additionally,
as the vector length increases, larger dictionaries are able to better
model the greater number of permutations which can be represented
by the larger vectors.

5.3. Test Conditions

Each test mixture was separated using the coupled-dictionary-based
method described in Section 4.

For each test mixture, a pair of speaker and parameter-specific
dictionaries (Section 5.2), are used to model the analysis frames.
Analysis buffer lengths of 5, 10, 20, 40, 80 and 160 ms were used
with synthesis windows of length 5, 10, 20, 40 and 80 ms. In the
case where analysis and reconstruction windows are equal length,
the model becomes the standard supervised separation algorithm as
described in [8].

Despite being shown to have beneficial effects on separation per-
formance ([1, 13]), sparsity constraints were not applied to the model
in these evaluations, although the model could be extended to make
use of these. K-means clustering of dictionary atoms from an over-
complete initial dictionary as in [7] is also likely to produce perfor-
mance improvements. Only a single frame overlap value of 50%
within the analysis vectors was trialled, although it is possible that the

use of greater overlaps, hence longer vectors may produce a better
performance at a trade-off against computational latency, and vice
versa.

5.4. Experimental Results

Results in Figure 3 show the SDR achieved under various test con-
ditions. The ⇤ symbol on each plot line denotes the baseline perfor-
mance when analysis and synthesis window are of equal length; the
basic supervised-separation case. It is seen that an improvement is
achieved through use of an analysis frame which is longer than the
synthesis frame, where the synthesis frame is 20 ms or below. As a
greater number of dictionary atoms is used, this performance gain
can also be achieved for 40 ms reconstruction windows. In all cases,
using larger dictionaries produces better separation performance than
shorter frames, as does using longer reconstruction windows. Where
an advantage is gained by use of a longer analysis frame than syn-
thesis frame, the level of improvement reduces as the analysis frame
becomes significantly longer than the synthesis frame. For a par-
ticular synthesis window length, greatest performance increases are
generally achieved when the analysis window is 2-4 times longer.

6. CONCLUSIONS AND DISCUSSIONS

A novel method for increasing source-separation performance in low-
latency systems has been proposed. It has been shown that through
the use of separate dictionaries for analysis and reconstruction, with
atoms derived from different temporal contexts, a significant perfor-
mance increase is obtained in very low-latency applications (< 20 ms).
As larger dictionaries are employed, the maximum performance in-
creases, and it is possible that no improvement is produced for longer
synthesis windows since the dictionary is not sufficiently large to
effectively describe the possible variation across the resulting longer
atoms. Use of a more over-complete dictionary or production of
smaller dictionaries through k-means clustering of over-complete
data may improve performance further.

In this paper, the proposed algorithm is only evaluated in terms of
algorithmic latency. Larger dictionaries and longer vectors increase
the required processing, and so would increase computational and
overall latency if an efficient processing implementation is not used.
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