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Abstract. The advent of affordable wearable devices with a video cam-
era has established the new form of social data, lifelogs, where lives of
people are captured to video. Enormous amount of lifelog data and need
for on-site processing demand new fast video processing methods. In this
work, we experimentally investigate seven hours of lifelogs and point out
novel findings: 1) audio cues are exceptionally strong for lifelog process-
ing; 2) cascades of audio and video detectors improve accuracy and en-
able fast (super frame rate) processing speed. We first construct strong
detectors using state-of-the-art audio and visual features: Mel-frequency
cepstral coefficients (MFCC), colour (RGB) histograms, and local patch
descriptors (SIFT). In the second stage, we construct a cascade of the
trained detectors and optimise cascade parameters. Separating the de-
tector and cascade optimisation stages simplify training and results to a
fast and accurate processing pipeline.

1 Introduction

Wearable devices with a video camera, such as Google Glasses, are becoming
commodity hardware and it seems that consumers are willing to push personal
blogs even further: video and audio logging of their lives from the first-person
view (Figure 1), lifelogs. The lifelog applications have recently become under
active investigation, but it is still unclear how to adopt and adapt the existing
video processing techniques. In addition, a huge number of video streams and
on-device processing require computationally economic but fast methods.

One important application for lifeloggers is to automatically annotate im-
portant moments which can be quickly stored, indexed and shared. This can
be achieved by condensing important moments into a short “skim” and thus
research on video skimming (summarisation/abstraction) has recently gained
momentum [1, 2]. The best skimming methods are too heavy for on-device pro-
cessing, but their core components, such as scene detection which produces the
smallest data pieces for skimming, scenes, may be doable. On-device scene change
detection can help fast (on-line) generation of summaries. State-of-the-art scene
detection methods rely on visual information, but another important cue, audio,
provides an alternative modality with orders of magnitude faster processing. Vi-
sual and audio cues are often complementary and therefore many hybrids have



2 K. Mahkonen, J.-K. Kämäräinen et al.

Fig. 1. Video frames from our CASA2 lifelog dataset.

been proposed [3, 4]. However, these works mainly concentrate on maximising
accuracy and omit potential for faster computation.

What is the best approach to combine detectors using features of varying
importance and even from different modalities? In machine learning literature,
a particularly suitable technique for cost (computation time) sensitive learning
are detector cascades introduced by Viola and Jones [5]. State-of-the-art cascade
construction methods do not operate on stages [5], but simultaneously optimise
the whole cascade and its parameters using all training data at once [6–8]. That
sets restrictions on used detectors while in our case they can be very different and
therefore joint optimisation of the methods, cascade structure and its parameters
is too complicated and slow, even impossible. In this work, we take a novel
approach: we adopt the cascade structure but cast the problem as a classifier
combination [9]: the detectors are trained separately as “strong detectors”, then
cascaded based on their complexity (audio detectors first) and finally the cascade
parameters are optimised similar to expert weights in [9]. Our relaxed design
results to simpler cascade construction and training, allows using pre-trained
detectors by others, and still our “soft cascades” achieve fast (super frame rate)
processing and superior accuracy.

2 Related Work

Detector Cascades - Viola and Jones [5] is the seminal work introducing cas-
cades as a machine learning approach to tackle the real-time requirement in face
detection. Their method operated on stages each aiming at high recall and false
positives passed to the next more complicated classification stage. The approach
is effective but sub-optimal and recent holistic approaches optimising detectors,
cascade structure and cascade parameters simultaneously with all training data
can provide better cascades [6–8]. That, however, sets requirements for the de-
tectors which we wish to avoid in our work to be able to to exploit the best
available detectors. We use all training data to train a set of binary detectors,
we combine them using a free-form logical rule (a fixed cascade structure) and
then optimise cascade parameters by exhaustive or beam search. In that sense
our model is close to combining classifiers theory [9] adapted to cascades.
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Combining Audio and Video Cues - Many novel video applications based
on visual features have been proposed [10, 11], but combinations of audio and
visual features seem always superior [3, 4, 12]. In contrast to the previous works,
we do not explicitly engineer a combined audio-video-detector, but take a set
of detectors, train them separately for the specific task, and then construct
and optimise a cascade structure. That is also justified by the fact that lifelog
data is different from the previously used full length movies [13], TV news [14],
filmstrips [3] or the mixture TrecVid data [15]. The lifelog data is raw, abruptly
moving, unedited, first-person-shot video.
Contributions – Our contributions in this work are two-fold: 1) we investigate
how existing visual and audio processing methods work on lifelog data and 2)
introduce “soft cascades” of strong detectors for efficient scene change detection
in super frame rate. We have collected seven hours of real lifelog data and in
our cascades we utilise the best performing cues from various studies: colour
(RGB) histograms [16], local image patch descriptor (SIFT) based visual bag-
of-words [17] and Mel-frequency cepstral coefficients (MFCCs) [18]. Our focus is
on the essential low-level task in video summarising and indexing: scene detec-
tion [19]. We also report interesting results for shot detection [20]. We point out
the following interesting findings:
– In lifelog analysis, audio cues seem to be much more important than in

the previous works on movie or broadcast videos (e.g., the TRECVid cam-
paign [20]) or camcorder recorded home videos. In our experiments, visual
cues often fail in scene detection.

– Video cues, however, provide partially complementary information to audio,
and that can be used to boost the detection accuracy without too much
computational increase using the soft decision cascade paradigm proposed
in this work.

– The cascades can be constructed easily by separating the detector parameter
and cascade parameter optimisation into two separate stages.

3 Decision Cascades

The general goal of constructing cascades is to find a set of detectors (nodes) that
minimise a target function consisting of penalties for accuracy loss, (computa-
tional) cost of evaluating nodes, and a regularisation term to avoid overfitting [6].
Optimisation of such target function requires inter-operability of the detectors,
for example, access to the internal decision tree nodes in [6], i.e. cascade meth-
ods operate on “weak classifiers”. In our case, we may have N very different
type of detectors pre-trained for the same task and we wish to explicitly cascade
them into the computationally fastest order. A same detector may appear mul-
tiple times but its execution is needed only once. In that sense, our approach is
not consistent with the assumptions with the cascading works [6–8], but more
resembles the combining classifiers ideology [9] where “strong classifiers” are
trained and their combination weights optimised. Our combination, however, is
a cascade structure and weights are detection thresholds.
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A strong detector cascade is constructed by combining N detectors Di, i =
1, . . . , N that map an input feature space X to a decision t ∈ T in the decision
space T . For simplicity, we may assume that t is binary, i.e. D : X → {0, 1}.
Our scene change detection is also a binary task. A cascade can be represented
as a logical function, such as

D = (D1 ∩D2 ∩ . . .) (1)

or D = (D1 ∪D2 ∪ . . .) (2)

or any disjunction of conjunctions. It is clear, that significant computational
improvement can be achieved if the detector Di returns 0 in (1) or 1 in (2), since
then execution of Dj for j > i is then unnecessary. In particular, if the detectors
are indexed such that the computational complexities increase, Ω(Di)� Ω(Dj)
for i < j, then the cascade can provide remarkable computational speedup.

The problem is that there are a large number of ways to combine outputs
of the detectors, especially when the number of detectors increase, and only a
few are optimal for a certain task. Moreover, the optimal configuration does
not only mean an optimal form of the logical function D, but also optimal
values for each detector’s internal parameters Θi and cascade parameters Φ
(detection thresholds). The only approach guaranteeing the global optimum is
the exhaustive search which easily becomes unfeasible. We propose a doable but
still effective optimisation procedure by the following assumptions:
– The cascade structure is built such that the complexity of detectors increase

gradually: the computationally lightest detector first and heaviest last.
– The detectors are pre-trained: the parameters Θi are optimised indepen-

dently for the given task.
– The task is to optimise the cascade parameters Φ for the fixed structure and

pre-trained detectors.
The first assumption is justified by the fact that it can provide the lowest compu-
tational complexity for similar performance. If the detectors mutually correctly
detect (in case of D as in Eq.(2)) and leave undetected (in case of D as in
Eq.(1)) the same part of the input space, the detection performance can be even
improved in addition to saving in the computational load. The second and third
assumptions are justified by the fact that since the exhaustive search is not fea-
sible, a separate optimisation of each detector still provides the best average
performance and their mutual relationship is compensated on the cascade level
parameter optimisation. A greedy algorithm for the optimisation is given in Al-
gorithm 1. The algorithm is in the sense greedy that it moves thresholds one by
one always selecting the threshold that provides the smallest amount of negative
examples while including one more positive example. This iteration is repeated
until all positive examples are covered.

4 Audio and Visual Cues

For our cascade construction in Section 3 we only need that a selected classifier
outputs classification scores for tested example (yin). For scene detection we
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Data: Target class classification scores yin, for i = 1 . . .M data points and N
classifiers; logical cascade expression in the disjunctive normal form;

Result: Precision(P ) – recall(R) curve and cascade parameters Θ for every
point on it.

Init: Θ = [θ1, θ2, . . . , θN ] = [∞,∞, . . . ,∞]; // P=R=0

while R < 1 do
for each conjunctive (∧) part of the cascade do

Find the new thresholds θ̂j for participating sub-classifiers Dj that
select one new positive example and count the number of negative
examples introduced.

end

Set θj ← θ̂j based on the component providing the smallest amount of
negative examples;
Store Θ;
Compute and store P and R ;

end

selected the audio and visual cues most successful in earlier works. These cues
are shortly reviewed next.

4.1 MFCC Detector

As audio features we use Mel-frequency cepstral coefficients (MFCC) [18] which
have proved to be useful in many audio information retrieval tasks like speech
recognition [21], audio event detection [22, 23] and music information retrieval [24].

The audio track is analysed in successive, non-overlapping frames (not to be
conflicted with video frames). From an audio frame at time t, one MFCC-vector
x(t) of length Dx is extracted. The context change with MFCC cut detector is
measured according to changes in distributions of vectors x. A mean µd(t) and
variance σd(t) of each MFCC, indexed by d, is calculated within a sliding audio
frame sequence of length Ts preceding time t. A distance between consecutive
audio frames, LMFCC(t), for scene and shot change detection at time t is then
given by

LMFCC(t) =

Dx∑
d=1

∣∣∣∣µd(t)− µd(t+ Ts)

σd(t) + σd(t+ Ts)

∣∣∣∣2 (3)

that is slightly different to Fisher’s linear discriminant, but found better in our
experiments.

4.2 Colour (RGB) Detector

Despite of its simplicity, variants of colour (RGB) histogram distance have been
used in the most state-of-the-art shot detection methods [20] and since it is also
one of the computationally cheapest visual features it was selected for our exper-
iments. An RGB histogram is computed from each video frame. The histogram
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vector h(t) of the frame t is of length 192, containing the incidence frequencies
of pixel values 1-64 on red, green and blue channel.

A distance LRGB(t) of two consecutive RGB frames is calculated as

LRGB(t) =
∣∣∣∆h(t)−∆h(t− 1)

∣∣∣
+
∣∣∣∆h(t)−∆h(t+ Th)

∣∣∣ . (4)

The idea is, that gradual change is a natural way of RGB histogram evolving.
Thus we compare the L1 change ∆h(t) = ‖h(t) − h(t − 1)‖1 between RGB-
histograms of consecutive frames to running average change ∆h(t− 1) over Th
preceding frames to see whether the view has changed entirely instead of natural
evolution. The second term in (4) accounts for comparing the current change to
the forthcoming video frames respectively (not available for on-line processing).

4.3 SIFT Bag-of-Words Detector

This approach is computationally much slower than MFCC and RGB based
detectors, but it has been the mainstream approach in detection of visual object
classes [25, 26]. At the core of this method are histograms of codes of local patch
descriptors (SIFT) extracted from each video frame. For patch encoding, a visual
codebook must be constructed from extracted descriptors. It has been reported
that specific codebooks constructed from the input video perform much better
than general codebooks and therefore this approach was adopted by us. The
codebook is constructed from k-means clustering with a fixed k (codebook size).
For each video frame, SIFT descriptors are extracted on a dense grid, assigned
to the best matching codes, and the histogram of codes computed and used
as a feature. To compute a shot or scene change score at time t from SIFT-
histograms b, a plain L1-distance LBOW(t) = ‖b(t)−b(t−1)‖1 is used. Overall,
the L1 distance instead of the Euclidean distance for evaluating the difference
between consecutive histograms, both RGB and BoW detectors, worked clearly
best. The settings were selected based on the best found in unsupervised image
classification using SIFT bag-of-features [27].

5 Experiments

Data, experiments, performance measures, and results for the selflog video scene
detection are reported in this section. Since the same method also applies for
shot detection (camera switched) we also report our shot detection results.

5.1 Captured selflog data set

We have collected over 7 hours of video data for our evaluations (Fig. 1). The
videos were shot with a small spy camera with the frame rate 15 frames/second
and frame size of 176x144 pixels. The frames are YUV420p encoded with h263
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compression and stored in an mp4 container. The stereo sound tracks are recorded
by a pair of in-ear microphones with 44.1kHz sampling rate and stored without
compression.

The database contains video from 23 different types of environments (scenes),
6 - 16 shootings from each: amusement park, basketball game, beach, bus, cafe-
teria, inside car, family yard, football game, hallway, home, inside train, nature,
office, outdoor festival, outdoor market, party, pub/club, railway station, restau-
rant, shop, sports event, at street and track’n’field.

The video was annotated for shot and scene detection. Shot detection cor-
responds to the situation that the scene remains the same, but the camera was
turned off and turned back on in a different location in the same scene. The scene
change corresponds to the situation that the user moves to another environment.

In our evaluation, the automatically found change points were compared
to the known true scene and shot change times (groundtruth). If the found
change point was within 0.25 seconds from a true change point, the detection
was assigned correct.

5.2 Performance Measures

To compare the performances of the used shot and scene detection methods,
we use precision, P = tp/(tp + fp), recall R = tp/N where tp stands for the
number of correct shot or scene changes depending on the task, fp stands for
the number of incorrectly identified change points and N is the total number
of true change points in the video. A combination of R and P , an F-measure
F = 2 ·R · P/(R+ P ), is also used as it simplifies comparison by describing the
detection performance with a single value. We are also taking the computation
time needed by different systems into account. The computation time CT is
given as a number relative to the length of a video, i.e. for CT = 1 the system
works tightly in real time.

5.3 Detector parameters

To avoid overfitting to our test data, we trained the detector parameters with
separate material of home videos collected before the selflog data. The data is
similar to lifelog data, but does not contain the same scenes and was recorded
with a standard-quality hand-held camcorder.

In the colour histogram based RGB detector the only method parameter is
the length of the time interval to calculate the average change of consecutive
RGB-histograms TRGB. The value TRGB = 10 video frames was found best.

In the BoW detector the main method parameter is the SIFT codebook size.
We also experimented different detectors and descriptors, but the dense SIFT
in the VLFeat toolbox (http://vlfeat.org) was found the best. The codebook is
computed from the input data and the optimal codebook size was DSIFT = 100.

Based on experiments with the homevideo data, the following MFCC param-
eters were selected:
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– audio window length = 80 ms
– number of Mel-frequency bands = 80
– number of MFCCs, Dx = 20
– audio frame sequence length, Ts = 10 s

The number of Mel-frequency bands and the number of used MFCCs did not
make a big difference in performance. The audio frame length and the sequence
length for distribution estimation were more sensitive. Another finding was that
the longer the audio window and the longer the sequence length, the better is the
performance. However, to be able to detect also short scenes, these parameters
were restricted.

5.4 Results

Fig. 2. Precision-recall curves for the single MFCC, RGB and SIFT detectors in scene
detection (left) and shot detection (right).

Single detectors - The results of the single detectors in scene and shot detec-
tion are shown in Figure 2. It is noteworthy that all detectors have very different
behaviour with respect to precision and recall. The striking result, however, is
that for selflog data the audio cue outperforms the both visual cues with clear
margins and being more prominent in scene detection where it is almost twice
better. The result is quite opposite to state-of-the-art results with pre-edited
material such as movies and TV programs [13, 14, 3, 15].

Detector Cascades - The results for various cascades are shown in Table 1
including the single detectors. The single audio MFCC detector performs sur-
prisingly well (F-score: 0.84), but as indicated by the different behaviour of the
single precision-recall curves in Figure 2 the other detectors also provide strong
complementary information about scene changes. This is evident as the optimal
relationship is AND (∩) and for the two cascades MFCC and RGB and MFCC
and SIFT the results are 0.90 and 0.95: when two detectors make a wrong de-
cision the third corrects it. Note that for the both cases the computation time
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Table 1. Selflog scene and shot detection cascade performances. Performances are re-
ported as the best F -scores in the precision-recall curve with the corresponding cascade
computing time (CT) (processing time in seconds per second of video).

Cascade Scene detection Shot detection

F-score CT (s/s) F-score CT (s/s)

MFCC only 0.84 0.01 0.46 0.01
RGB only 0.40 0.43 0.31 0.43
SIFT only 0.52 184.00 0.37 184.00
MFCC ∪ RGB 0.85 0.44 0.46 0.44
MFCC ∩ RGB 0.90 0.02 0.49 0.03
MFCC ∪ SIFT 0.84 184.00 0.45 184.00
MFCC ∩ SIFT 0.95 0.30 0.51 0.81
RGB ∩ SIFT 0.68 1.30 0.42 1.30
MFCC ∩ RGB ∩ SIFT 0.91 0.30 0.48 0.38
(MFCC∩RGB) ∪ (MFCC∩SIFT) 0.96 0.30 0.52 0.31
(MFCC∩RGB) ∪ (MFCC∩SIFT) ∪ (RGB∩SIFT) 0.96 0.30 0.53 0.32

is 2× faster than real-time (super frame rate). The best scene detection accu-
racy is F-score 0.96 which is achieved with classifiers trained with completely
separate data and only optimising the cascade parameters. The resulting clas-
sifier is a disjunction of the two available strong conjunctions and achieves the
performance with computation time 0.30 seconds needed to process 1.0 seconds
of video input (> 3× frame rate). It is noteworthy that the SIFT detector is
essential for the performance while it is active only in very few cases as apparent
by comparing its single detector and cascade detector computing times.

The same findings hold also for shot detection (best single 0.46, best cascade
0.53) which is much more difficult task in the case of lifelog data.

It should be noted that the selection of cascade parameters is not critical for
good performance, since they mutually compensate each other providing smooth
and intuitive performance change.

6 Conclusions

The ultimate goal of our work is fast streaming, storing, indexing, retrieval and
sharing of selflog video produced by millions of users using their wearable video
capturing devices. Past research on video analysis has provided effective but of-
ten too slow methods for the above tasks. In this work, we sought to improve the
existing techniques with the help of two hypotheses: multiple video modalities
provide complementary information and cascade type processing improves effi-
ciency. The both assumptions were found valid in our experiments where scene
and shot detection from real lifelog recordings of more than seven hours were in-
vestigated. The strikingly important role of audio, complementary of audio and
video, and finally the optimised cascade structure provided us superior detection



10 K. Mahkonen, J.-K. Kämäräinen et al.

accuracy in super frame rate. These results indicate that cascades are the tools
of future, fusing even more modalities (GPS, accelerometer, gyroscope, compass,
barometer, proximity etc.) can be beneficial, and computationally light methods
can be constructed from the existing methods. In our future work, we will follow
these findings and investigate a light-weight cascade for on-line video skimming
and scene indexing.
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