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ABSTRACT

This paper proposes a method for online estimation of time-varying
room impulse responses (RIR) between multiple isolated sound
sources and a far-field mixture. The algorithm is formulated as
adaptive convolutive filtering in short-time Fourier transform (STFT)
domain. We use the recursive least squares (RLS) algorithm for es-
timating the filter parameters due to its fast convergence rate, which
is required for modeling rapidly changing RIRs of moving sound
sources. The proposed method allows separation of reverberated
sources from the far-field mixture given that their close-field sig-
nals are available. The evaluation is based on measuring unmixing
performance (removal of reverberated source) using objective sep-
aration criteria calculated between the ground truth recording of
the preserved sources and the unmixing result obtained with the
proposed algorithm. We compare online and offline formulations
for the RIR estimation and also provide evaluation with blind source
separation algorithm only operating on the mixture signal.

Index Terms— Online room impulse response estimation, in-
formed source separation, source unmixing, adaptive filtering

1. INTRODUCTION

In this paper we propose an online method for estimating room im-
pulse responses (RIR) for multiple moving sources by observing
their noisy and reverberated mixture and assuming availability of one
or more source signals. The source signals can be obtained by close-
field microphones (voice and acoustic instruments) or from play-
back material outputted through loudspeakers in a live performance
recorded for 3D spatial audio. The estimated RIRs are used to obtain
isolated reverberated source signals (as captured by one or more far-
field microphones), which allows individual 3D audio reconstruction
of each reverberated source and unmixing of the sources from mix-
ture to obtain the ambient background.

The problem of time-varying RIR estimation from live mixtures
has previously not been widely studied in the setting where the dry
source signals are available. It can be thought as a special case of in-
formed source separation where the unknown parameter is the source
mixing filters. In an offline scenario where block-wise stationarity of
the mixing process is assumed, a least squares (LS) optimal solution
of the RIRs can be obtained as in the preparation of the material for
CHiME-3 [1] where it was used for removing a single source from
a noisy recording. The online setting is related to acoustic echo can-
cellation (AEC) [2, 3] where the goal is to subtract and suppress the
double talked speech. The differences of the proposed task to AEC
are the following: 1) source-to-receiver distance can be significantly
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larger (e.g. up to tens of meters) causing long initial acoustic de-
lay, 2) instead of a single source, there can be multiple close-miked
sources and the level of the sources within the mixture can be signif-
icantly more varying.

Additionally, a link between the proposed work and research on
oracle source separation performance [4, 5] can be made. The widely
used BSS eval toolkit [5] finds a single time-invariant projection be-
tween the reference and estimated source signal to account for the
acoustic delay and reverberation. The evaluation paradigm fails in
case of moving sources and using close-field capture as a reference
since the single projection cannot account for the time-varying RIRs.
The time-varying RIR estimation can perform the projection opera-
tion for moving sound sources.

We propose to extend the STFT domain RIR estimation frame-
work [2, 3, 6] for highly time-varying RIRs of moving sound sources
with large source-to-receiver distances and high amount of reverber-
ation. Robust operation is achieved by introduction of several novel
extensions: source activity based regularization, short-term spec-
trum based regularization, and frequency-dependent RIR lengths and
recursion factor. This paper addresses the joint estimation of RIRs of
multiple sound sources, which has not been investigated in previous
studies and it is shown to significantly increase the performance.

For algorithm evaluation we use isolated recordings of speech
with various types of movement and mix the isolated source signals
to obtain test mixtures. The evaluation is based on using the esti-
mated RIR for unmixing a source from the mixture and comparing
the result to the ground truth recording of the preserved sources by
objective separation criteria [5, 7, 8]. We compare the performance
of the proposed online RIR estimation to offline formulation [1]. As
a blind baseline assuming that the source signals are not available
we use multichannel NMF-based method which has been shown to
obtain state-of-the-art results in separation of moving sources [9].

The rest of the paper is organized as follows. In Section 2 we
introduce the STFT domain mixing and introduce the joint RIR esti-
mation of multiple source by recursive least squares (RLS) algorithm
in Section 3. We introduce the extensions to the RLS based RIR es-
timation in Section 4. Evaluation of the algorithm performance for
reverberated source unmixing is given in Section 5 with conclusions
in Section 6.

2. CONVOLUTIVE MIXING IN STFT DOMAIN

The proposed algorithm operates independently on each far-field sig-
nal and thus for the algorithm derivation we omit the channel index
of the possible microphone array used for spatial audio capture.

A far field microphone observes a mixture of p = 1, . . . , P
source signals x(p)(n) sampled at discrete time instances indexed



Fig. 1. The block diagram of the proposed processing.

by n and convolved with their RIRs h(p)
n (τ). The sources are mov-

ing and have time-varying mixing defined for each time index n. The
resulting mixture signal can be given as

y(n) =

P∑
p=1

∑
τ

x(p)(n− τ)h(p)
n (τ) + s(n), (1)

where s(n) is additive uncorrelated noise.
Applying the short time Fourier transform (STFT) to the time-

domain array signal y(n) and assuming RIRs being stationary within
a short time frame allows expressing the source mixing by frame-
wise convolution across frequencies defined as

yft ≈
P∑
p=1

D−1∑
d=0

x
(p)
ft−dh

(p)
ftd + sft =

P∑
p=1

x̂
(p)
ft + sft. (2)

The STFT of the far-field signal is denoted by yft where f and t
are frequency and frame index, respectively. The source signal as
captured by the far-field microphone is modeled by frame-wise con-
volution between the source STFT x

(p)
ft and its STFT domain RIR

h
(p)
ftd with frame delays d = 0, ... , D − 1. Noise is denoted by its

STFT sft and reverberated source signals are denoted by x̂(p)ft .
The model in Equation (2) with convolution using D − 1 previ-

ous frames at each frequency is known in the literature as subband
filtering model [10]. It is only an approximation of the convolutive
time domain mixing in Equation (1) because of omitting the effect of
energy spreading into adjacent frequency bins by FFT, which would
require also considering intra-frequency (2-D) convolution [6].

3. ONLINE RIR ESTIMATION IN STFT DOMAIN

The block-diagram of the proposed method is given in Figure 1 and it
consists of following steps. We assume availability of p = 1, ... , P̂

close-field source signals (P̂ ≤ P ). First, the STFT is applied to
both inputs, the far field signal y(n) and close-field source captures
x(p)(n). A voice activity detection (VAD) is estimated from the
close-field signal in order to determine when the RIR estimate can be
updated, i.e., if the source does not emit any signal its RIR cannot be
updated. Both STFTs yft and x(p)ft are inputs to the RIR estimation
by the RLS algorithm [11]. As a result, a set of RIRs in the STFT
domain are obtained. The estimated RIRs are applied to the original
close-field signals to obtain estimate of x̂(p)ft and unmixing of one or
more sources can be done by subtraction.

Assuming that the mixing model in Equation (2) is uncorrelated
across frequencies then the filter weights can be estimated indepen-
dently for each frequency. The filtering equation for the P̂ known
signals at frequency f and frame t is specified as

x̂ft =

P̂∑
p=1

D−1∑
d=0

x
(p)
ft−dh

(p)
ftd = xTfthft, (3)

where the vector variables xft ∈ CP̂D×1 and hft ∈ CP̂D×1 con-
tain the source signals and filter coefficients as stacked:

xft = [x
(1)
ft , x

(1)
ft−1, ... , x

(1)
ft−D−1, ... , x

(P̂ )
ft , x

(P̂ )
ft−1, ... , x

(P̂ )
ft−D−1]

T ,

hft = [h
(1)
ft0, h

(1)
ft1, ... , h

(1)
ftD−1, ... , h

(P̂ )
ft0 , h

(P̂ )
ft1 , ... , h

(P̂ )
ftD−1]

T .

Online estimation of the filter weights hft in the least squares sense
can be obtained by formulating the problem as system identification
in adaptive filtering framework. We use the RLS algorithm [11, 12]
where the modeling error at time step t is specified as eft = yft −
x̂ft and yft is the observed mixture signal. The cost function to be
minimized with respect to filter weights at each frequency f is

C(hft) =

t∑
i=0

λt−ie2fi, 0 < λ ≤ 1. (4)

The exponentially decaying weight λt−i in the cost function is con-
sidered as forgetting factor which determines how much error in
past frames contribute to the estimation of the filter weights at cur-
rent frame. The formulation corresponds to assuming stationarity of
RIRs over several time frames controlled by the forgetting factor.

The RLS algorithm minimizing Equation (4) applied individu-
ally for each frequency f can be summarized as follows:

Initialization: hf0 = 0, Rf0 = δI

Repeat for t = 1, 2, . . .

αft = yt − xTfthft−1

Rft = λRft−1 + x∗
ftx

T
ft (5)

hft = hft−1 +R−1
ft x

∗
ftαft, (6)

where ∗ denotes complex conjugate and Rft is the autocorrelation
matrix of xft and it is initialized with identity matrix scaled by δ.

With the above definitions the RLS algorithm can be used to
jointly estimate all close-field signal RIRs simultaneously. The al-
gorithm is applied independently for all frequencies to obtain h(p)

ftd

and the reverberated sources can be obtained as,

x̂
(p)
ft =

D−1∑
d=0

x
(p)
ft−dh

(p)
ftd, p ∈ [1, ... , P̂ ]. (7)

Time-domain signals can be reconstructed by inverse FFT and
overlap-add sythesis. The modifications of the mixture signal using
the reverberated sources is linear additive operation and can be done
in either STFT or time-domain.

4. ROBUST RIR ESTIMATION BY RLS

The RLS algorithm introduced in Section 3 can be used as is for RIR
estimation, however usual capturing scenarios involve challenging
properties that require addressing the robustness of the algorithm.
For example, multiple sources can be simultaneously active with
very different relative loudness while some sources can be silent for
long periods of time. The source spectrum can be sparse (only few
harmonic spectral components) and amount of reverberation varies
over frequency. In this section we propose novel extensions to the
STFT domain RIR estimation in order to make it robust in all oper-
ation environments and source types.

4.1. Activity detection, source spectrum and RLS regularization

The source activity detection can be used for controlling when the
RIRs are updated, but since the RIR estimation of multiple sources



is formulated as joint optimization problem, there is need to control
the update of specific elements h(p)

ftd within hft. For this we propose
to use Levenberg-Marquardt regularized RLS algorithm [13] with
autocorrelation matrix update in Equation (5) replaced with

Rft = λRft−1 + x∗
ftx

T
ft + (1− λ)diag(bft), (8)

where diag(b) denotes a diagonal matrix with vector b on its main
diagonal. The regularization weights bft∈RP̂D×1 are defined as

bft = [b
(1)
ft , ... , b

(1)
ft︸ ︷︷ ︸

D

, ... , b
(P̂ )
ft , ... , b

(P̂ )
ft︸ ︷︷ ︸

D

], (9)

where each set of D weights corresponds to one source. In order to
avoid updating RIR of inactive source p at time step t the respective
regularization weights b(p)ft are set to very high values. This effec-
tively halts the update of the filter weights when the second term in
Equation (8) is very large and the inverse of Rft ends up having
very small effect in filter weights update in Equation (6) leading to
hft ≈ hft−1. In the following, we will break down the regular-
ization weight into signal level dependent part a(p)t and close-field
relative spectrum dependent part c(p)ft so that b(p)ft = a

(p)
t c

(p)
ft .

4.1.1. Signal RMS level -based regularization
The amount of regularization needed is dependent on how much at-
tenuation or amplification on average is required between close-field
and far-field signals. For this we use the overall signal RMS level
ratio between the close-field signal x(p)ft and the far-field signal yft
estimated recursively as,

L
(p)
t = γL

(p)
t−1 + (1− γ)RMS[x

(p)
ft ]/RMS[yft], (10)

where RMS[xf ] = (1/F
∑
f |xf |

2)1/2 and γ controls the amount
of recursion, i.e. that the RMS estimate does not react too fast for
rapid changes in RMS ratio. The amount of regularization for active
source p is set to a(p)t = σ max0<t′<t[L

p
t′ ] which denotes maxi-

mum observed RMS ratio since from the start of the processing and
scaled with global constant σ. For example, if L(p)

t = 1 (0 dB) it in-
dicates that the signals have the same overall RMS level. The details
of the VAD implementation are explained in Section 5.

4.1.2. Relative spectrum based regularization

The close-field signal x(p)ft can have very low energy at certain fre-
quencies and practically no evidence of it can be observed in the
mixture yft. This applies especially to musical instruments. In order
to avoid updating the filter coefficients with no relevant observations,
we propose a source spectrum based regularization. We keep short-
term average statistics of the close-field signal magnitude spectrum
m

(p)
ft =

∑t
t′=t−M |x

(p)

ft′ |, where M denotes the number of aver-
aged frames. The spectrum based regularization given the current
processed frequency f is defined as

c
(p)
ft = 1− log10(m

(p)
ft /maxf [m

(p)
ft ]). (11)

The frequency index with most energy in the short-term average
spectrum results to c(p)ft = 1 whereas frequencies with lower energy

have c(p)ft > 1 in logarithmic relation.

4.2. Variable forgetting factor and RIR length

The contribution of error from past frames to the RIR filter estimate
at current frame t is controlled by the forgetting factor λ, which can
be varied over frequency f . Small changes in source position can

cause substantially large changes in the RIRs at high frequencies due
to highly reflected and diffuse sound propagation path. Therefore
the contribution of past frames at high frequencies needs to be lower
than at low frequencies. It is assumed that the RIR changes slowly
at lower frequencies and observations can be integrated over longer
periods. The details of used forgetting factor are given in Section 5.

The length of the STFT domain RIR can vary from few frames
to several tens of frames, for example a 10 meter distance between
close and far-field microphones results to τdir = 29 ms direct path
delay (speed of sound c = 345 m/s). Assuming STFT window size
ofN = 1024 samples with 50% overlap, the direct path peak occurs
at frame ddir = τdirFs/(N/2) = 2.7. If we want to model τrev ms
of reverberation after the direct path, we need to use D = ddir +

τrevFs/(N/2) amount of previous frames for the RIRs h(p)
ftd.

The RIR lengths D in the proposed method can be different
for each frequency. Typical rooms have shorter reverberation time
at high frequencies than in low frequencies. This is due to high
frequencies becoming more easily absorbed by porous materials,
whereas lower frequencies interact with low order room modes and
have very long reverberation time. Thus the higher frequencies re-
quire generally less amount of frames after the direct path ddir frame
for accurate modeling of the RIR. Additionally, different sources can
have different RIR lengths at the same frequency, which is useful if
the direct path delay differs across sources, but all are subject to same
amount of reverberation. This requires estimation or prior knowl-
edge about the source-to-receiver distance and this extension is not
used in the evaluation. The detailed choice of RIR lengths at differ-
ent frequencies is given in Section 5

5. ALGORITHM EVALUATION

In this section we evaluate the performance of the proposed algo-
rithm in an unmixing scenario, i.e. removal of one of the reverber-
ated sources from the mixture.

5.1. Material and evaluation procedure

The test material was collected with a 3D printed spherical micro-
phone array (r = 7.5 cm) embodying 8 miniature omnidirectional
microphones (DPA 4060). The place of recording was a typical
office building coffee lounge with irregular walls and furnishing
(T60 ≈ 400 ms). Isolated recordings of human speakers moving
around the array or being stationary were recorded and the move-
ment paths (A/B/S/T) are illustrated in Figure 2. The maximum
distance from source-to-receiver was approximately 3 meters. The
close-field source signal was captured using a head-worn wireless
microphone. All signals were recorded using same audio interface
with sampling rate of Fs = 48 kHz.

Three male speakers spoke the Harvard sentences [14] sepa-
rately with the 4 different types of movement illustrated in Figure
2 resulting in 12 recordings each with 60-second duration. The
recorded signals were split to 30-second segments and two speak-
ers (P = 2) were mixed together with the movement combinations
AA, AB, AS, AT, BS, BT and ST, also in reversed permutation (AB
→ BA, except for AA), resulting in 13 different speaker/movement
combinations. Each 30-second segment from each speaker was used
once for each combination, resulting in 6 mixtures per condition and
in total 13× 6 = 78 test mixtures each with 30-second duration.

Evaluation is based on measuring the unmixing performance,
i.e. subtracting one reverberated source from the mixture and com-
paring the result to the recording of the remaining source. The mix-
ture signal without pth source is denoted by y(p)ft and the correspond-



Fig. 2. Recording setup and source movement patterns.

ing estimate by the algorithm is obtained as ŷ(p)ft = yft − x̂(p)ft . We
use the conventional BSS evaluation scores (SDR, SIR and SAR)
[5], frequency-weighted SNR (fwSNR) [7] and short-time objective
intelligibility measures (STOI) [8]. We measure the unmixing for
both sources and report the average.

5.2. Tested methods and implementation details

For comparison we consider two other methods: offline RIR estima-
tion from the mixture and offline blind source separation (BSS) al-
gorithm. The offline block-wise LS optimal RIR estimation from [1]
was modified to produce joint estimates for multiple sources and is
referred to as OF-LS and acts as an upper reference. We used block
size of 80 frames with 75% overlap between the blocks, resulting
into algorithmic delay of ∼850 ms as opposed to one frame ∼20
ms delay with the proposed online method. The proposed method is
referred to as OL-RLS.

The offline BSS algorithm proposed in [9] is used for comparing
how well a blind method with assumption of instantaneous mixing
in STFT domain performs in the same unmixing task. The method
from [9] is based on source spectrogram estimation by multichannel
non-negative matrix factorization parametrized by source direction
of arrival (DOA) trajectory. Annotated ground truth source DOA tra-
jectories were used to obtain best achievable result and more details
of the annotations can be found from [15]. The method is referred to
as OF-BSS and its parameters are the same as reported in [9].

All of the parameters were experimentally optimized using a
subset of the dataset (22 out of 78 mixtures) and the rest (56 mix-
tures) was used for evaluation. The STFT window length is 1024
samples with 50% frame overlap. The forgetting factor was set to
λ = 0.98 for 0 Hz and it linearly decreases to 0.95 for Fs/2 = 24
kHz. The chosen values correspond to error accumulation extending
to past 1.5 seconds for 0 Hz and past 0.8 seconds for 24 kHz. Recur-
sion factor for RMS level ratio was set to γ = 0.97 and the global
constant σ = 10−4. If the source is inactive regularization is set as
b
(p)
ft = 100 a

(p)
t c

(p)
ft . The base results are with D = 8 ∀f but we

also report and analyze results with different lengths for the RIRs.
The source activity detection was implemented by recursively

estimating the RMS level of each close-field signal (as in Equa-
tion (10) but without division by mixture signal RMS). We store the
minimum RMS value observed as from the beginning of processing
which acts as noise floor estimate for each close-field microphone,
assuming that source is momentarily silent. We use 3 dB detection
threshold above the noise floor to set the source active.

5.3. Results and discussion

The results of each tested method are reported in Table 1. The scores
are averaged over the 8 channels and the 56 mixtures and column

Method (P̂) SDR SIR SAR STOI fwSNR

OL-RLS (2) 7.38 dB 11.96 dB 9.60 dB 0.7285 30.32 dB
OF-LS (2) 8.79 dB 13.54 dB 10.82 dB 0.7782 30.30 dB
OF-BSS (-) 3.59 dB 4.84 dB 11.31 dB 0.6505 29.17 dB
OL-RLS (1) 5.35 dB 10.80 dB 7.24 dB 0.6896 29.82 dB
OF-LS (1) 6.09 dB 12.56 dB 7.51 dB 0.7324 28.86 dB

Table 1. Unmixing results with the different tested methods.

RIR length SDR SIR SAR STOI fwSNR

D = 4 6.53 dB 10.59 dB 9.16 dB 0.7002 30.32 dB
D = 16 7.24 dB 12.75 dB 8.97 dB 0.7253 30.96 dB
D = 12...6 7.44 dB 12.41 dB 9.44 dB 0.7311 30.55 dB

Table 2. Performance of OL-RLS with different RIR lengths.

(P̂ ) indicates the number available close-field signals. The unmix-
ing performance of the proposed OL-RLS is 1.5 to 2.0 dB lower
in BSS eval scores and 0.05 lower in STOI in comparison to of-
fline processing by OF-LS, whereas the frequency weighted SNR is
slightly better. The compromise required for the online operation is
thus considered to be small in terms of objective quality. The results
with the blind offline method has substantially lower performance in
all metrics but especially in SIR and thus cannot be considered to
perform complete unmixing of the sources whereas the RIR estima-
tion based informed methods almost completely unmix the source
based on informal subjective listening of the results. The last two
rows with P̂ = 1 indicate the algorithm performance when RIRs
of the two sources are estimated independently leading to decreased
performance for both OL-RLS and OF-LS.

Additionally we have included results of studying the effect of
RIR length to the unmixing performance and have reported a few
different configurations of OL-RLS in Table 2. The notation D =
12...6 denotes linearly decreasing RIR length from 0 Hz to 24 kHz.
The unmixing quality is decreased with too short RIR length (D =
4), since it does not model all the reverberation. Also too long fil-
ters (D = 16) lead to lower performance due to overfitting, the RIRs
start modeling unwanted correlations between close and far-field sig-
nal. The results indicate that using τrev ≈ 1/4T60 ms leads to best
results in the dataset. Using the variable RIR length leads to slightly
better SDR, SIR and STOI for the proposed method.

The algorithm has been tested using up to P̂ = 6 musical instru-
ment sources played back simultaneously from set of loudspeakers
and up to source-receiver distances of 15 meters. The preliminary
results were subjectively evaluated to be very promising regarding
the task of unmixing and the proposed extensions had greater im-
pact on algorithm performance with musical sources. Future work
will consist of reporting the algorithm results with music content and
evaluating the unmixing quality by listening tests.

6. CONCLUSION

We presented a method for online estimation of RIRs in STFT do-
main between a mixture signal and close-field captures of multiple
moving sound sources. We proposed novel extensions to the filter
parameter estimation by the RLS algorithm and showed that the al-
gorithm performs comparable to the equivalent offline formulation.
The application novelty of the proposed algorithm is that it allows
separation of reverberated sources from a far-field array capture and
preserves the spatial properties of the sources allowing 3D audio re-
construction of each isolated source.
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