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ABSTRACT

Deep neural networks (DNN) have been successfully employed
for the problem of monaural sound source separation achieving
state-of-the-art results. In this paper, we propose using convolu-
tional recurrent neural network (CRNN) architecture for tackling
this problem. We focus on a scenario where low algorithmic delay
(≤ 10 ms) is paramount, and relatively little training data is avail-
able. We show that the proposed architecture can achieve slightly
better performance as compared to feedforward DNNs and long
short-term memory (LSTM) networks. In addition to reporting
separation performance metrics (i.e., source to distortion ratios),
we also report extended short term objective intelligibility (ESTOI)
scores which better predict intelligibility performance in presence
of non-stationary interferers.

Index Terms— Source Separation, Low-latency, Deep Neural
Networks, Convolutional Recurrent Neural Networks.

1. INTRODUCTION

Source separation is a field of research which aims to solve the prob-
lem of separating an audio mixture into its constituent sounds orig-
inating from different sources. It is useful for various applications
like automatic speech recognition [1, 2], fundamental frequency es-
timation [3], etc., where it acts as an intermediary step which aids
in the final objective of the task.

In this paper, we focus on monaural sound source separa-
tion problem for applications where low processing latency is
paramount, e.g., hearing aids [4], and cochlear implants [5, 2]. It
is postulated that window duration of around 20-40 ms in short
time Fourier transform (STFT) processed signals is preferred for
speech processing [6]. But for low-latency systems we need to
work with shorter window durations. In the context of digital hear-
ing aid applications, low processing delay is regarded as a critical
design feature [7]. For such applications, latencies as low as 3
ms have been found to be detectable and anything larger than 10
ms have been found to be objectionable [8]. There is therefore a
need for sound source separation algorithms which are suitable for
algorithmic delays ≤ 10 ms.

Recently deep neural network (DNN) based approaches for
sound source separation have become quite popular [9, 10, 11]
and different types of architectures for the task have been reported.
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Feedforward DNNs, e.g., reported in [9], are unable to utilize long
temporal contexts and whatever temporal context is deemed use-
ful, has to be explicitly fed to the input in the form of stacked
frames, e.g., in [12]. They are also unable to explicitly utilize the
spectro-temporal structure present in time-frequency representation
of audio signal which is lost if stacked frames are used as input.
The need to infuse information from long temporal context moti-
vates the use of recurrent neural networks, as has been reported in
[10, 11]. The need to preserve spectro-temporal structure motivates
the use of convolutional neural networks, which have been applied
in conventional form e.g., in [13] , or as convolutional encoder-
decoder networks, e,g, in [14, 15]. However most of these methods
have been reported for algorithmic latencies ≥ 20 ms.

Previously, we have investigated the problem of low -latency
sound source separation for algorithmic latencies ≤ 20 ms using
non-negative matrix factorization [16] and feedforward deep neural
networks [12]. This paper takes that work forward and investigates
the potential of convolutional recurrent networks (CRNN) [17, 18]
for this problem. Such architectures have been successfully em-
ployed, e.g., in polyphonic sound event detection [18], and music
classification [19].

In this paper we compare the performance of convolutional re-
current networks (CRNN) with feedforward DNNs and long short-
term memory (LSTM) networks [20]. Typically, deep learning tech-
niques have been shown to directly benefit from very large quanti-
ties of training data [21], although in some cases either this is not
always available, or costly to obtain. We therefore consider the sce-
nario where training data is limited, and attempt to maximize perfor-
mance in these cases. This is also motivated by the constraints of a
project where we are using the techniques reported here for hearing
impaired (HI) listeners (see Section 3.1). This user-centric appli-
cation also motivates the use of an estimated intelligibility metric,
as well as purely energy based separation measures. In addition to
the conventionally used BSS-EVAL [22] metrics of separation, we
evaluate the performance of our approach using the extended short
time objective intelligibility metric (ESTOI) [23]. It is an exten-
sion of the popular short time objective intelligibility (STOI) metric
[24], and is postulated to be a better predictor of intelligibility in
presence of modulated noise/speech interferers (see Section 3.3).

The paper is organized as follows: Section 2 describes the
CRNN architecture along with the time-frequency masking scheme
utilized in this paper. Section 3 describes the evaluation procedure,
experimental design along with the acoustic material used in the
experiments. And finally, Section 4 concludes the paper.
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Figure 1: Block diagram of the proposed convolutional recurrent neural network architecture.

2. PROPOSED METHOD

The proposed method uses the time-frequency masking based
source separation paradigm [4] which involves prediction of time-
frequency masks corresponding to constituent sources present in
the mixture. These time-frequency masks when applied to mixture
spectrograms yield spectra of the constituent sources. Magnitudes
of short time Fourier transform (STFT) coefficients are used as
features. The neural network is trained in a supervised fashion
and mean square error (MSE) between target and estimated masks,∑

t,f (M(t, f) − Mest(t, f))
2 is used as the training objective

function, where t and f are time and frequency indices, respec-
tively.

In order to maintain low latency operation, the proposed neural
network utilizes only past temporal context to predict mask corre-
sponding to the current frame. The algorithmic latency is limited by
the window size used for STFT processing.

2.1. Proposed neural network architecture

Convolutional recurrent neural networks (CRNN) are a combina-
tion of two kinds of neural network topologies: convolutional and
recurrent networks. The motivation behind combining the two is
to take advantage of the feature extraction capability of the former
with temporal modeling capability of the latter.

The proposed architecture is shown in Figure 1. Convolutional
layers form the front end of the network to which spectral features
Xi , i = 1, 2, ....n, are fed. Each input Xi is a (F ×T ) matrix con-
sisting of a sequence of T temporally continuous spectral feature
vectors, each of size F . The convolutional layer act as feature ex-
tractor employing (kr × kc) size convolutional kernel to efficiently
extract spectro-temporal features from the input. This procedure
can be thought of as convolving the input feature matrix with the
convolutional kernel and yields a (F × T ) size matrix called an ac-
tivation map or feature map. D such convolutional kernels are used
give a three dimensional output, Yi, of size (D×F ×T ). Note that
the convolution operation here is such that, for tth frame of the in-
put, the convolution operation utilizes only previous time frames in
order to maintain the low latency operation. Figure 2 depicts this for
one dimensional convolution example. Yi is then fed to a pooling
layer where max pooling operation is done only over the frequency
axis. Max pooling operation reduces the size of the frequency axis
of each of the D feature maps from F to Fm, reducing the number
of parameters fed into the next layer. Several such convolutional
layers in combination of pooling layers can be employed.

The second component of a CRNN architecture is a recurrent
layer. Before feeding max pooled Yi into the recurrent layer, D
feature maps are stacked along the frequency axis such that for each

time step we now have D × Fm size feature vector. This operation
preserves the temporal continuity of the T frames and expands the
feature set for each time frame by a factor of D. In this paper,
we have used long short-term memory (LSTM) [20] units in the
recurrent layer. The recurrent layer takes a sequence of T frames
as input and produces a sequence of T output frames. Several such
recurrent layers can be employed. The output from the recurrent
layer is fed to a feedforward layer which is a timedistributed layer,
i.e., it processes each of the T frames independently of the other
frames, and serves as the output layer of the network.

2.2. Mask outputs and source reconstruction

We utilize soft time-frequency mask in this paper. For an acous-
tic mixture of two sources, mask corresponding to source 1 can be
expressed as,

M1(t, f) =
|S1(t, f)|

|S1(t, f)|+ |S2(t, f)|
, (1)

where S1 and S2 are STFT magnitudes corresponding to the con-
stituent sources. The model is trained with respected to source 1
hence the estimated mask M1

est(t, f) corresponds to source 1 and
mask corresponding to the other source is given by its complement,
i.e., M2

est = 1−M1
est. These estimated masks are then used to get

complex STFT spectra of the separated sources utilizing the mix-
ture phase. The time domain constituent sources are then recon-
structed using inverse discrete Fourier transform (IDFT) and over-
lap add processing.

3. EVALUATION

The section describes the acoustic material used in the experiments,
metrics used for evaluating separation performance of neural net-
work architectures, experimental design, and finally the results ob-
tained.

3.1. Acoustic Material

The Danish hearing in noise test (HINT) dataset was used for eval-
uation which is an extended version of the original HINT dataset
(described in [25]). The dataset consists of 13 lists, each consist-
ing of 20 natural sentences. Each sentence consists of 5 words. All
audio files were recorded with a sampling rate of 44.1 kHz. Three
speaker pairs: M1 and F1, M1 and M2, and, F1 and F2, were cho-
sen for evaluation to cover all gender combinations. This study is
a part of a larger project to investigate potential intelligibility ben-
efits of sound separation methods for HI listeners. Danish HINT
dataset is used for subjective listening experiments which involve
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Table 1: Best hyperparameters and number of trainable parameters for the selected FDNN, LSTM and CRNN architectures.

FDNN LSTM CRNN

hidden
layers

hidden
neurons

previous
context

hidden
layers

hidden
neurons

sequence
length

conv.
layers

recurr.
layers

recurr.
neurons

conv.
filters

pooling
scheme

sequence
length

4 1024 8 3 512 64 3 1 256 256 1 by 2 128

par. 3,904,593 5,208,581 4,089,681

repeated presentation of sentences to HI listeners which often leads
to word memorization in test subjects. It is thus desirable to reserve
only a small part of the dataset for training the DNNs and keep the
larger chunk for testing. This study thus is useful for all situations
where training data is not easily available. We use lists L1 and L2
for training, lists L3 and L4 for validation, and lists L7 and L8 for
testing. This amounts to 40 sentences (around 80 seconds) of audio
data each for training and validation.

3.2. Training data generation

Each separation model was trained with data from the target speaker
in the corresponding speaker pair on which it was to operate. All
audio data was resampled to 16 kHz before any further processing.

A limited amount of data was used for training (2 lists of 20 ut-
terances per speaker from the Danish HINT corpus), and so careful
construction of training material from the audio data was required.
The available training material was systematically mixed in vari-
ous permutations to attempt to make maximum use of the available
data, by repeatedly summing the entire training data for each of the
speakers within a training/test pair with a varying offset. The offset
was applied in the STFT domain, by circularly shifting one source
spectrogram (over time), with respect to the other, and summing.
Hence for each offset shift, a novel set of training examples was
produced. Initial validation experiments showed that although not
as effective at boosting performance as increasing the quantity of
initial training data, (e.g. using a greater fraction of the training
corpus), modest improvements could be achieved by augmenting
the training data in this way, when faced with a restricted quantity
of training data. We used 50 shifts of length Ts

50
, where Ts is the

number of frames in the longer of the two training spectrograms to
produce our training data spectrograms.

Training features were produced from the training data spec-
trograms, such that the target output for a particular sequence of
input frames was the mask given by Equation 1. For the produc-
tion of all STFT features, an analysis window length 5 ms (80 sam-
ples at 16 kHz) was used with 50% overlap, resulting in a 5 ms

Figure 2: 1-dimensional depiction of the convolution operation for
a single kernel as used in CNN layers.

algorithmic latency.

3.3. Metrics

The separation performance of different neural network architec-
tures were evaluated using BSS-EVAL toolkit [22]. It consists of
three metrics: Source to Interference Ratio (SIR) and Source to Ar-
tifacts Ratio (SAR), for interference and artifact suppression, re-
spectively; and Source to Distortion ratio (SDR) for overall sepa-
ration performance. In addition, extended short time intelligibil-
ity metric (ESTOI) has been reported, which, unlike STOI [24],
does not assume mutual independence between frequency bands of
speech and interfering signals [23] and is hence a better predictor of
intelligibility for experiments reported in this paper.

3.4. Experimental design

We consider two baselines for the proposed CRNN architecture:
1) A feedforward deep neural network architecture (FDNN) de-
scribed in [12], where previous temporal context of N frames was
used for predicting the output corresponding to current frame. 2) A
long short term memory (LSTM) network which has been used for
sound source separation, e.g, in [11]. The experimental design con-
sists of two stages: 1) Hyperparameter selection using grid search
for the three types of neural network architectures: FDNN, LSTM,
and CRNN, using validation set of lists L3 and L4 , and 2) Evalua-
tion of the chosen best versions of each topology selected in step 1
on a common test set (i.e., lists L7 and L8 here). The hyperparame-
ter selection was performed using only speaker pair M1F1 in order
to limit the degrees of freedom in the search space, for a reasonable
number of experiments.

Hyperparameter selection for feedforward DNN involved se-
lection of appropriate number of hidden layers {1, 2, 3, 4}, num-
ber of neurons in each hidden layer { 128, 256, 512, 1024, 2048},
and number of previous frames {4, 8, 16, 32} to be used in the
prediction of the current frame. Similarly, for LSTM network, the
hyperparameters consisted of number of hidden layers {1, 2, 3, 4}
and number of neurons in each hidden layer {128, 256, 512, 1024}.
Finally, CRNN hyperparameter search consisted of number of con-
volutional layers {1, 2, 3, 4}, number of LSTM layers { 0, 1, 2, 3},
and number of convolutional filters {64, 96, 128, 256}. Frequency
max pooling arrangements { 1 by 2, 1 by 3, 1 by 4 } were exper-
imented with, the first and second dimensions denoting time and
frequency axes, respectively. Here, e.g., a max pooling scheme of 1
by 2, implies that the frequency dimension is reduced by a factor of
2. Note that max pooling is done only in the frequency dimension.
Moreover, for the LSTM and CRNN, we also investigated appropri-
ate sequence length {8, 16, 32, 64, 128, 256 frames}. The sequence
length here refers to number of frames that are unrolled for back-
propagation through time. For CRNN the following convolutional
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Table 2: Performance metrics for the three neural network architectures.

Network topology

Speaker pair Metric FDNN LSTM CRNN

M1 F1

SIR 10.39 10.68 10.99
SAR 10.69 10.69 10.7
SDR 7.23 7.4 7.54

ESTOI 0.76 0.78 0.79

M1 M2

SIR 9.56 9.85 10.22
SAR 9.96 9.98 9.92
SDR 6.42 6.55 6.74

ESTOI 0.76 0.77 0.79

F1 F2

SIR 8.23 8.55 9.16
SAR 9.8 9.53 9.78
SDR 5.49 5.51 6.01

ESTOI 0.70 0.71 0.74

kernels shapes were investigated , { (3, 3), (5, 5) , (7, 7)}. Here,
e.g., (3, 3) denotes kernel size in time and frequency axes.

The best possible hyperparameters for the three topologies was
selected based on the separation performance (i.e., SDR) on the val-
idation data. Table 1 shows the final hyperparameters selected for
final evaluation. A max pooling layer was used after each convo-
lutional layer. A convolutional kernel of size (3, 3) and max pool-
ing scheme of 1 by 2 was used for final evaluation. Interestingly,
in our tests, each of the network architectures giving best perfor-
mance on the validation set had similar order of trainable param-
eters, with roughly 3.9, 5.2 and 4.1 million parameters across the
FDNN, LSTM and CRNN architectures respectively.

Some choices of network parameters were not included in the
hyperparameter search and were kept constant for all networks.
These choices were empirically determined on the basis of prelim-
inary experiments, observing the performance on validation data.
For feedforward DNNs, the sigmoid activation function was used
for both hidden and output neurons, and dropout regularization [26]
of 0.4 was used to counter overfitting; for CRNNs rectified linear
units (ReLU) activation for hidden layers and sigmoid activation
for the output layer was used, with a dropout rate of 0.4; for re-
current layers, the standard LSTM cells as described in [27] were
used. Other design choices include using batch normalization [28]
after each feedforward/convolutional layer in FDNN/CRNN. The
Adam algorithm [29] was used for gradient descent optimization.
An early stopping criterion [30] was used to stop training when no
further improvement in validation loss occurred for 25 epochs. The
Librosa [31] library was used in feature extraction and Keras [32]
neural network library was used for training the neural networks.

3.5. Results

The separation and intelligibility performance metrics were com-
puted over 400 mixtures produced from the evaluation set lists L7
and L8, for the three speaker pairs: M1F1, M1M2, and F1F2. Ta-
ble 2 shows the evaluation scores for the three speaker pairs. Best
performance was achieved on the M1F1 speaker pair most likely
due to the greater spectral difference between between male and fe-
male speakers, whilst F1F2 yielded the lowest separation metrics.
CRNNs performed slightly better than the baseline architectures for
speaker pairs M1F1 and M1M2. For speaker pair F1F2, CRNNs

perform notably better than the other architectures showing 0.5 dB
improvement over the baseline. Similar improvement in terms of
intelligibility are indicated by ESTOI scores as well, going from
0.70 to 0.74.

For each of the various network topologies, quite different con-
figurations produced optimal results. For the feedforward DNN,
only 8 frames of previous context were used at the input, whereas in
LSTM and CRNN architectures, significantly greater previous tem-
poral context was used in calculation of the output, with sequence
lengths of 64 and 128 frames respectively, yet still all network ar-
chitectures had similar order of parameters to be trained, despite
varying contexts.

4. CONCLUSION AND FUTURE WORK

In this paper, we showed the potential of convolutional recurrent
neural networks (CRNN) for the task of monaural sound source
separation for applications requiring low algorithmic latency. We
compared the proposed neural network architecture to feedforward
DNNs and LSTM networks and showed that the proposed method
performs slightly better than these networks, whilst using far fewer
parameters to model the same temporal context.

CRNNs thus offer a promising alternative to the baseline archi-
tectures. In this work, only square convolutional kernels were con-
sidered, (as it is generally used in image processing domain) but that
might not be optimal for the the task of source separation. Future
work would involve a more thorough investigation of the effects of
possible hyperparameters on the proposed CRNN architecture for
source separation. Additionally, the relationship between training
data quantity, and network architecture and parameters is an inter-
esting problem warranting further investigation. The observed ob-
jective improvements achieved through the proposed method should
be further verified through listening experiments.
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