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ABSTRACT 
A method is described, with which two stable sinusoids can be represented with a single sinusoid with time-
varying parameters and in some conditions approximated with a stable sinusoid. The method is util ized in an 
iterative sinusoidal analysis algorithm, which combines the components obtained in different iteration steps 
using described the method. The proposed algorithm improves the quali ty of the analysis at the expense of an 
increased number of components. 
 

INTRODUCTION 
Sinusoidal modeling is a powerful parametric representation for 
audio signals. It represents the periodic components of a signal 
with sinusoids with time-varying frequencies, amplitudes, and 
phases. The parameters are updated from frame to frame, and 
sinusoidal analysis algorithms are usually frame-based, too. 

In polyphonic, real-world signals the density of sinusoidal 
components can be very high. Also the sinusoids are usually not 
stable, which makes it difficult to estimate their parameters 
accurately. 

There are complex algorithms, which do the analysis in only one 
pass, and iterative methods that try to get a better estimation of the 
parameters in each iteration, for example [1]. Because of errors and 
inaccuracies in the sinusoidal analysis, there might be some 
harmonic components left in the residual. One approach to correct 
this phenomenom is to detect sinusoids iteratively from the 
residual. There are algorithms, which detect only one sinusoid at 
time, synthesize it, and then remove from the residual, for example 
[2]. Our system detects several sinusoids at each pass, therefore 
requiring only two or three iterations. 

 

ITERATIVE ANALYSIS 
The sinusoids that are not detected are left in the residual. If the 
parameters of the detected sinusoids are inaccurate, there remain 
sinusoids in the residual, the frequencies of which are close to the 
original ones. 

A natural approach to remove the sinusoids from the residual is to 
analyze the residual iteratively with the same analysis algorithms. 
If the sinusoids obtained from the residual are combined with the 
trajectories obtained from the original signal, a sinusoid which 
parameters were inaccurate becomes presented with two or more 
sinusoids. Normally, this is an undesirable situation. The proposed 
method combines the sinusoids obtained in different iterations, 
therefore reducing the total number of the parameters. 

The block diagram of the system is illustrated in Figure 1. In the 
first iteration, the input signal is analyzed using a conventional 
sinusoidal analysis system. This block can itself be very complex, 
but basically any sinusoidal analysis system can be used. In our 
experiments, sinusoidal li keness measure was used to detect the 
meaningful sinusoidal peaks [3]. The frequency resolution was 
improved using quadratic interpolation [4]. The ampli tudes and 
phases are obtained using non-iteratively the least-squares solution 
proposed in [1]. The peaks are tracked into trajectories by 
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synthesizing the possible continuations and comparing them to the 
original signal. The trajectories are filtered using the methods 
presented in [5]. The obtained trajectories are then synthesized and 
subtracted from the original signal in time domain to obtain the 
residual. 

In the following iterations, the residuals are analyzed with the 
same sinusoidal analysis algorithms. The parameters of the 
analysis, for example the sensitivity in the peak detection, can be 
varied from iteration to iteration. The sinusoidal trajectories 
obtained in different iterations are fused together using the 
methods proposed in the next section. Using the trajectories 
obtained in the first iteration and the remaining errors obtained in 
the following iterations, the parameters of the underlying sinusoids 
can be estimated. Again, the combined sinusoids are synthesized 
and the iteration continues. The iterative procedure can be repeated 
as long as desired. For example, the iteration can be stopped if no 
significant harmonic components are found from the residual. In 
our analysis system, two iterations was found to be quite enough. 

The iterative algorithm is computationally expensive, since each 
iteration requires one pass of a conventional analysis, and synthesis 
of the sinusoids, too. Compared to the analysis and syntesis, the 
fusion of sinusoids is computationally cheap. 

FUSION OF TWO SINUSOIDS 

Representation of Two Sinusoids with a Single Sinusoid 
and Time-varying Parameters 
Let us have two sinusoids, the ampli tudes, frequencies, and phases 
of which are a1, a2, ω1, ω2, ϕ1, and ϕ2, respectively. The sum of the 
sinusoids at time t is denoted by x(t): 

)sin()sin()( 222111 ϕ+ω+ϕ+ω= tatatx  (1) 

Using the basic trigonometric formulas this can be converted into a 
form where the two terms have equal frequencies and time-varying 
amplitudes: 
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The sine and cosine of equal frequency can be combined into a 
single term, the ampli tude and phase of which are time-varying: 
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where correction term θ takes the negative ampli tudes into 
account: 
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By taking a derivative of the phase we can represent the time-
varying phase with an initial phase )0(3ϕ  plus a time-varying 

integral of the frequency )(3 tω : 
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Now we can represent the original signal x(t) with a single sinusoid 
with time-varying amplitude and frequency: 
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Approximation with Constant Parameters 
In the sinusoidal model, the parameters are assumed constant 
inside a frame. In certain conditions, the derived time-varying 
parameters can be approximated with constant values. The 
conditions in our iterative system are: 

1. Time t is near zero. This means that the approximated 
values are valid only in a small ti me frame. The 
parameters of the sinusoidal model are updated from 
frame to frame, so this condition is fulfilled. The 
shorter the time frame is, the better. 

2. The frequencies are close to each other. When 
conditions 1 and 2 hold, term t)( 12 ω−ω  in the 

equations 2 and 3 becomes neglible. 
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Figure 1: Block diagram of the iterative analysis system. 
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3. The amplitude envelope of the sum of the two sinusoids 
does not have a local maximum or minimum inside the 
time frame. This depends on the phases and frequencies 
of the original sinusoids. The condition is fulfilled if 
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4. The ratio of the amplitudes a1 and a2 is large. This 
happens in situations where the first sinusoid is 
obtained on the first analysis pass, and the second one 
is the error remaining from the first one. If this 
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If these conditions are fulfilled, the sinusoid with time-varying 
parameters can be approximated with a sinusoid with constant 
parameters: 

)sin()( nnn tatx ϕ+ω≈  (8) 

where constants an, ωn and ϕn are parameters of the new sinusoid 
which replaces the old ones. The approximations are: 
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An example of the approximation is illustrated in Figure 2. In 
synthesis, the parameters of the sinusoids are interpolated from 
frame to frame. Therefore, it is difficult to measure the validity of 
the approximation in a single time frame. The amplitudes are 
interpolated linearly, and if there is no local maxima or minima 

between the frames, the interpolation should work well . The linear 
interpolation of the amplitude envelope of a sum of two sinusoids 
is il lustrated in Figure 3. It can be seen clearly that near zero the 
approximation is better. 

In practise, the condition 3 sets the maximum for the difference 
between the frequencies. The smaller the time frame, the larger the 
difference can be. 

Fusion of Sinusoidal Trajectories 
In the sinusoidal model, the harmonic components are represented 
with trajectories that consist of spectral peaks in successice time 
frames. Each trajectory has an onset and offset time, which define 
the range in which the trajectory exists. In the parameter fusion the 
aim is to combine two closely spaced trajectories. For all trajectory 
pairs that overlap each other in time, the individual peaks are 
examined if they fulfil the conditions required for the fusion. In 
practise, the most important condition is the closeness of the 
frequencies. 

If all the peaks of the two trajectories that overlap with each other 
fulfil the conditions, new parameters are estimated using the 
appromations presented above. The old trajectories are replaced 
with the new one. In practise, not all the peaks have to fulfil all the 
conditions if the trajectories otherwise match well with each other. 

EXPERIMENTAL RESULTS 
In complex real-world signals, the density of sinusoidal 
components can be very high, and there are no obvious numerical 
ways to measure the performance of a sinusoids+noise analysis 
system. Therefore the performance of the analysis algorithms was 
studied by calculating some statistics from analysis and synthesis 
results obtained for a set of music samples and for a generated test 
signal. 

The same sinusoidal analysis system described in the previous 
chapter was used for the iterative and non-iterative algorithms. In 
iterative analysis two iterations were used, so the residual was 
analysed only once. 

Comparison Using a Generated Test Signal 
The test signal introduces phenomena usually encountered in 
musical signals: different kinds of changes in amplitude and 
frequency, harmonic sounds composed of sinusoids that overlap 
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Figure 2: An example of the fusion of two sinusoids. In the upper 
plot the dashed line is a sum of two sinusoids, the frequencies 
and of which are 500 and 520 Hz and the ampli tudes 1 and 0.3. 
The solid line is the result of the approximation. In the lower plot 
is ill ustrated the error between the two original sinusoids and the 
one approximated sinoid. 
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Figure 3: Linear interpolation of the amplitude envelope of a 
sum of two sinusoids. The solid line is the original ampli tude 
envelope and the dashed line is linear approximation. In the 
left plot the amplitude envelope has no local extreme values 
the approximation is valid. In right plot there is a local 
maximum so the approximation is not valid. 
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with each other, colliding sinusoids etc. The signal was divided 
into ten sections, which are described in Table 1. 

The generated test signal was analyzed in three different noise 
conditions: The levels of additive white noise were no noise, low -
14 dB noise and loud +6 dB noise. The reference level 0 dB is a 
single sinusoid with unity amplitude. The noise energy is for the 
whole 0-22 kHz frequency range. 

Since the test signal is composed of sinusoids only, the remaining 
error of the residual describes the performance of the analysis 
system. The signal-to-residual ratios (SRRs) were calculated for all 
the sections, and averaged over the three noise levels. The results 
are illustrated in Table 2. The noise removed before calculating the 
SRRs to get a measure how well the sinusoids have been detected 
from the noise. It should be noted that for single, stable sinusoids it 
is easy obtain SRRs of about 50 dB even with quite simple 
methods in noiseless environment. 

The generated test signal was made advisedly difficult to bring out 
the differences between the analysis algorithms. In section 1, the 
low SRRs are caused mostly by low-frequency sinusoids, which 
are diff icult to detect with a normal analysis window. 

The performance of the iterative and non-iterative system was 
studied by calculating the average error of the parameters and the 
number of missed peaks, too. These studies show that the 
improvement in the SRRs is caused mostly by the additional 
sinusoids detected. In a few cases the parameters become more 
accurate with the iterative analysis, li ke the SRRs of the section 3 
show: the number of sinusoids is the same but an improvement of 
about 10 dB is gained. In noiseless conditions the difference was 
even larger: an improvement of 27 dB (56 to 83) was gained. In 
noisy environment the improvements are smaller, because the 
estimation errors can be quite small compared to the noise levels. 
In most sections the average parameter errors are almost equal with 
iterative and non-iterative system, and the improvement in the 
quality comes at the expense of an increased number of 
components. 

Comparison Using Musical Signals 
The performance of the iterative analysis was tested with four 
musical signals, too. In musical signals there are non-periodic 
components li ke drums that should not be represented with 
sinusoids, and signal-to-residual-ratios can be as low as only a 
couple of dBs even though the sinusoidal analysis was perfect. 
Therefore, the SRRs should not be the only performance measure 
for musical signals. To prevent any noise to be presented with 
sinusoids, a bit higher threshold was used in the peak detection. 

The SRRs obtained using only one analysis pass ranged from 2.8 
to 9.0 dB. After two iterations, the SRRs ranged from 3.5 to 10.8, 
and an average improvement of 1.9 dB was gained. The percentage 
of the additional sinusoids ranged from 75 to 86%. The results 
were studied by listening to the synthesized sinusoids and 
residuals, too. The perceptual quality was clearly better with the 
iterative algorithm. The large number of additional sinusoids 
shows again that the largest improvement is obtained by finding 
completely new sinusoids, not by improving the parameters. 

Parameter Reduction 
Fusion of components has li ttle use in non-iterative systems. It can 
be used to reduce to number of components, but usually this only 
makes further analysis more difficult. 

The parameter fusion was tested directly with the trajectories 
obtained from the first iteration. The objective was to reduce the 
number of the sinusoids without affecting the quali ty of the 
synthesized signal. Sinusoidal trajectories analyzed with several 
different algorithm sets were available, so this test was done also 
with other analysis methods than the one described earlier. 

The average number of the sinusoids was reduced by 1.1%, while 
the average SRR was reduced by 0.08 dB. As one can expect, that 
small difference was inaudible. With some signals the number of 
parameters was reduced by 10%, but the average reduction was 
still very small. Our system uses quite low frame rate (44 
frames/s). With a faster frame rate it might be possible to get more 
reduction. 

CONCLUSIONS 
A method is proposed to approximate two sinusoids with a single 
sinusoid with time-varying parameters. The approximation is 
utili zed in the sinusoidal analysis with an iterative algorithm. The 
algorithm was compared to a non-iterative analysis system by 
using a generated test signal and a set of musical signals. In both 
cases the iterative algorithm can improve the quality of the 

Table 2: Signal-to-residual ratios obtained with the iterative and 
non-iterative analysis system. 
Section SRR without 

iteration 
SRR with 
iteration 

Percentage of 
additional sinusoids 

1 17.4 17.4 0 
2 11.0 13.4 50 
3 31.0 40.0 0 
4 12.4 14.1 15 
5 9.8 11.5 10 
6 2.3 2.6 6 
7 1.7 2.2 50 
8 6.7 10.0 15 
9 24.6 24.3 2 
10 1.4 1.8 39 

 

Table 1: Description of the generated test signal. 
Section Signal description. Amplitude is unity (0 dB) 

unless otherwise stated. 
1 Stable sinusoids at different frequencies, one 

sinusoid at a time. 
2 Frequency sweep of a sinusoid from 20 Hz to 10 

kHz. The speed of the sweep was exponential on 
frequency scale. 

3 Single sinusoid the amplitude of which fades 
exponentially from 0 dB to -40 dB 

4 Mix of sinusoids with different amplitude and 
frequency modulations (tremolo and vibrato). The 
modulation frequencies vary from 0 to 20 Hz, 
amplitude deviaton from 0 to 1 and frequency 
deviation from 0 to 1.5 semitones (0 to 9.05% of 
the center frequency). 

5 Frequency crossing of two sinusoids at several 
different frequencies. 

6 Stable harmonic sounds at different fundamental 
frequencies. All the sounds had 10 first harmonic 
partials, with unity ampli tudes. 

7 A frequency sweep of a harmonic sound, ten 
harmonic partials. 

8 Vibrato of a harmonic sound. The modulation 
frequency and depth of the vibrato were time-
varying li ke in section 4. 

9 Different kind of sharp attacks of a Shephard tone. 
The harmonics were at frequencies 100, 200, 400, 
..., 3200, 6400 Hz. 

10 Frequency sweep of a harmonic sound, mixed with 
a constant harmonic sound. 
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analysis, if the remaining energy of the residual is used to judge 
the performance. 

In most cases better quality is obtained at the expense of an 
increased number of components. In a few cases the accuracy of 
the parameters is improved without additional components. 
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