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Hearing aid users are challenged in listening situations with noise and especially speech-on-speech

situations with two or more competing voices. Specifically, the task of attending to and segregating

two competing voices is particularly hard, unlike for normal-hearing listeners, as shown in a small

sub-experiment. In the main experiment, the competing voices benefit of a deep neural network

(DNN) based stream segregation enhancement algorithm was tested on hearing-impaired listeners.

A mixture of two voices was separated using a DNN and presented to the two ears as individual

streams and tested for word score. Compared to the unseparated mixture, there was a 13%-point

benefit from the separation, while attending to both voices. If only one output was selected as in a

traditional target-masker scenario, a larger benefit of 37%-points was found. The results agreed

well with objective metrics and show that for hearing-impaired listeners, DNNs have a large poten-

tial for improving stream segregation and speech intelligibility in difficult scenarios with two

equally important targets without any prior selection of a primary target stream. An even higher

benefit can be obtained if the user can select the preferred target via remote control.
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I. INTRODUCTION

Competing voices is a commonly encountered listening

challenge for a hearing aid user, e.g., during family dinners,

while watching TV, social events, etc. It is well known that

hearing-impaired individuals struggle when being in noisy

situations, and the well-known “cocktail party problem”

(Cherry, 1953) is a major challenge for them. In fact, with

hearing loss, a situation as simple as two competing voices

next to each other across a table causes much informational

masking (Ezzatian et al., 2015; Ihlefeld and Shinn-

Cunningham, 2008), causing both voices to mask and disturb

one another (Brungart, 2001). A hearing-impaired person

may benefit from moderate spatial separation between the

two talkers, but will still be affected by the informational

masking (Neher et al., 2007). In many cases, the two mutu-

ally interfering talkers are too close for the hearing-impaired

person to segregate them sufficiently. The challenge for a

hearing aid algorithm is then effectively reduced to a single

channel problem.

Single channel two-talker speech separation has been an

active research area for several decades and various types of

methods have been employed to address it. It can broadly be

divided into three approaches: signal processing-based meth-

ods, model-based methods, and supervised learning-based

methods. An early example of signal processing-based

method is the harmonic selection principle described by

Parsons (1976), by which two talkers are separated using

their different fundamental frequency (pitch) to separate out

the two harmonic structures. No formal listening test was

conducted. The algorithm was later enhanced and evaluated

by Stubbs and Summerfield (1990) using also a cepstral

technique to do a pitch-based separation. In a listening test

with natural spoken sentences and normal pitch variation

(“intoned sentences”), they found approximately a 30%-

point benefit for the target sentences in normal-hearing lis-

teners and no benefit for hearing-impaired listeners. Spectral

subtraction (Boll, 1979) based techniques for two-talker sep-

aration have been employed by Hanson and Wong (1984)

and Naylor and Boll (1987). A method based on sinusoidal

modeling of speech was utilized by Quatieri and Danisewicz

(1990).

Other approaches include model-based approaches, e.g.,

Roweis (2001), who demonstrated separation of male and

female voices based on prior learning of the clean voices

using hidden Markov models. Pontoppidan and Dyrholm

(2003) investigated the computational complexity, Bach and

Jordan (2005) investigated the requirements of knowing the

voices beforehand, and in a series of studies Wang investi-

gated segregation of voiced and unvoiced speech parts based

on pitch (Roman and Wang, 2006; Wang and Hu, 2006).

Other notable model-based approaches include basis
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decomposition methods, e.g., application of independent

component analysis (ICA) to monaural separation (e.g., Jang

and Lee, 2004), non-negative matrix factorization-based

methods (e.g., Virtanen, 2007), and latent variable decompo-

sition methods (e.g., Raj and Smaragdis, 2005).

Supervised learning-based methods in the context of

speech denoising have been around for decades, framed as a

regression problem utilizing shallow neural networks to pre-

dict clean speech spectrum from mixture spectrum (Tamura

and Waibel, 1988; Xie and Van Compernolle, 1994). More

recently, drawing inspiration from computational auditory

scene analysis (CASA) (Wang and Brown, 2006), supervised

speech separation was framed as having the goal of estimat-

ing a time-frequency mask (binary or soft) (e.g., Han and

Wang, 2012; Seltzer et al., 2000). It has been reported that

significant improvement in speech intelligibility can be

achieved both for normal hearing and hearing-impaired lis-

teners with ideal binary masking (Wang, 2008; Wang et al.,
2009). With the advent of deep neural networks (DNNs), a

large improvement in the performance of supervised speech

separation has been reported starting with Wang and Wang

(2013). Various network architectures have been employed,

e.g., feedforward DNNs (Grais et al., 2014; Xu et al., 2015),

recurrent neural networks (Erdogan et al., 2015; Huang

et al., 2015; Weninger et al., 2014), deep autoencoders (Lu

et al., 2013), convolutional neural networks (Chandna et al.,
2017; Park and Lee, 2016), convolutional recurrent neural

networks (Naithani et al., 2017), etc. These DNN-based

approaches have employed either time-frequency masking

(Huang et al., 2015; Weninger et al., 2014; Williamson and

Wang, 2017) or spectral mapping (Grais et al., 2014; Park

and Lee, 2016; Xu et al., 2014, 2015) approaches. A more

comprehensive discussion of DNN based supervised speech

separation can be found from Wang and Chen (2017). In low

latency scenarios, DNN based speech separation has been

reported by Naithani et al. (2016) and Naithani et al. (2017)

for algorithmic delay <10 ms. Recently, a time domain

DNN approach has been proposed by Luo and Mesgarani

(2017), where an algorithmic latency of approximately 5 ms

was reported.

In recent years, advanced source separation algorithms

using deep neural networks have been successfully applied

to separation of competing voices and to the speech in noise

problem as a noise reduction algorithm. The first benefits for

people with hearing impairment came in 2013, where Healy

et al. (2013) investigated the benefit in speech-shaped noise

and with babble at various signal-to-noise ratios (SNRs).

Testing both normal-hearing and hearing-impaired listeners

indicated that processing by the algorithm increased the

intelligibility in all conditions. These improvements were

larger for hearing-impaired (HI) listeners, given their poorer

baseline performance, and especially for the modulated

background, and for the lowest SNRs. Substantial benefits

were reported, allowing several HI listeners to improve word

recognition scores from near zero to values above 70%. Note

that most of the separation algorithms published so far have

processing delays that would be above the typical delays in

hearing aids of 5–10 ms, as found to be preferred by hearing

impaired listeners (Bramsløw, 2010).

The benefits of single-talker separation from babble and

stationary noise using DNN and different types of time-

frequency masks were explored by Wang (2015), who found

DNNs to outperform classical source separation techniques

and to provide benefits of 50%-points word score improve-

ment for hearing-impaired (HI) listeners, the same results

were published earlier by Healy et al. (2013). The problem

of a single competing talker was investigated by Healy et al.
(2017), who found an average benefit of 59%-points for HI

listeners at the least favorable SNR of �9 dB. The mean

intelligibility achieved by the HI listeners using the algo-

rithm was equivalent to that of young NH listeners without

processing, under conditions of identical interference.

An important feature of a separation algorithm is what

degree of generalization it possesses: achieving high scores

on known speech and noise material is only interesting if

this generalizes to, e.g., new noise segments, new speech

from the same talker and possibly new talkers, e.g., Kolbæk

et al. (2017). This is not a concern in the present study: here

it is assumed that the two voices to be separated are known

by the algorithm, so the deep neural network must have

access to isolated segments of speech from both voices,

which in real life can be obtained by recording and storing

segments with each voice in isolation.

It is important to find the most relevant way of assessing

the benefit from such separation algorithms, and even though

many studies use objective metrics, such as the STOI and

ESTOI (Jensen and Taal, 2016; Taal et al., 2011), the final

assessment should be a speech recognition test on the target

group of listeners. Earlier work on separation has used con-

sonant recognition in hearing-impaired listeners as an out-

come measure and found a benefit in both speech shaped and

babble noises (Healy et al., 2014). This type of benefit was

also confirmed in novel noise types, which is a basic require-

ment for successful application of such an algorithm (Healy

et al., 2015).

When assessing the benefit of noise reduction and other

signal enhancement algorithms, the traditional choice for

hearing-impaired listeners would be sentence tests with natu-

ral sentences, such as the Hearing in Noise Test (HINT)

(Nilsson et al., 1994) or matrix-type structure sentences such

as the German OLSA (Kollmeier and Wesselkamp, 1997)

and the Danish Dantale2 (Wagener et al., 2003). In these

tests, there is a designated target sentence and a designated

noise type, typically playing continuously in the background.

The masker can be stationary noise, babble or even a single

talker.

Concurrent talkers/voice-on-voice/competing voices

scenarios have also been reported in the literature. One such

example is the CRM test in English using simultaneous talk-

ers with the same sentence structure: names for cueing and

colors plus numbers for response options (Bolia et al.,
2000). The fixed and time-aligned sentence structure of the

test is suited for exploring low-level spatial and phonemic

cues, but the sentences do not represent ordinary conversa-

tions. Helfer et al. (2010) also investigated competing voice

disturbances, but with a designated target and in a dual-task

paradigm using time-reversed maskers. Thus, the competing

voices were not equally important. Mackersie et al. (2001)
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used pairs of natural sentences and had the listener repeat as

much as possible from both sentences, so this was a dual-

target, dual-attention task. The segregation skills were then

correlated to a simpler psychoacoustic measure of tone

fusion in the same hearing-impaired listeners.

A speech segregation test must be designed such that

there is no doubt about which signal is the target and which

signal is the masker, which will be difficult in the presence

of a single competing talker. Furthermore, the ambiguity and

equal importance of the two targets should be reflected in the

test.

It is also important to consider the use case for a separa-

tion algorithm when applied in hearing aids: Ideally, the

hearing aids should assist the user in segregating competing

voices without any deliberate or very conscious choice

made. He or she should simply be able to focus attention on

one or few selected targets without instructing or directing

the hearing aid. So, a separation algorithm should be

designed to accommodate this and be tested in a relevant

scenario to evaluate the segregation benefit. If the listening

conditions become too difficult, the user may be forced to

make a choice that guides the algorithm towards a single tar-

get, while suppressing the remaining voices. This will be at

the cost of general awareness in the given conversation.

Such choice of target could be signaled to the hearing aid

from, e.g., a smartphone used as remote control or in the

future via EEG or other means of decoding the intention of

the listener (O’Sullivan et al., 2017; Perron, 2017).

Similar to Mackersie et al. (2001), the competing voices

test proposed in this study has two targets that are all equally

important to follow, and in the simplified case no masker.

Given the previous work, the present paper has several

novel contributions.

• A low-latency (8 ms) deep neural network is used for the

separation, as would be needed for a real-time implemen-

tation in a hearing aid with an acceptable delay.
• Little training data are used (�3 min recording per speaker),

making it realistic for fast training in everyday use.
• Each network instance is trained on two particular voices

to optimize subsequent separation of those two voices.
• The aim of the separation is to present the two separated

outputs to the two ears to help the hearing-impaired

listener focus on one at a time simply by shifting

attention.
• The evaluation of the benefit is done using typical, clini-

cally applied speech tests on the target group, the hearing-

impaired listeners.

Considering the previous, the main research questions

for this study were as follows:

(1) Do hearing-impaired listeners benefit from two signals

separated from one mixture and then presented one per

ear (dichotic, dual targets)?

(2) Do hearing-impaired listeners benefit from one signal

separated from a mixture and presented to both ears

(diotic, single target)?

(3) Does the separation benefit depend on the gender mix,

e.g., same vs different gender?

II. METHODS

This paper is based on three sub-projects, which will be

described in the following.

• The low-latency speech separation algorithm using deep

neural networks.
• The speech test method using competing voices in the

form of pairs of Danish HINT sentences.
• The evaluation of the proposed speech separation algo-

rithm using the new competing voices test.

A. Low-latency speech separation algorithm using
deep neural networks

The speech separation approach used in this study uti-

lizes a deep neural network, which maps spectral features

derived from the mixture signal consisting of both talkers to

time-frequency masks corresponding to a target talker. Short

term Fourier coefficients (STFT) are used as spectral input

features and a binary mask/soft ratio mask is used as DNN

target output. The present implementation is documented in

detail in Naithani et al. (2017).

For an acoustic mixture yðtÞ consisting of sources s1ðtÞ
and s2ðtÞ, the ideal binary mask (Wang and Brown, 2006)

corresponding to source s1ðtÞ can be defined as

M1ðt; f Þ ¼
1 if jS1ðt; f Þj � jS2ðt; f Þj;
0 otherwise:

�
(1)

Similarly, the soft ratio mask (Huang et al., 2015) corre-

sponding to source s1ðtÞ is

M1 t; fð Þ ¼ jS1 t; fð Þj
jS1 t; fð Þj þ jS2 t; fð Þj ; (2)

where S1ðt; f Þ and S1ðt; f Þ are STFT spectra corresponding to

sources s1ðtÞ and s2ðtÞ, respectively; time and frequency

indices are denoted by, respectively, t and f. Please note that

this definition of ratio mask is different from what is referred

to as the ideal ratio mask (IRM) (Srinivasan et al., 2006) in

literature as it utilizes STFT magnitudes rather than squared

STFT magnitudes used in IRM. The DNN is trained in a

supervised manner to yield output, Mest
1 ðt; f Þ, the estimated

mask corresponding to source s1ðtÞ. The mask correspond-

ing to source s2ðtÞ is

M2
estðt; f Þ ¼ 1�M1

estðt; f Þ: (3)

These estimated masks when multiplied with the com-

plex spectra of the mixture signal, Yðt; f Þ, yield the complex

STFT spectra of the estimated sources. For first source, it

can be expressed as

Sest
1 ðt; f Þ ¼ Mest

1 � Yðt; f Þ; (4)

where � denotes elementwise multiplication. The other source

is extracted similarly. The time domain signals are then recov-

ered via inverse discrete Fourier transform (IDFT) and

overlap-add processing. Figure 1 depicts the whole framework

for estimation of separated target signal sest
1 ðtÞ.
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Three types of DNN topologies were utilized in this

study: (a) feedforward deep neural network (FDNN), (b)

recurrent neural network with long short-term memory units

(LSTM), and (c) convolutional recurrent neural network

(CRNN). Note that all these topologies were tailored for low

algorithmic latency operation, by predicting the mask for

only a very short frame at a time, using information from

greater previous context. For FDNN, a context of N previous

frames were stacked as input when predicting the mask for

the current frame in order to provide the past temporal con-

text to the network. In the present study, N¼ 4. No such

frame stacking was used for CRNN/LSTM, which unlike

FDNN have the inherent capability of modeling the previous

temporal context due to the presence of recurrent layers by

using the internal state of the network at time t-1 as its input

at time t. A detailed description of FDNN and CRNN topolo-

gies used in this work can be found from Naithani et al.
(2016) and Naithani et al. (2017), respectively.

Training a DNN implies minimizing an objective func-

tion for which the mean square error between the target and

estimated masks, i.e.,
P

t;f ðM1ðt; f ÞÞ �Mest
1ðt; f ÞÞ 2, was

used. The hyperparameters for the three DNN variants used

in Naithani et al. (2017) were also used here and are listed in

Tables I and II. This parameter selection was carried out

using a grid search in order to select the best performing ver-

sion of each DNN variant. The metric of selection was per-

formance on a validation set in terms of objective metrics of

separation, e.g., source-to-distortion ratios (SDR) (Vincent

et al., 2006). For the CRNN architecture, a max-pooling

operation (Boureau et al., 2010) was performed after each

convolutional layer only along the frequency axis in order to

preserve the temporal information for the recurrent layers.

The rectified linear unit (ReLU) activation (Goodfellow

et al., 2016) was used for convolutional layers in CRNN and

sigmoid activation (Goodfellow et al., 2016) was used for

hidden layers in FDNN. The former choice is conventionally

used in convolutional layers (e.g., in Pertil€a and Cakir,

2017), the latter choice was directed by experiments on

validation data. Similarly, for LSTM units, the conventional

activations [hyperbolic tangent (tanh) activation and sig-

moid], as in Hochreiter and Schmidhuber (1997), were used.

The output activation for all topologies was sigmoid.

In order to prevent overfitting during DNN training,

dropout regularization (Srivastava et al., 2014) and early

stopping method were used. A dropout value of 0.4 was used

and the training was stopped when no improvement in vali-

dation loss was observed for 25 epochs. In order to speed up

the training, batch normalization (Ioffe and Szegedy, 2015)

was used after each hidden/convolutional layer in FDNN/

CRNN networks. For gradient optimization, the Adam algo-

rithm (Kingma and Ba, 2015) was used. Librosa (McFee

et al., 2017) and Keras (Chollet, 2016) libraries were used

for feature extraction and DNN training, respectively.

The HINT speech material used to train the DNNs is

described in Sec. II C below. The audio samples were first

downsampled to 16 kHz and STFT features were computed

using a window length of 8 ms with 50% overlap. This leads

to the low algorithmic latency of 8 ms. Four lists, L10, L11,

L12, and L13 (see Sec. II C below for the data description),

were used as training set and one list, L9, was used as valida-

tion set. This amounts to 80 sentences for training and 20

sentences for validation. The training data was generated by

first concatenating in time domain all available training lists

corresponding to each talker. STFT features were then com-

puted. To increase the amount of training data, multiple

training examples were generated by shifting the complex

spectrogram of one of the talker relative to the other and

summing them to create a mixture. 50 such offsets were

used, each resulting in new set of training data. A detailed

description of this augmentation procedure can be found in

Naithani et al. (2017).

B. Objective performance metrics

The performance of the proposed methods was evalu-

ated using objective metrics of separation and intelligibility.

For the former, BSS-EVAL toolbox (Vincent et al., 2006) was

used for calculating source to distortion ratio (SDR). SDR is

used as the measure of overall separation.

For the objective evaluation of intelligibility, extended

short-time objective intelligibility (ESTOI) (Jensen and

Taal, 2016) was used: The authors postulated that the more

widely reported, short-time objective intelligibility (STOI)

measure (Taal et al., 2011), does not perform very well in

FIG. 1. Illustration of the DNN separation algorithm.

TABLE I. Hyperparameters used for FDNN and LSTM networks.

FDNN LSTM

Hidden

layers

Hidden

neurons

Previous

context

Hidden

layers

Hidden

neurons

Sequence

length

4 1024 32 ms 3 512 256 ms
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situations where highly modulated interferers, e.g., compet-

ing speech signal as in our case, are present. ESTOI has been

found to work well in these situations as well as where STOI

measure works well according to the authors. Hence, we

focus the analysis of objective intelligibility metrics on

ESTOI, but also report STOI for completeness.

C. The competing voices test with dual targets
and single target

The speech test used in this study—the Competing

Voices Test (CVT)—has been developed through a series of

experiments to arrive at the present version: Pairs of HINT

sentences (Nielsen and Dau, 2011) are presented to the lis-

tener who is then required to repeat one of them. A visual

text cue presented on a second PC monitor indicates to the

listener which one of the two sentences to repeat; the cue is

either the first or the last word in the target sentence.

We chose to base the new test on existing and proven

available Danish speech material, e.g., the Danish HINT, see

Nielsen and Dau (2011) and Nilsson et al. (1994). The

Danish HINT uses natural everyday sentences each contain-

ing five words, spoken by one male talker. The entire corpus

consists of 13 lists with 20 sentences each: Lists 1–10 are

suitable for test, while lists 11–13 have higher spread due to

sentence complexity, special words or other reasons (Nielsen

and Dau, 2011) and these three lists are then used for train-

ing the listener before the actual test starts. Because the

training and validation of the speech separation algorithm

uses five lists (Sec. II A), only lists 1–8 are available for the

listening test.

In order to have multiple talkers to choose from, the

HINT sentences with the existing male talker (M1) were re-

recorded using two new male talkers (M2, M3) and three

new female talkers (F1, F2, F3), hence six talkers in total.

The three male talkers spoke with average fundamental fre-

quency (F0) of 100, 130, and 155 Hz and the three females

spoke with 200, 172, and 217 Hz. All talkers have the same

RMS levels across all sentences, thus the signal-to-signal

ratio for two equally important targets is always 0 dB.

D. Experiment I: Evaluation of the source separation
algorithm on hearing impaired listeners

1. Test setup

The test was conducted in a soundproof listening booth

with headphone presentation via Sennheiser HDA200 audi-

ometry headphones. The test software was a MATLAB applica-

tion written for the purpose: It handled the experimental

protocol, played back the stimuli, and stored the listener

responses as entered by the test administrator. All sound files

for the experiment were created before the test and stored on

the hard disk, and the software would then choose the

appropriate sound files, and before playback add hearing loss

compensation: Linear gain was prescribed from the individ-

ual audiogram according to the NAL-RP gain rationale

(Dillon, 2012) and applied via a 256-tap finite impulse

response (FIR) filter.

2. Listeners

Fifteen HI listeners were recruited from the Eriksholm

test person pool to have moderate-to-severe sloping sensori-

neural hearing losses, e.g., somewhat flatter than the typical

age-induced loss with more low-frequency loss. It was

hypothesized that this group would have the largest benefit

from the separation algorithm due to a more than mild hear-

ing loss in the low frequencies. Ages were from 47 to 83

years with an average of 73 years. Eight women and seven

men participated. The average and range of the hearing

losses across both ears on the 15 listeners is shown in Fig. 2.

Apart from the prescribed gain, the overall sound level

could be adjusted by the test administrator in dialog with the

listener during the training phase to have a comfortable

level.

All listeners spoke Danish as their first language. The

study was approved by the Research Ethics Committees of

the Capital Region of Denmark, and the subjects had signed

an informed consent form and were free to withdraw from the

experiment at any time. The subjects were not paid for their

TABLE II. Hyperparameters used for CRNN. Note that pooling scheme 1 by 2 refers to max pooling operation only along the frequency axis. Convolutional

kernel size of 3 by 3 refers to the size of convolutional kernel along time and frequency axes.

Convolutional layers Recurrent layers Recurrent neurons Convolutional filters Pooling scheme Sequence length Convolutional kernel

3 1 256 256 1 by 2 512 ms 3 by 3

FIG. 2. Summary of 15 listeners’ audiograms. Left and right ears are

combined.
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participation, but they were reimbursed for their travel

expenses.

3. Processing modes

With respect to the processing of the stimuli, the follow-

ing modes were used.

• SUM: The unprocessed sentence mixture.
• SEPARATE: Each unprocessed talker was presented sepa-

rately. This was the ideal condition corresponding to per-

fect separation.
• FDNN/LSTN/CRNN: Each DNN separated output was

presented separately. It was labeled according to the corre-

sponding DNN used for separation (see Sec. II A for

details): Feedforward neural network (FDNN), long-term-

short-term neural network (LSTM), and convolutional

recurrent neural network (CRNN).

4. Mask mode

The separation mask applied for DNN separation was

either binary mask (BM) or ratio mask (RM). For binary mask,

the gain applied to each time-frequency cell in the mixture is

either zero or 1 to one output and the inverse to the other out-

put. For ratio mask, the gain is a continuous value between 0

and 1 for one output and 1 minus gain for the other output. See

Sec. II A for further details. In either case the sum of the two

masks is unity at every point, so overall energy of the mixture

is preserved. In the case of SEPARATE outputs, the mask was

labeled no mask (NM) in the experimental design.

5. Test modes

The listening test presented two sentences from two dif-

ferent HINT lists using two different talkers from the total

six talkers. The listener was required to repeat one of the

sentences based on a visual cue. The cue was the first or the

last word of the target sentence, presented on a screen before

or after the sentence pair playback, respectively. In the pre-

sent study, these two distinct test modes were used:

(1) The CVT test used both sentences as potential targets, thus

using both outputs from the DNN or ideal separation. The

target word was presented after the playback, requiring

equal attention to the two sentences, i.e., a “dual attention”

task.

(2) The Target-Masker test (TM) used only the target sen-

tence from the DNN separated (including artefacts) and

the SEPARATE conditions and target plus masker (both

sentences) in the SUM presentation. The target was indi-

cated to the listener before playback, and the attention

was on that target—so this was a “single attention” task.

This test mode was similar to existing publications on

DNN separation, e.g., Healy et al. (2017).

6. Talker pairs and gender mix

The following six talker pairs were used in the test:

“M1F1,” “M2F3,” “M1M2,” “M2M3,” “F1F2,” and “F2F3.”

This corresponds to two pairs for each of the three gender

combination, male-female (MF), male-male (MM), and

female-female (FF). Each sentence pair in the listening test

was picked from a randomly permutated list of the six talker

pairs. Subsequently, the two different talkers were randomly

assigned to the left and right sides. During run-time of the

listening test, the right or left sentence was randomly chosen

as target. The shifting of talkers and positions is more chal-

lenging than real-life communication, but was nevertheless

chosen here to keep the predictability as low as possible.

7. Experimental design

The experiment thus used the following experimental

factors.

• Test mode: CVT, TM (two levels).
• Processing mode: SUM, FDNN, LSTM, CRNN,

SEPARATE (five levels).
• Mask mode: BM, RM (two levels). This is nested under

processing mode, as the masks are applied for the three

DNN processing modes.
• Gender mix: MF, MM, FF (three levels). This was mixed

within trials as described above and thus neither generat-

ing more trials, nor part of the balancing scheme described

below.

Thus, all combinations of Test mode, Processing mode,

and Mask mode were covered in the fully factorial design of

2� 5� 2¼ 20 conditions/trials, and each listener thus heard

20 trials, each containing 20 sentence pairs. The order of

conditions was as follows: The two test modes were deliber-

ately ordered, so that all Target-Masker trials always pre-

ceded the Competing Voices trials, because they were

considered easier and thus good preparation for the harder

CVT task. Within each of those two test modes, the remain-

ing 10 conditions were balanced across listeners in a Latin-

square fashion to counterbalance any order effects.

8. Procedure

Each trial used the following steps per sentence pair:

• For Target-Masker test mode: A pre-cue (first word of tar-

get sentence) is shown on a monitor.
• One or two sentences are played simultaneously depend-

ing on test and processing modes.
• For Competing Voices test mode: A post-cue (last word of

target sentence) is shown on a monitor.
• The listener repeats (speaks as much of the target sentence

as possible) the target sentence according to the cue shown.

All responses were scored per word, i.e., the test adminis-

trator marked each of the five words as correct or incorrect

according to the rules given by Nielsen and Dau (2011). The

word score was then calculated as the sum of the correct

words in the last four words in the case of a pre-cue and the

correct words in the first four words in the case of a post-cue.

E. Experiment II: Normal-hearing reference data based
on ideal separation

Even though the DNN separation algorithm is designed

for use with hearing-impaired listeners, it is relevant to know
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the expected performance for normal-hearing listeners for

two reasons: It can serve as normative data for comparing

hearing-impaired results against and for comparing to pub-

lished normal-hearing results.

For comparing the present results to normal hearing

results, an earlier experiment on the competing voices test

itself using similar spatial contrasts has been included here

(Bramsløw et al., 2015). Due to its explorative nature, only

four normal hearing listeners were included, but this was

nevertheless enough to obtain statistically valid results.

Since it is additional material to the main experiment I, it is

here labeled experiment II.

1. Test setup and listeners

The test setup was completely identical to experiment I,

however here was no hearing loss compensation applied

because of the normal-hearing group. Four normal-hearing

listeners from internal staff were included, all with audio-

metric thresholds <20 dB hearing level. The age span was

28–50 years.

2. Test conditions and procedure

In this experiment, there was no separation algorithm

included, but the two reference (spatial) conditions from

experiment I were included: SUM (diotic presentation of the

two-talker mixture) and SEPARATE (dichotic presentation,

one talker per ear). These are the extremes and a separation

algorithm should produce results within this range.

The competing voices test paradigm (with post-cue) was

identical to that of experiment I, but the target-masker test

(with pre-cue) was slightly different, with the masker always

present in the opposite ear in the SEPARATE spatial condition.

At the time of this add-on experiment II, only two talk-

ers had been recorded, namely, M1 and F1, so only a Male-

Female gender mix was possible. However, the target talker

was included as an experimental factor: male/female. The

target talker was indicated on a screen as Male or Female.

The procedure was identical to that of Experiment I, but

since the target was indicated as Male/Female, all five words

in the HINT sentences were available for scoring.

III. RESULTS

A. Experiment I: Hearing-impaired listeners and
source separation

1. Analysis method and overview

Upon completion of the test session for all fifteen listen-

ers, all data were collected and analyzed. The word scores in

percent were calculated from 0 to 4 correct words, excluding

the first or last cue word from the five-word HINT sentence,

e.g., 100 � Ncorrect/4. The 0%–100% word score was then

transformed into rationalized arcsine units (rau) as proposed

by Studebaker (1985). The rau transformation bends the

ends of the psychometric function approximately below 10%

and above 90% to make the properties linear and thus better

suited for analysis of variance (ANOVA), which assumes

normally distributed data. The resulting rau scores range

from �18 to 118 rather than 0 to 100.

Now, the rau results were inspected for outliers by

grouping either by test persons or processing mode. The

motivation was to consider removal of outlying test persons.

The outlier range was defined as the 25% and 75% percen-

tiles extended by 1.5 times the 25%–75% distance to either

side. Five of the total 900 rau values data points (20 condi-

tions � 3 gender mix¼ 60 per test person and 15 test per-

sons) fell below the lower outlier limit, but since they were

associated with four different test persons, no test persons

and thus no data points were removed.

A mixed-model nested factorial ANOVA was run on the

rau-transformed word score data with Test Person as a ran-

dom factor. There were significant main effects of Test

mode [F(1,14)¼ 119.49, p< 0.001], Processing mode

[F(4,56)¼ 58.66, p< 0.001], Mask mode (nested under

Processing mode) [F(3,559)¼ 3.08, p< 0.03], Gender mix

[F(2,28)¼ 12.87, p< 0.0002], and Test Person [F(14,

19.84)¼ 4.67, p< 0.001]. The statistically significant Test

Person effect reflects different basic speech recognition skills

across listeners in a hearing-impaired group as is often the

case in speech tests on such a group, due to both different

supra-threshold hearing losses (e.g., Summers et al., 2013)

and spread in cognitive function (Lunner, 2003).

Apart from interactions with test person (individual dif-

ferences), there was one significant interaction: Test mode �
Processing mode (p< 0.001), meaning that the DNN effect

depends on the test mode (Target-Masker vs Competing

Voices). The remaining second-order interactions were not

significant, neither was the third-order interaction Test mode

� Processing mode � Gender mix, so the Test mode �
Processing mode interaction did not differ across Gender mix.

The significant interactions with Test Person (TP) were

TP � test mode and TP � Test mode � Processing mode. The

former interaction indicates different basic performance

when comparing the two test modes CVT and TM across lis-

teners, reflecting that the difference in cognitive load

between the two tests is more taxing for some listeners than

others. The latter interaction furthermore indicates that the

effect of processing provides different benefits for different

listeners in the two test modes CVT and TM.

In the following, the significant main effects and inter-

action effects will be presented: All mean rau values from

the ANOVA were inverse-transformed to present them as %

word scores.

2. Effect of DNN separation

The average main effect of the five processing modes,

including the three DNN modes is shown in Fig. 3. Post hoc
tests showed that SUM is lower than all other conditions

(Tukey HSD: p< 0.001), SEPARATE is higher than all

other conditions (Tukey HSD: p< 0.001), and the three

DNN modes FDNN, LSTM, and CRNN are not different

from one another.

On average, the scores go from 55% (SUM) to 82% (all

DNN modes) to 92% (SEPARATE), showing that the DNN

separation is substantially higher than SUM (p< 0.001) but
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also inferior to SEPARATE (p< 0.001). There is thus poten-

tial for improving the DNN separation even further.

The effect of processing mode was different in the two

test modes Target-Masker and Competing Voices as seen by

the significant interaction Test mode � Processing mode

[F(4,56)¼ 21.86, p< 0.001]. The corresponding interaction

plot is shown in Fig. 4.

The detailed post hoc analysis of processing modes

within test modes shows the same pattern as the main effect

of processing, but for both Test Modes: SUM < “any DNN”

< Separated (Tukey HSD: p< 0.003). This confirms the

observation from the main effect that DNN processing pro-

vides a significant benefit over SUM, but not quite as much

as the ideal SEPARATE condition. Relative to SUM, the

benefits from DNN separation are smaller for the Competing

Voices Test than for the Target-Masker test. For the more

difficult Competing Voices Test, the scores increase from

52% to an average 64% for the three DNN modes, which is a

good benefit in this dual-target situation and 76% in the

SEPARATE mode. The benefit for the best DNN is for the

LSTM, scoring 65.3% compared to 51.8% for SUM, the

rounded word score benefit in this DNN mode is 13%-point.

For the Target-Masker test, the scores increase from 58% to

approximately 95% in the three DNN modes and 100% in

the SEPARATE mode. The DNN benefit is thus roughly

37%-point.

It can furthermore be seen that the SUM condition

scores 52%–58% (the difference is not significant) in the two

test modes: As the SUM processing is the same in both

cases, this means that the pre-cue used in the Target-Masker

test does not provide a benefit over the post-cue used in the

Competing Voices Test.

3. Effect of binary mask vs ratio mask

It has been an ongoing question in speech separation

research whether binary masks or ratio masks provide the

higher speech intelligibility scores. It has been claimed that

the binary masks provide the better speech intelligibility at

the cost of lower sound quality and likewise that the ratio

mask provides higher sound quality, as indicated by objec-

tive metrics (Wang et al., 2014).

In the present experiment, the mask was nested in the

processing mode, because different masks belong to differ-

ent processing modes: IBM/IRM are specific for DNN proc-

essing and “No mask” is used for SUM/SEPARATE,

therefore it has been labeled NM for these two processing

modes. The effect of Mask mode was significant, but post
hoc analysis showed that this is driven by the two NM values

that are confounded with processing modes SUM and

SEPARATE. Inspection of the mask modes BM and RM

used with the DNN showed a not significant post hoc test

and therefore the two mask modes of interest, binary mask

vs ratio mask, are not significantly different.

Thus, the choice of mask for DNN separation may be

dictated by other requirements than speech intelligibility,

e.g., sound quality (not tested here), implementation com-

plexity and cost.

4. Effect of test mode

The test mode effect is simply the difference between

the two different test modes Target-Masker with pre-cue and

Competing Voices Test with post-cue, including the impor-

tant difference of presenting only one processed output in

the Target-Masker test mode and both processed outputs in

the Competing Voices test. Only the SUM processing mode

is the same in the two test modes.

The average score in the Target-Masker test is 92% and

the score in the Competing Voices Test is 64%, so there is a

large difference of 28%-points. This effect has three poten-

tial explanations: (1) due to the much simpler task of know-

ing which talker to attend to, (2) the effect of presenting only

one target for the separated conditions in Target-Masker test

mode, and (3) finally a designed order effect in the design,

because the easier Target-Masker test always preceded the

more difficult Competing Voices test. This order effect

might increase the CVT scores due to learning effects, thus

FIG. 3. Word recognition scores for each processing mode, including the

three DNN modes. Vertical bars denote 95% confidence intervals.

FIG. 4. Word recognition scores as interaction effect of processing mode

and test mode, including the three DNN modes. Vertical bars denote 95%

confidence intervals. See text for details.
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reducing the contrast, but likewise decrease the contrast if

fatigue was an issue.

5. Effect of gender mix

The effect of gender mix is also relevant to study: if the

DNN separation is more difficult for same-gender combina-

tions, this is a weakness in real life applications, as previ-

ously found (Isik et al., 2016). In a recent study by Healy

et al. (2017), only the male-female combination was investi-

gated, and this combination is assumed to be easier for sepa-

ration, because of the difference in fundamental frequency.

Regarding gender effects, the only significant effect is

the main effect of gender, so there are no significant interac-

tions with other experiment factors, specifically, there is no

interaction with the processing modes SUM, SEPARATE,

etc. In other words, the gender effect is independent of the

applied processing. Therefore, only the main effect is shown

in Fig. 5.

The average word score is 82% for Male-Female and

Male-Male, and significantly lower (p< 10�4) for the

Female-female combination at 75%. This finding indicates

that for the present speech recordings, the female-female

combinations are generally slightly more difficult to segre-

gate for the listeners than the two other gender combinations.

This finding is specific for the present six talkers and it can-

not be generalized to any speech material. Likewise, the

unexpected similar results for male-male and male-female

may be a result of the quality of the particular talkers used

here.

6. Individual effects

As mentioned in Sec. III A 1, the general performance in

word score is different across listeners: This reflects different

basic speech recognition skills across listeners in a hearing-

impaired group as is often the case in speech tests on such a

group, due to both different supra-threshold hearing loss and

spread in cognitive function (Lunner, 2003). The interaction

TP � Processing Mode did not meet the p< 0.05 significance

criterion [F(56,44.38)¼ 1.58, p¼ 0.058], meaning that over-

all, there is not a different effect of processing/presentation

across the different listeners. This is shown in Fig. 6.

However, the spread across listeners is larger for the SUM

condition than the SEPARATE condition; this can partly be

explained by the ceiling effect. The performance in the three

DNN modes is generally close to the performance in the

ideal SEPARATE condition. Moreover, for some of the low

performers in SUM, a Tukey HSD post hoc tests show a sig-

nificant benefit from DNN separation (p< 0.05). In other

words, that the poorer performance a listener has in in the

unprocessed SUM mode, the more benefit from the DNN

separation can be expected.

7. Objective metrics calculation

As stated in Sec. II, the objective metrics source-

distortion ratio (SDR), STOI, and ESTOI were calculated for

the audio files presented in the listening test. They were

averaged across the experimental conditions from the listen-

ing test and are reported in Table III.

For the processing mode, the listening test showed a

benefit from DNN separation over SUM. The LSTM score

was slightly higher than the two other modes, however the

differences between the three DNN modes were not statisti-

cally significant (Fig. 3). The objective metrics show a

slightly higher SDR for the LSTM than for the two other

modes, whereas ESTOI and STOI are almost identical across

the three modes. The theoretical metrics for SEPARATE are

SDR> 20 dB and STOI/ESTOI¼ 1.0, so the processing can

still be improved based on objective scores alone. In the lis-

tening test, no effect of binary mask vs ratio mask (mask

mode) was found, unlike the objective scores that are consis-

tently higher for the ratio mask. This improvement did

apparently not translate into a user benefit. For the gender

mix, there was a small and statistically significant decline in

the listening test for the FF pairs, and this decline can also

be observed for both the SDR and the STOI/ESTOI scores.

FIG. 5. Word recognition scores for each of the three gender combinations.

Vertical bars denote 95% confidence intervals.

FIG. 6. The average word scores per listener (TP). The interaction is not sta-

tistically significant overall, but post hoc tests show a statistically significant

benefit from the DNN separation for the listeners with the lowest SUM

performance.
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Although ESTOI was designed for fluctuating maskers,

it did not show different trends than STOI with the compet-

ing voices used here, only the ESTOI scores were generally

lower.

B. Experiment II: Normal-hearing listeners and ideal
separation

1. Analysis method and overview

The data from the four normal-hearing listeners

were rau-transformed (Studebaker, 1985) prior to

ANOVA. A mixed-model ANOVA was performed, with

TP as a random factor. The following main effects were

significant: TP [F(3.6, 243)¼ 7.9, p¼ 0.044], Processing

[F(6, 271)¼ 7.7, p¼ 0.02] and Test mode [F(6,

143)¼ 14.5, p¼ 0.005]. Furthermore, some significant

effects were found: TP � Processing [F(112, 99.7),

p¼ 0.02] and Processing � Test Mode [F(245,112) ¼ 2.46,

p¼ 0.05].

2. Effect of spatial separation and test mode

The latter interaction thus summarizes all effects of

Processing and Test mode and is shown in Fig. 7.

For the target-masker test (cued before sentence pair

presentation), the scores are 97% and 99% for the Sum and

Separate processing modes, very close to ceiling. For the

competing voices test mode (cued after sentence pair presen-

tation), the scores are 90% and 98% for the Sum and

Separate modes. The difference is significant according to a

Tukey HSD post hoc test (p< 0.001).

As stated previously, experiment II preceded experiment

I, and we did thus not test the DNN separation on normal-

hearing listeners. However, according to Fig. 7, the outcome

from testing competing voices (post cue) of applying DNN

separation can be predicted to lie between 90% and 98%,

very close to ceiling, and in any case a small benefit in a

range where normal-hearing listeners perform quite well.

IV. DISCUSSION

A. Benefit of DNN separation

In the competing voices scenario, the user is maintain-

ing attention on both targets, and has both available, for

voluntary shift of attention. The aim of the proposed algo-

rithm is to facilitate this type of communication scenario by

presenting the two separated talkers dichotically. For the

hearing-impaired listeners in experiment I, this benefit is

observed in Fig. 4 (square symbols) as a statistically signifi-

cant effect of approximately 13%-point, which is worthwhile

for a hearing-impaired individual who needs help in these

challenging competing voice scenarios. The benefit is

achievable because of a rather low average base performance

in the SUM condition around 55% with a large spread across

listeners as shown in Fig. 6.

When there is a designated target (Fig. 4, circle sym-

bols), the effect of DNN separation on word scores is very

high for the hearing-impaired group. This scenario is rele-

vant when the user has chosen what the preferred target is,

by, e.g., indicating on a remote control or indicating the tar-

get indirectly by events that can be detected such as head or

eye movements (Kidd et al., 2013). In this case, the benefits

from speech separation were substantial, around 37%-point

improved word score. In comparison, Healy et al. (2013)

reported scores going from near zero to values above 70%

for speech shaped noise and babble while Healy et al. (2017)

obtained an average of 42.5%-point for SNR at �3 dB and

59%-point benefit for SNR at �9 dB for a male target talker

in the presence of a female competing talker. In the present

study, lower scores at the average SNR of 0 dB were found,

and the benefit was independent of the gender mix. The sep-

aration can thus be beneficial for continued dual target atten-

tion, or for helping in choosing a target and thus obtaining

the higher single-target benefit. In a future scenario, this

could be done via cognitive control of a hearing aid (Perron,

2017).

For the fixed SNR of 0 dB as used in the present use

case, a segregation benefit in normal-hearing listeners from

DNN separation could also be expected, as shown by, e.g.,

Healy et al. (2017) at slightly more difficult SNRs: At

�6 dB, they reported 6.1%-points benefit from

TABLE III. Objective metrics for the conditions used in the listening test in

experiment I. The scores for SEPARATE are not measured but theoretical

ideal values.

SDR(dB) ESTOI STOI

Proc mode SUM 0.25 0.55 0.71

FDNN 5.20 0.70 0.83

LSTM 5.29 0.71 0.83

CRNN 5.24 0.71 0.83

SEPARATE >20 1.00 1.00

Mask mode BM 4.83 0.67 0.80

RM 5.66 0.75 0.86

Gender mix MF 6.04 0.74 0.85

MM 5.22 0.72 0.85

FF 4.48 0.67 0.79

FIG. 7. The combined effects of processing mode and test mode for four

normal-hearing listeners. The plot uses the same y-axis limits as the previ-

ous plots for the hearing-impaired group, e.g., Fig. 4 showing the same

results for the hearing-impaired group.
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approximately 88% to 94% in a test scenario equivalent to

the Target-Masker test applied in the present study. This

benefit would likely disappear at 0 dB SNR because the

unprocessed sum would have scores very close to 100% ceil-

ing. While the present study did not test the DNN algorithms

on NH listeners, experiment II for SUM/SEPARATE was

conducted and is summarized in Fig. 7: For the target-

masker, a SUM score of 97% leaves little room for benefit

and for competing voices, the SUM score is 90% and

SEPARATE is 98%, so a small benefit could be expected,

but the use case is not very relevant so close to ceiling

performance.

B. Tolerance to gender mix

Unlike earlier published results (Isik et al., 2016), the

separation algorithms used here did not perform differently

for different combinations of male and female talkers within

the employed set of three males and three females. This is a

positive outcome from the users’ and developers’ perspec-

tive, because this gives the same benefit in all talker

combinations.

The average scores across gender (Fig. 5) combinations

do show a slightly lower word recognition score for the

female-female combination compared to the two other com-

binations male-female and male-male. With the particular

six talkers used in this study, there is thus no different-

gender advantage, unlike what was found by Brungart

(2001).

C. Limitations

The current experiment investigated the benefit of sepa-

rating two mixed, known voices. The circumstances were

ideal in the sense that there was no background noise neither

during training nor during test of the separation algorithm.

We did not test the effects of unknown talker or unknown

background noises, but since the generalization to new talk-

ers is not perfect, some reduction of the benefit can be

expected (Kolbæk et al., 2017; Kumar and Florencio, 2016).

In other aspects, the present experiment imposed restric-

tions that may be relaxed in future work: The hearing-aid

critical latency restriction of 8 ms may be expanded to

improve separation performance, as found by Barker et al.
(2015), possibly at a cost in terms of reduced sound quality

(Bramsløw, 2010; Stone et al., 2008). Likewise, the

restricted training material of approximately 3 min is far

from ideal for a large DNN and a larger speech corpus for

training could lead to better separation performance

(Kolbæk et al., 2017). However, at the same time, the small

data requirement increases the applicability in real world sit-

uations as only a brief speech sample is required for learning

a voice and use it in separation.

The special use of the HINT material using only 8 lists

with 20 sentences each for the evaluation on hearing-

impaired listeners will inevitably lead to some learning by

the listeners. We have compensated for this by using a bal-

anced experimental design, thus balancing out the learning

effects. However, a larger speech corpus for testing could

ease this problem, or even using alternative outcome

measures such as pupillometry or EEG as a proxy for listen-

ing effort (Koelewijn et al., 2014).

In a recent study, Ohlenforst et al. (2017) used pupil

dilation measurements to assess listening effort as function

of signal-to-noise ratio (SNR) when listening to speech

masked by either stationary noise or a single competing

voice. In both normal-hearing and hearing-impaired listen-

ers, the pupil dilation was largest for sentence recognition

scores around 50% and then decreasing when a higher SNR

was used, leading to higher word scores. This indicates that

the listening effort is diminished when the speech recogni-

tion is improved.

D. Objective measurements of separation

Generally, the objective scores SDR, ESTOI, and STOI

listed in Table III agree well with the results from the listen-

ing test in experiment I: The objective scores for DNN sepa-

ration are higher than for the unprocessed SUM and lower

than the ideal SEPARATE, and furthermore, the scores are

the same for the three modes. The two mask types, Binary

Mask and Ratio Mask, were not different in the listening

test, but in the objective scores, Ratio Mask is �0.8 dB

higher for SDR and 0.08/0.06 for ESTOI/STOI. The three

gender mixes show the same pattern in the objective scores

for ESTOI/STOI: Male-female and male-male show practi-

cally the same scores and female-female are slightly below.

For the SDR, there is furthermore a difference between

male-female and male-male, which was not found in the lis-

tening test.

The best scores for DNN separation are for the ratio

mask: SDR¼ 5.66 dB and, ESTOI¼ 0.75 and STOI¼ 0.86.

The average SNR across sentence pairs is 0 dB in the com-

peting voices test. In a similar study, Healy et al. (2017)

measured STOI for DNN separation of one talker from a

male-female mixture of sentence pairs using ratio mask, and

obtained slightly higher STOI scores of 0.91 at �3 dB SNR.

The augmented amount of training data is similar in the pre-

sent study and in Healy et al. (2017), on the order of 9000 s,

however, the present study was trained using only 80 senten-

ces, compared to 600 sentences in Healy et al. (2017).

For a single-talker masker as used in the present study,

the more appropriate ESTOI (Jensen and Taal, 2016) did not

show different trends than STOI (Taal et al., 2011), but had

generally lower scores.

E. Perspectives

In the present study, we have focused on two distinctly

different use cases of the two-talker scenario.

• Competing voices: The user is attending to both voices

and attempting to focus on both talkers. This requires no

user input to the hearing system—the two separated out-

puts are presented separately to the two ears. The segrega-

tion enhancement and improved speech intelligibility is

beneficial as such and available to the user without any

further action—enabling fast voluntary attention shifting.
• Target-Masker: The user makes a choice of which of the

two voices to attend to and selects this as the target over
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the masking other voice. The user must somehow inform

the system which of the two outputs is in focus, by, e.g.,

switching on a smartphone app or using eye gaze (Kidd

et al., 2013), hereby leaving out the possibly relevant

information from the other voice. The DNN separation of

one talker from a mixture of multiple talkers and auto-

matic selection via EEG has also been suggested by

O’Sullivan et al. (2017), however, this required intracra-

nial EEG recordings in this first proof-of-concept.

The present study shows a statistically significant bene-

fit from the DNN separation in both cases, roughly 13%-

point in the CV listening and around 37%-points in the TM

listening. Both benefits are statistically significant and valu-

able to the hearing-impaired users, who often find them-

selves struggling in these situations.

The current efforts should be regarded as a simplified

laboratory-based proof of concept, and as such, it was suc-

cessful. Due to the choice of a well-known speech corpus

already used for hearing aid evaluations—HINT—there are

also limitations in the study that will not occur in real life,

e.g., memorization of the sentences and the limitation in

training material to four lists, equivalent of 3 min speech. In

the real-world application, more useful training data can be

accumulated over time, but also more noisy data than used

presently. The implications of these changes must be

investigated.

The present implementation of the separation algorithm

is based on STFT spectra and as such, there is no audiologi-

cal knowledge built-in. It could be advantageous to incorpo-

rate elements of hearing loss, spread of masking (e.g.,

Launer and Moore, 2003; Goehring et al., 2016) as in an

auditory model into the algorithm.

Finally, it may be worthwhile investigating other out-

come measures than word scores, especially indirect mea-

sures that use running speech as the main stimulus. One such

example would be using pupillometry for assessing the bene-

fit of the separation algorithm (Koelewijn et al., 2014), by

measuring pupil dilation as an indicator of listening effort.

Benefits in speech recognition scores will generally lower

the pupil dilation and hence listening effort (Ohlenforst

et al., 2017).

V. SUMMARY AND CONCLUSIONS

In the work presented here, we have tested the effect of

a speech separation algorithm based on DNNs and applied it

to achieve segregation enhancement for hearing-impaired

listeners. The algorithm is targeted towards a hearing-aid

application, thus using short latencies (8 ms) and little train-

ing data (�3 min) compared to similar published algorithms.

It was evaluated on 15 hearing-impaired listeners using a

new competing voices test and showed a benefit in two types

of test scenarios: a competing voices scenario with divided

attention on two equally important voices (dual target, dual-

attention) to demonstrate segregation enhancement and a

target-masker scenario with selected focus on one target

(single target, singe attention). Both scenarios and benefits

are relevant for the end users.

A smaller experiment on four normal-hearing listeners

showed performance near ceiling (90%–100% word score)

for both mixed and separated competing voices, thus leaving

little room for a potential segregation benefit from DNN sep-

aration in this group.

In the competing voices (dual-target) scenario the lis-

tener is aware of both voices and can attend voluntarily to

one or the other. No other intervention or guidance of the

algorithm is required. In this rather demanding use case, the

separation algorithm provided a benefit of approximately

13%-points. As the access to both voices was improved, this

may enable the listener to catch words from a competing

conversation and decide to switch attention, or simply tune

in conversations in a cocktail party—or during family

dinners.

In a more classic target-masker scenario, one voice is

identified as target and the other as masker. Thus, the listener

must actively indicate to the algorithm which voice is the

target and the other voice will be suppressed. The indication

can be done via, e.g., a smartphone application. In this case,

the separation benefit was approximately 37%-point, and

dual attention is not possible.

The listening test results for the hearing-impaired group

were very well in line with popular objective metrics, thus

confirming the usefulness of these metrics in further optimi-

zation of the DNN separation algorithm.

The limitations of the algorithm in terms of robustness

to new voices not yet trained, noise in training and test data,

and voice variations over time remains to be evaluated. The

benefit from more training material than the current 3 min

should also be investigated.

ACKNOWLEDGMENTS

The work from Tampere University of Technology was

partly funded by Grant No. 15-0653 from the Oticon

Foundation. We thank Jette Nissen for help with booking of

the listeners and CSC-IT Centre of Science Ltd., Finland, for

providing computational resources.

Bach, F. R., and Jordan, M. I. (2005). “Blind one-microphone speech sepa-

ration: A spectral learning approach,” Adv. Neural Inf. Process. Syst. 17,

65–72.

Barker, T., Virtanen, T., and Pontoppidan, N. H. (2015). “Low-latency

sound-source-separation using non-negative matrix factorisation with cou-

pled analysis and synthesis dictionaries,” in 2015 IEEE International
Conference on Acoustics and Speech Signal Processes, IEEE, pp.

241–245.

Bolia, R. S., Nelson, W. T., Ericson, M. A., and Simpson, B. D. (2000). “A

speech corpus for multitalker communications research,” J. Acoust. Soc.

Am. 107, 1065–1066.

Boll, S. (1979). “Suppression of acoustic noise in speech using spectral sub-

traction,” IEEE Trans. Acoust. 27, 113–120.

Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). “A theoretical analysis of

feature pooling in visual recognition,” in Proceedings of the 27th
International Conference on Machine Learning, pp. 111–118.

Bramsløw, L. (2010). “Preferred signal path delay and high-pass cut-off in

open fittings,” Int. J. Audiol. 49, 634–644.

Bramsløw, L., Vatti, M., Hietkamp, R. K., and Pontoppidan, N. H. (2015).

“Binaural speech recognition for normal-hearing and hearing-impaired lis-

teners in a competing voice test,” in Speech Noise 2015, Copenhagen.

Brungart, D. S. (2001). “Informational and energetic masking effects in the

perception of two simultaneous talkers,” J. Acoust. Soc. Am. 109,

1101–1109.

J. Acoust. Soc. Am. 144 (1), July 2018 Bramsløw et al. 183

https://doi.org/10.1121/1.428288
https://doi.org/10.1121/1.428288
https://doi.org/10.1109/TASSP.1979.1163209
https://doi.org/10.3109/14992021003753482
https://doi.org/10.1121/1.1345696


Chandna, P., Miron, M., Janer, J., and G�omez, E. (2017). “Monoaural audio

source separation using deep convolutional neural networks,” in

International Conference on Latent Variable Analysis and Signal
Separation (Springer, Berlin), pp. 258–266.

Cherry, E. C. (1953). “Some experiments on the recognition of speech, with

one and with two ears,” J. Acoust. Soc. Am. 25, 975–979.

Chollet, F. (2016). Keras, GitHub, https://github.com/keras-team/keras/

releases/tag/1.1.0 (Last viewed June 29, 2018).

Dillon, H. (2012). Hearing Aids, 2nd ed. (Thieme, New York).

Erdogan, H., Hershey, J. R., Watanabe, S., and Le Roux, J. (2015). “Phase-

sensitive and recognition-boosted speech separation using deep recurrent

neural networks,” in Proceedings of the 40th IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015,

pp. 708–712.

Ezzatian, P., Li, L., Pichora-Fuller, K., and Schneider, B. A. (2015).

“Delayed stream segregation in older adults,” Ear Hear. 36, 482–484.

Goehring, T., Yang, X., Monaghan, J. J. M., and Bleeck, S. (2016). “Speech

enhancement for hearing-impaired listeners using deep neural networks

with auditory-model based features,” in 2016 24th European Signal
Processing Conference, IEEE, pp. 2300–2304.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (MIT

Press, Cambridge, MA).

Grais, E. M., Sen, M. U., and Erdogan, H. (2014). “Deep neural networks for

single channel source separation,” in 2014 IEEE International Conference
on Acoustics and Speech Signal Processing, IEEE, pp. 3734–3738.

Han, K., and Wang, D. (2012). “A classification based approach to speech

segregation,” J. Acoust. Soc. Am. 132, 3475–3483.

Hanson, B. A., and Wong, D. Y. (1984). “The harmonic magnitude suppres-

sion (HMS) technique for intelligibility enhancement in the presence of

interfering speech,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 195–199.

Healy, E. W., Delfarah, M., Vasko, J. L., Carter, B. L., and Wang, D.

(2017). “An algorithm to increase intelligibility for hearing-impaired lis-

teners in the presence of a competing talker,” J. Acoust. Soc. Am. 141,

4230–4239.

Healy, E. W., Yoho, S. E., Chen, J., Wang, Y., and Wang, D. (2015). “An algo-

rithm to increase speech intelligibility for hearing-impaired listeners in novel

segments of the same noise type,” J. Acoust. Soc. Am. 138, 1660–1669.

Healy, E. W., Yoho, S. E., Wang, Y., Apoux, F., and Wang, D. (2014).

“Speech-cue transmission by an algorithm to increase consonant recogni-

tion in noise for hearing-impaired listeners,” J. Acoust. Soc. Am. 136,

3325–3336.

Healy, E. W., Yoho, S. E., Wang, Y., and Wang, D. (2013). “An algorithm

to improve speech recognition in noise for hearing-impaired listeners,”

J. Acoust. Soc. Am. 134, 3029–3038.

Helfer, K. S., Chevalier, J., and Freyman, R. L. (2010). “Aging, spatial cues,

and single-versus dual-task performance in competing speech perception,”

J. Acoust. Soc. Am. 128, 3625–3633.

Hochreiter, S., and Schmidhuber, J. (1997). “Long short-term memory,”

Neural Comput. 9, 1735–1780.

Huang, P. Sen, Kim, M., Hasegawa-Johnson, M., and Smaragdis, P. (2015).

“Joint optimization of masks and deep recurrent neural networks for mon-

aural source separation,” IEEE/ACM Trans. Speech Lang. Process. 23,

2136–2147.

Ihlefeld, A., and Shinn-Cunningham, B. (2008). “Disentangling the effects

of spatial cues on selection and formation of auditory objects,” J. Acoust.

Soc. Am. 124, 2224–2235.

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in International
Conference on Machine Learning, pp. 448–456.

Isik, Y., Roux, J. Le, Chen, Z., Watanabe, S., and Hershey, J. R. (2016).

“Single-channel multi-speaker separation using deep clustering,” in

Proceedings of INTERSPEECH, ISCA, pp. 545–549.

Jang, G. J., and Lee, T. W. (2004). “A maximum likelihood approach to

single-channel source separation,” J. Mach. Learn. Res. 4, 1365–1392.

Jensen, J., and Taal, C. H. (2016). “An algorithm for predicting the intelligi-

bility of speech masked by modulated noise maskers,” IEEE/ACM Trans.

Audio Speech Lang. Process. 24, 2009–2022.

Kidd, G., Favrot, S., Desloge, J. G., Streeter, T. M., and Mason, C. R.

(2013). “Design and preliminary testing of a visually guided hearing aid,”

J. Acoust. Soc. Am. 133, EL202–EL207.

Kingma, D. P., and Ba, J. L. (2015). “Adam: A method for stochastic opti-

mization,” in 3rd International Conference on Learning Representations,

pp. 1–15.

Koelewijn, T., Shinn-Cunningham, B. G., Zekveld, A. A., and Kramer, S. E.

(2014). “The pupil response is sensitive to divided attention during speech

processing,” Hear. Res. 312, 114–120.

Kolbæk, M., Tan, Z.-H., and Jensen, J. (2017). “Speech intelligibility poten-

tial of general and specialized deep neural network based speech enhance-

ment systems,” IEEE/ACM Trans. Audio Speech Lang. Process. 25,

153–167.

Kollmeier, B., and Wesselkamp, M. (1997). “Development and evaluation

of a German sentence test for objective and subjective speech intelligibil-

ity assessment,” J. Acoust. Soc. Am. 102, 2412–2421.

Kumar, A., and Florencio, D. (2016). “Speech enhancement in multiple-

noise conditions using deep neural networks,” arXiv:1605.02427.

Launer, S., and Moore, B. C. (2003). “Use of a loudness model for hearing

aid fitting V on-line gain control in a digital hearing aid,” Int. J. Audiol.

42, 262–273.

Lu, X., Tsao, Y., Matsuda, S., and Hori, C. (2013). “Speech enhancement

based on deep denoising autoencoder,” in Interspeech, pp. 436–440.

Lunner, T. (2003). “Cognitive function in relation to hearing aid use,” Int. J.

Audiol. 42, S49–S58.

Luo, Y., and Mesgarani, N. (2017). “TasNet: Time-domain audio separation

network for real-time, single-channel speech separation,”

arXiv:1711.00541.

Mackersie, C. L., Prida, T. L., and Stiles, D. (2001). “The role of sequential

stream segregation and frequency selectivity in the perception of simulta-

neous sentences by listeners with sensorineural hearing loss,” J. Speech

Lang. Hear. Res. 44, 19–28.

McFee, B., McVicar, M., Nieto, O., Balke, S., Thome, C., Liang, D.,

Battenberg, E., Moore, J., Bittner, R., Yamamoto, R., Ellis, D., Stoter, F.-

R., Repetto, D., Waloschek, S., Carr, C., Kranzler, S., Choi, K., Viktorin,

P., Santos, J. F., Holovaty, A., Pimenta, W., and Lee, H. (2017). Librosa

0.5.0.

Naithani, G., Barker, T., Parascandolo, G., Bramsløw, L., Pontoppidan, N.

H., and Virtanen, T. (2017). “Low-latency sound source separation using

convolutional recurrent deep neural networks,” in 2017 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics, IEEE, New

Paltz, NY, pp. 1–5.

Naithani, G., Parascandolo, G., Barker, T., Pontoppidan, N. H., Virtanen, T.,

Parascandolo, G., Bramsløw, L., Pontoppidan, N. H., and Virtanen, T.

(2016). “Low-latency sound source separation using deep neural

networks,” in 2016 IEEE Global Conference on Signal and Information
Processing, IEEE, pp. 272–276.

Naylor, J., and Boll, S. (1987). “Techniques for suppression of an interfering

talker in co-channel speech,” in ICASSP’87. IEEE International
Conference on Acoustics, Speech, and Signal Processing, Vol. 12.

Neher, T., Behrens, T., Kragelund, L., and Petersen, A. S. (2007). “Spatial

unmasking in aided hearing-impaired listeners and the need for training,”

in Proceeding of the International Symposium on Auditory and
Audiological Research, Helsingør, Denmark, pp. 515–522.

Nielsen, J. B., and Dau, T. (2011). “The Danish hearing in noise test,” Int. J.

Audiol. 50, 202–208.

Nilsson, M., Soli, S. D., and Sullivan, J. A. (1994). “Development of the

Hearing In Noise Test for the measurement of speech reception thresholds

in quiet and in noise,” J. Acoust. Soc. Am. 95, 1085–1099.

Ohlenforst, B., Zekveld, A. A., Lunner, T., Wendt, D., Naylor, G., Wang,

Y., Versfeld, N. J., and Kramer, S. E. (2017). “Impact of stimulus-related

factors and hearing impairment on listening effort as indicated by pupil

dilation,” Hear. Res. 351, 68–79.

O’Sullivan, J., Chen, Z., Herrero, J., McKhann, G. M., Sheth, S. A., Mehta,

A. D., and Mesgarani, N. (2017). “Neural decoding of attentional selection

in multi-speaker environments without access to clean sources,” J. Neural

Eng. 14, 056001.

Park, S. R., and Lee, J. (2016). “A fully convolutional neural network for

speech enhancement,” arXiv:1609.07132.

Parsons, T. W. (1976). “Separation of speech from interfering speech by

means of harmonic selection,” J. Acoust. Soc. Am. 60, 911–918.

Perron, M. (2017). “Hearing aids of tomorrow: Cognitive control toward

individualized experience,” Hear. J. 70, 22–23.

Pertila, P., and Cakir, E. (2017). “Robust direction estimation with convolu-

tional neural networks based steered response power,” in 2017 IEEE
International Conference on Acoustics and Speech Signal Processing,

IEEE, pp. 6125–6129.

Pontoppidan, N., and Dyrholm, M. (2003). “Fast monaural separation of

speech,” in 23rd International Conference on Signal Processing and
Audio Recording Reproduction, pp. 1–6.

184 J. Acoust. Soc. Am. 144 (1), July 2018 Bramsløw et al.

https://doi.org/10.1121/1.1907229
https://github.com/keras-team/keras/releases/tag/1.1.0
https://github.com/keras-team/keras/releases/tag/1.1.0
https://doi.org/10.1097/AUD.0000000000000139
https://doi.org/10.1121/1.4754541
https://doi.org/10.1121/1.4984271
https://doi.org/10.1121/1.4929493
https://doi.org/10.1121/1.4901712
https://doi.org/10.1121/1.4820893
https://doi.org/10.1121/1.3502462
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TASLP.2015.2468583
https://doi.org/10.1121/1.2973185
https://doi.org/10.1121/1.2973185
https://doi.org/10.1109/TASLP.2016.2585878
https://doi.org/10.1109/TASLP.2016.2585878
https://doi.org/10.1121/1.4791710
https://doi.org/10.1016/j.heares.2014.03.010
https://doi.org/10.1109/TASLP.2016.2628641
https://doi.org/10.1121/1.419624
https://doi.org/10.3109/14992020309078345
https://doi.org/10.3109/14992020309074624
https://doi.org/10.3109/14992020309074624
https://doi.org/10.1044/1092-4388(2001/002)
https://doi.org/10.1044/1092-4388(2001/002)
https://doi.org/10.3109/14992027.2010.524254
https://doi.org/10.3109/14992027.2010.524254
https://doi.org/10.1121/1.408469
https://doi.org/10.1016/j.heares.2017.05.012
https://doi.org/10.1088/1741-2552/aa7ab4
https://doi.org/10.1088/1741-2552/aa7ab4
https://doi.org/10.1121/1.381172
https://doi.org/10.1097/01.HJ.0000527206.21194.fa


Quatieri, T. F., and Danisewicz, R. G. (1990). “An apporoach to co-channel

talker interference suppression using a sinusoidal model for speech,” IEEE

Trans. ASSP 38, 56–69.

Raj, B., and Smaragdis, P. (2005). “Latent variable decomposition of

spectrograms for single channel speaker separation,” in IEEE
Workshop on Applied Signal Processing to Audio Acoustics, pp.

17–20.

Roman, N., and Wang, D. (2006). “Pitch-based monaural segregation of

reverberant speech,” J. Acoust. Soc. Am. 120, 458–469.

Roweis, S. T. (2001). “One microphone source separation,” Adv. Neural

Inf. Process. Syst. 13, 793–799.

Seltzer, M. L., Raj, B., and Stern, R. M. (2000). “Classifier-based mask esti-

mation for missing feature methods of robust speech recognition,” in

Proceedings of the International Conference on Spoken Language
Processing, Vol. 3, pp. 538–541.

Srinivasan, S., Roman, N., and Wang, D. (2006). “Binary and ratio time-

frequency masks for robust speech recognition,” Speech Commun. 48,

1486–1501.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,

R. (2014). “Dropout: A simple way to prevent neural networks from over-

fitting,” J. Mach. Learn. Res. 15, 1929–1958.

Stone, M. A., Moore, B. C., Meisenbacher, K., and Derleth, R. P. (2008).

“Tolerable hearing aid delays. V. Estimation of limits for open canal

fittings,” Ear Hear. 29, 601–617.

Stubbs, R. J., and Summerfield, Q. (1990). “Algorithms for separating the

speech of interfering talkers: Evaluations with voiced sentences, and

normal-hearing and hearing-impaired listeners,” J. Acoust. Soc. Am. 87,

359–372.

Studebaker, G. A. (1985). “A ‘rationalized’ arcsine transform,” J. Speech

Lang. Hear. Res. 28, 455–462.

Summers, V., Makashay, M. J., Theodoroff, S. M., and Leek, M. R. (2013).

“Suprathreshold auditory processing and speech perception in noise:

Hearing-impaired and normal-hearing listeners,” J. Am. Acad. Audiol. 24,

274–292.

Taal, C. H., Hendriks, R. C., Heusdens, R., and Jensen, J. (2011). “An

algorithm for intelligibility prediction of time-frequency weighted

noisy speech,” IEEE Trans. Audio Speech Lang. Process. 19,

2125–2136.

Tamura, S., and Waibel, A. (1988). “Noise reduction using connectionist

models,” in ICASSP, pp. 553–556.

Vincent, E., Gribonval, R., and Fevotte, C. (2006). “Performance measure-

ment in blind audio source separation,” IEEE Trans. Audio Speech Lang.

Process. 14, 1462–1469.

Virtanen, T. (2007). “Monaural sound source separation by nonnegative

matrix factorization with temporal continuity and sparseness criteria,”

IEEE Trans. Audio Speech Lang. Process. 15, 1066–1074.

Wagener, K., Josvassen, J. L., and Ardenkjær, R. (2003). “Design, optimiza-

tion and evaluation of a Danish sentence test in noise,” Int. J. Audiol. 42,

10–17.

Wang, D. (2008). “Time-frequency masking for speech separation and its

potential for hearing aid design,” Trends Amplif. 12, 332–353.

Wang, D., and Brown, G. J. (2006). Computational Auditory Scene
Analysis: Principles, Algorithms, and Applications (Wiley-IEEE, New

York), Vol. 147, pp. 147–185.

Wang, D., and Chen, J. (2017). “Supervised speech separation based on

deep learning: An overview,” arXiv:1708.07524.

Wang, D., and Hu, G. (2006). “Unvoiced speech segregation,” in 2006 IEEE
International Conference on Acoustics and Speed Signal Processing,

IEEE, pp. V-953–V-956.

Wang, D., Kjems, U., Pedersen, M. S., Boldt, J. B., and Lunner, T. (2009).

“Speech intelligibility in background noise with ideal binary time-

frequency masking,” J. Acoust. Soc. Am. 125, 2336–2347.

Wang, Y. (2015). “Supervised speech separation using deep neural

networks,” Ph.D. thesis, Ohio State University.

Wang, Y., Narayanan, A., and Wang, D. L. (2014). “On training targets for

supervised speech separation,” IEEE Trans. Acoust. Speech Lang.

Process. 22, 1849–1858.

Wang, Y., and Wang, D. (2013). “Towards scaling up classification-based

speech separation,” IEEE Trans. Audio Speech Lang. Process. 21, 1381–1390.

Weninger, F., Hershey, J. R., Le Roux, J., and Schuller, B. (2014).

“Discriminatively trained recurrent neural networks for single-channel

speech separation,” in 2014 IEEE Global Conference on Signal
Informaton Processing, IEEE, pp. 577–581.

Williamson, D. S., and Wang, D. L. (2017). “Time-frequency masking in

the complex domain for speech dereverberation and denoising,” IEEE/

ACM Trans. Audio Speech Lang. Process. 25, 1492–1501.

Xie, F., and Van Compernolle, D. (1994). “A family of MLP based nonlin-

ear spectral estimators for noise reduction,” in Proceedings of ICASSP’94.
IEEE International Conference on Acoustics and Speech Signal
Processing, pp. II/53–II/56.

Xu, Y., Du, J., Dai, L.-R., and Lee, C.-H. (2014). “An experimental study

on speech enhancement based on deep neural networks,” IEEE Sign.

Process. Lett. 21, 65–68.

Xu, Y., Du, J., Dai, L.-R., and Lee, C.-H. (2015). “A regression approach to

speech enhancement based on deep neural networks,” IEEE/ACM Trans.

Audio Speech Lang. Process. 23, 7–19.

J. Acoust. Soc. Am. 144 (1), July 2018 Bramsløw et al. 185

https://doi.org/10.1109/29.45618
https://doi.org/10.1109/29.45618
https://doi.org/10.1121/1.2204590
https://doi.org/10.1016/j.specom.2006.09.003
https://doi.org/10.1097/AUD.0b013e3181734ef2
https://doi.org/10.1121/1.399257
https://doi.org/10.1044/jshr.2803.455
https://doi.org/10.1044/jshr.2803.455
https://doi.org/10.3766/jaaa.24.4.4
https://doi.org/10.1109/TASL.2011.2114881
https://doi.org/10.1109/TSA.2005.858005
https://doi.org/10.1109/TSA.2005.858005
https://doi.org/10.1109/TASL.2006.885253
https://doi.org/10.3109/14992020309056080
https://doi.org/10.1177/1084713808326455
https://doi.org/10.1121/1.3083233
https://doi.org/10.1109/TASLP.2014.2352935
https://doi.org/10.1109/TASLP.2014.2352935
https://doi.org/10.1109/TASL.2013.2250961
https://doi.org/10.1109/TASLP.2017.2696307
https://doi.org/10.1109/TASLP.2017.2696307
https://doi.org/10.1109/LSP.2013.2291240
https://doi.org/10.1109/LSP.2013.2291240
https://doi.org/10.1109/TASLP.2014.2364452
https://doi.org/10.1109/TASLP.2014.2364452

	s1
	tr1
	l
	n1
	n2
	s2
	s2A
	d1
	d2
	d3
	d4
	s2B
	f1
	t1
	s2C
	s2D
	s2D1
	s2D2
	t2
	f2
	s2D3
	s2D4
	s2D5
	s2D6
	s2D7
	s2D8
	s2E
	s2E1
	s2E2
	s3
	s3A
	s3A1
	s3A2
	s3A3
	s3A4
	f3
	f4
	s3A5
	s3A6
	s3A7
	f5
	f6
	s3B
	s3B1
	s3B2
	s4
	s4A
	t3
	f7
	s4B
	s4C
	s4D
	s4E
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c51
	c50
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78
	c79
	c80
	c81
	c82
	c83
	c84
	c85

