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ABSTRACT

This paper studies multichannel audio separation using non-negative

matrix factorization (NMF) combined with a new model for spatial

covariance matrices (SCM). The proposed model for SCMs is pa-

rameterized by source direction of arrival (DoA) and its parameters

can be optimized to yield a spatially coherent solution over frequen-

cies thus avoiding permutation ambiguity and spatial aliasing. The

model constrains the estimation of SCMs to a set of geometrically

possible solutions. Additionally we present a method for using a pri-

ori DoA information of the sources extracted blindly from the mix-

ture for the initialization of the parameters of the proposed model.

The simulations show that the proposed algorithm exceeds the sepa-

ration quality of existing spatial separation methods.

Index Terms— Spatial sound separation, non-negative matrix

factorization, spatial covariance models

1. INTRODUCTION

Sound source separation has many applications which include for

example signal enhancement for speech recognition [1] and object-

based audio coding [2]. The separation of multichannel audio is usu-

ally based on the estimation of the mixing filter in time or frequency

domain. Along with the underlying mixing, there exists spectral

structure of the sources that can be analyzed from the mixture for ex-

ample by non-negative matrix factorization (NMF). The utilization

of NMF in separation of spatial audio captures in combination with

spatial covariance matrix (SCM) estimation has been studied in [3,

4, 5]. Their benefits over conventional methods such as frequency-

domain independent component analysis (ICA) [6, 7, 8] are the ab-

sence of permutation problem, and the utilization of audio spectro-

gram redundancy in estimating audio objects, i.e. NMF components,

that span over frequency and time. The previous approaches estimate

SCMs separately for each frequency of each source, without placing

any constraints on the SCMs.

The unconstrained estimation of source SCMs causes several

problems. Estimating SCMs separately for each frequency leads to

not only the permutation problem [9], but may also produce solu-

tions that are not spatially coherent. Using the NMF as a source

magnitude model introduces frequency dependency, but sources at

different spatial locations with similar spectral characteristics may

become modeled using a single NMF component. Therefore es-

timating SCMs for NMF components or a group of them still not

guarantee a spatially coherent solution.

In this paper, we introduce a direction of arrival (DoA) based

SCM model for spatial audio separation and use NMF as the source

magnitude model. We propose to model the source SCMs as a

weighted combination of DoA kernels which are derived similarly

to array manifold vectors towards a certain look direction as in the

field of beamforming [10]. A benefit of the model over ones used in

[4, 5, 11] is that the proposed structure of the SCMs is constrained

by geometrically possible source directions by knowing the array

geometry and phase difference caused by each DoA. Additionally,

parameterizing the source SCMs by a set of DoA kernels with fixed

look directions and their weights results in a model that unifies the

phase difference over frequency and thus its parameters are inde-

pendent of frequency. The proposed model ensures that the SCM

for a source is spatially coherent. Furthermore, conventional DoA

analysis tools can be used to initialize its parameters.

This paper proposes an improved version of the system [12] and

differs from it by estimating the SCM model for entire sources in-

stead of individual NMF components. Additionally, we propose a

blind DoA analysis front-end to initialize the SCM model direction

weights. We evaluate the performance of the proposed method com-

pared to the method proposed in [4] and to conventional ICA sepa-

ration [6].

The rest of the paper is organized as follows. In Section 2 we

give the problem definition of spatial source separation and source

mixing in the spatial covariance domain. The proposed DoA kernel

based SCMmodel is given in Section 3 and a source DoA estimation

front-end for initialization of its parameters is explained in Section 4.

A complex-valued NMF model incorporating the direction of arrival

based SCMmodel and the optimization of its parameters is presented

in Section 5. Simulations for separation quality evaluation with the

proposed method are presented in Section 6.

2. PROBLEM DEFINITION

We assume convolutive mixing of sources in time domain, which is

approximated by instantaneous mixing in frequency domain. The

mixing model is defined as

xil ≈

P
∑

p=1

hipsilp =

P
∑

p=1

yilp (1)

where xil = [xil1, . . . , xilM ]T is the short-time Fourier transformed

(STFT) mixture signal consisting of M channels, and i = 1...I
and l = 1...L are the frequency and frame index, respectively.

The source index is denoted by p = 1...P and mixing filters by

hip = [hip1, . . . , hipM ]T . The STFTs of the sources are denoted by
silp. Sources convolved with their impulse responses are denoted

by yilp = hipsilp.
As proposed in [4] we use magnitude square rooted STFT

x̂il = [|xil1|
1/2 sign(xil1), . . . , |xilM |

1/2 sign(xilM )]T (2)



for the calculation of the spatial covariance matricesXil = x̂ilx̂
H
il ∈

C
M×M . With the above definitions the magnitude spectrum of each

channel is at the diagonal of Xil, and the spatial properties of the

mixture are represented by its off-diagonal values, which encode the

magnitude cross correlation and the phase difference between each

microphone pair. The spatial covariances are invariant of the ab-

solute phase, which allows estimation of their spatial properties by

phase difference only.

The mixing model (1) in SCM domain equals to

Xil ≈

P
∑

p=1

Hipŝilp, (3)

whereHip is the covariance matrix for each source at each frequency

and ŝilp = (silpsilp)
1/2 is the corresponding source magnitude

spectrum. The problem now becomes estimating the source spec-

trum and its covariance matrices in such a way that they correspond

to spatially coherent sources.

3. SPATIAL COVARIANCE MATRIX MODEL

The proposed SCM model for a single source consists of a weighted

sum of DoA kernels that each correspond to a fixed look direction.

Each DoA kernel represent the phase difference of a source at a spe-

cific spatial location and is obtained by knowing the array geometry.

The DoA kernels sample the spatial space around the array approxi-

mately uniformly. By estimating the weights corresponding to each

direction, the estimation of SCMs is constrained to a search space of

geometrically feasible solutions. Additionally, the direction weights

are independent of frequency which further unifies the estimation of

phase difference over frequency.

Assuming direct path propagation, a point source at a specific

spatial location causes a set of TDoAs between all the microphone

pairs, which translates into a phase difference in the frequency do-

main. We introduce a look direction vector ko pointing from the

geometric center of the array to the source determined by azimuth ϕ
and elevation θ. By knowing the array geometry, we can calculate

the time delays between every microphone pair n = 1 . . .M and

m = 1 . . .M a source at this direction causes. This is analogous to

finding array steering vectors for a sum-and-delay beamformer.

We denote the time delay between microphone pair (n,m) cor-
responding to look direction ko as

τn.(ko) = (kT
o (n−m))/v, (4)

where v is the speed of sound and n and m are vectors representing

the locations of microphones n and m, respectively. The time delay

translates into a phase difference that is linearly proportional to fre-

quency fi in Hertz. The spatial covariance matrix of a specific look

direction ko, termed here as the DoA kernel, is given as

[Wio]nm = exp
(

j2πfiτnm(ko)
)

, fi = (i− 1)Fs/N, (5)

for each STFT frequency index i. The sampling frequency is denoted

by Fs and N is the FFT length.

Each DoA kernel Wio ∈ C
M×M has a fixed look direction

index by o = 1 . . . O which sample the spatial space around the ar-

ray approximately uniformly. In case of a point source in anechoic

capturing conditions, a single look direction would be enough to de-

scribe the SCM of the source using Equation (5). However, due to

reverberation and diffraction, a more complex model is needed. We
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Fig. 1: Illustration of the weighted look direction vectors zpoko of

the SCM model projected on to the xy-plane. Sources are at 0, 90

and 180 degrees in azimuth.
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Fig. 2: Illustration of the initialization of the spatial search space for

three sources corresponding to Figure 1

propose to use a weighted superposition of DoA kernels, i.e. point

sources, resulting in the proposed SCM model

Hip =

O
∑

o=1

Wiozpo, (6)

where zpo are the direction weights corresponding to DoA kernels

into each look direction ko.

By estimating the direction weights that are independent of fre-

quency, the proposed model produces an estimate ofHip that is spa-

tially coherent over frequency. We restrict the direction weights zpo
to be non-negative and in Section 5 we introduce an estimation al-

gorithm for them. An example of the direction weights estimated as

described later in Section 5 is illustrated in Figure 1.

4. INITIALIZATION OF DIRECTIONWEIGHTS

The parameterization of the source SCM by direction weights zpo
allows initializing the spatial search space for each source based on

DoA analysis of the mixture prior to the model parameter estimation.

Based on estimated DoAs defined by azimuth ϕp for each source

p = 1 . . . P , the direction weights zpo are initialized as follows.

For each source p the direction weights zpo corresponding to look

direction indices o within ±25 degrees from the estimated azimuths

ϕp are set to one and all other direction weights of the source are

set to zero. The spatial window of 50 degrees accounts for possible

errors in the estimation of the source direction in this preprocessing

step. An example of the search space used for obtaining the source

direction weights in Figure 1 is illustrated in Figure 2.

In the simulations we use the following process to obtain the

initial DoA estimates of the sources. Steered response power (SRP)

with phase transform (PHAT) [10] is calculated from the STFT of

the array signal. The SRP is evaluated for ϕ = [−180, 180] de-
grees in azimuth with one degree increments and at zero elevation

(θ = 0). The maximum of the SRP function at each time frame is

scaled to one. The resulting SRP function at each time frame rep-

resents the likelihood of a source in each direction. The separation

model assumes stationary sources we can therefore average the SRP

functions over time. Before averaging, the 15 largest values of the



SRP function are taken from each time frame and the rest of the val-

ues are set to zero. Taking only the largest values is equivalent to

considering only likelihoods with high confidence. Local maxima

that are at least 20 degrees apart from each other are searched from

the averaged SRP function. Found locations are set as the initial

source DoA estimates. If the number of the found maxima is higher

than the number of target sources, the largest maxima are chosen.

5. SEPARATION MODEL

In this section we present the model for the NMF-based spatial sound

source separation utilizing the proposed SCM model. Estimation of

the parameters of the model follows the framework proposed origi-

nally in [4].

The separation model consist of a NMF magnitude model for

source spectra ŝilp =
∑Q

q=1
bpqtiqvql, where bpq, tiq, vql ≥ 0.

Each t:q represents the magnitude spectrum of an NMF component,

and vq: is its gain in each frame. One NMF component models a

single spectrally repetitive event from the mixture and one source is

modeled as a sum of multiple components. Parameter bpq represents
a soft decision of NMF component q belonging to source p. The

second part of the separation model comprises the spatial properties

of the sources denoted byHip, which are represented using the DoA

kernel based SCM model
∑O

o=1
Wiozpo as defined in Equation (6).

Parameters bpq, tiq and vql are constrained to non-negative values.

Placing the above definitions into the SCM mixing model de-

fined in Equation (3) results in

Xil ≈ X̂il =
P
∑

p=1

Q
∑

q=1

O
∑

o=1

Wiozpobpqtiqvql. (7)

The cost function for the parameter optimization is the squared

Frobenius norm summed over frequency and time as
∑

i,l ||Xil −

X̂il||
2
F . As proposed in [4], finding the optimal parameters θ =

{W,Z,B,T,V} for model (7) is shown to be equivalent to mini-

mizing the following negative log-likelihood

L+(θ,C) =
∑

i,l,p,q,o

1

rilpqo
||Cilpqo −Wiozpobpqtiqvql||

2
F , (8)

with latent components obeying
∑

p,q,o Cilpqo = Xil and being

defined as

Cilpqo = Wiozpobpqtiqvql + rilpqo(Xil −
∑

q,o

Wiozpobpqtiqvql).

(9)

The parameters rilpqo > 0 are defined as

rilpqo =
zpobpqtiqvql

x̂il
, x̂il =

∑

q,o

zpobpqtiqvql (10)

For optimizing the model parameters multiplicative update

equations are derived. The procedure for solving the update rules

is based on setting the partial derivatives of (8) with respect to each

updated parameter bpq, zpo, tiq, vql and Wio to zero. Substituting

Cilpqo by its definition (9) and applying simple manipulations, this

leads to the multiplicative updates

bpq ← bpq
[

1 +

∑

i,l,o zpotiqvqltr(EilWio)
∑

i,l,o zpotiqvqlx̂il

]

(11)

zpo ← zpo
[

1 +

∑

i,l,q bpqtiqvqltr(EilWio)
∑

i,l,q bpqtiqvqlx̂il

]

(12)

tiq ← tiq
[

1 +

∑

l,p,o zpobpqvqltr(EilWio)
∑

l,p,o zpobpqvqlx̂il

]

(13)

vql ← vql
[

1 +

∑

i,p,o zpobpqtiqtr(EilWio)
∑

i,p,o zpobpqtiqx̂il

]

, (14)

where Eil = Xil −
∑

p,q,o Wiozpobpqtiqvql is the error of the

model in each time-frequency point. To ensure numerical stability,

the scale of the parameters are normalized as

âq = (

O
∑

o=1

z2po)
1/2, zpo ← zpo/âq, bpq ← bpqâq (15)

ĉq = (

L
∑

l=1

v2ql
)1/2

, vql ← vql/ĉq, tiq ← tiq ĉq. (16)

The diagonal entries of Wio model the relative source magni-

tude level in each channel, and its off-diagonal values model the

cross-channel magnitude and phase difference. This means that their

unit magnitude as defined by (6) has to be updated in order to model

the magnitude level differences in each channel. The update has to

maintain the original phase difference, i.e. the original delay caused

by a certain look direction.

For updating the magnitudes of Wio, we apply the following

scheme, also used in [12]. An initial update with a modified phase is

calculated as given by the partial derivation of (8)

Ŵio ←Wio

[

∑

l,p,q

bpqzpotiqvql(x̂il +Eil)
]

. (17)

In order to avoid a subtractive model, matrices Ŵio are forced to be

positive semidefinite, which is achieved as proposed in [4] by cal-

culating an eigenvalue decomposition Ŵio = VDVH and setting

negative eigenvalues to zero. Using the modified eigenvalue matrix

D̂ the update is reconstructed as Ŵio ← VD̂VH . The final update

preserving the original DoA kernel phase difference is obtained by

Wio ← |Ŵio| exp(i arg(Wio)). (18)

The overall estimation algorithm is implemented as follows.

Values of zpo are initialized as explained in Section 4 and other

parameters are initialized with positive random numbers. The DoA

kernels are initialized according to Equation (5). The updates (11) -

(14) and (17) - (18) are repeated for a fixed amount of iterations and

the parameter scaling as defined by Equations (15) - (16) are applied

between iterations. The procedure results in optimizing the model

parameters with respect to the squared Frobenius norm between the

observations and the model.

The sources are reconstructed as

yilp = xil

∑

qo bpqzpotiqvql
∑

pq‘o‘ bpq‘zpo‘tiq‘vq‘l
, (19)

which represents Wiener estimates of the sources as seen by the ar-

ray, i.e. convolved with their spatial impulse responses. The time-

domain signals are obtained by inverse STFT and frames are com-

bined by weighted overlap-add.

6. SIMULATIONS

We evaluate the separation quality of the proposed method using

separation metrics proposed in [13] and compare its performance

against the following methods: NMF with component-wise DoA



Mic x (mm) y (mm) z (mm)

1 0 -46 6

2 -22 -8 6

3 22 -8 6

4 0 61 -18
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Table 1: Geometry of the array.
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Fig. 3: Room layout, array (tetragon) and source positions ( s ).

kernel SCM, where the NMF components are grouped to sources

by clustering [12], NMF with unconstrained SCM estimation [4] and

frequency domain ICA with TDoA based permutation alignment [6].

The test material was generated from anechoic samples that

were convolved with room impulse responses (RIR) captured using

an array consisting of four omnidirectional microphones enclosed

in a metal casing of size 30 mm x 60 mm x 1150 mm. Locations of

the microphones are given in Table 1. A Genelec 1029 loudspeaker

was used to capture the RIRs from different directions around the

array. The height of the loudspeaker was set to 1.40 m and the array

was placed on a tripod with elevation of 1.08 m. The distance of the

loudspeaker to the array was approximately 1.50 m. The recording

location was a meeting room with dimensions of 7.95 m x 4.90 m

x 3.25 m and the reverberation time averaged over all the impulse

responses from all directions was T60 = 350 ms. The room layout

and directions are shown in Figure 3.

The anechoic samples consisted of male and female speech, pop

music and various everyday noise sources. The speech samples were

obtained from Librivox audiobooks database, the music samples are

from RWC Music Genre Database [14] and the noise sources were

recorded at an anechoic chamber. Each sample was 10 seconds in

duration and they were downsampled from sampling frequency of

48 kHz to Fs = 24 kHz. Different datasets for two and three simul-

taneous sources were generated by convolving the anechoic material

with the measured RIRs and summing separate sources from dif-

ferent angles. The used angles are given in Table 2. Using eight

combinations of source types for dataset one and seven combina-

tions for dataset two resulted in 48 different mixture signals for two

simultaneous sources and 42 different mixture signals for three si-

multaneous sources.

Dataset 1 Dataset 2

source 1 source 2 source 1 source 2 source 3

45◦ 90◦ 0◦ 45◦ 90◦

135◦ 180◦ 45◦ 90◦ 135◦

0◦ 90◦ 0◦ 45◦ 305◦

45◦ 135◦ 0◦ 90◦ 180◦

0◦ 135◦ 0◦ 135◦ 180◦

45◦ 180◦ 45◦ 135◦ 305◦

Table 2: Angle combinations for both datasets given in degrees.

Method SDR SIR SAR ISR

Proposed 5.6 6.8 13.1 9.9

NMF clustering [12] 4.8 8.1 10.3 10.5

NMF Unconstrained [4] 3.7 4.5 12.7 8.4

ICA [6] 2.0 4.5 8.2 6.9

Table 3: Separation metrics for dataset with two sources. All figures

in decibels.

Method SDR SIR SAR ISR

Proposed 3.0 2.6 10.7 6.0

NMF clustering [12] 1.9 3.8 7.6 6.2

NMF Unconstrained [4] 2.0 0.4 9.9 4.7

ICA [6] 0.5 1.3 5.6 5.0

Table 4: Separation metrics for dataset with three sources. All fig-

ures in decibels.

The parameters of the algorithms were set to values similar to

the ones used in related studies and are as follows. The window

length of the STFT was set to N = 2048 with 50% overlap, the

window function was square root of Hanning window. The number

of NMF components was set to Q = 60 and the algorithms were

run for 500 iterations. The true number of sources was given to the

methods. The DoA kernels for the proposed SCM model consists of

110 directions which sample the unit sphere surface around the array

approximately uniformly. The lateral resolution at zero elevation is

10 degrees, and the different elevations are at 22.5 degrees spacing.

The azimuth resolution is decreased close to the poles of the unit

sphere.

The separation performance is determined by objective mea-

sures, the signal-to-distortion ratio (SDR), image-to-spatial distor-

tion ratio (ISR), signal-to-interference ratio (SIR) and signal-to-

artefact ratio (SAR). The results averaged over all test samples and

all separated sources are given in Tables 3 and 4. The method in

[12] is denoted in the tables by ”NMF clustering”.

The results show that the separation performance of the pro-

posed method exceeds the unconstrained SCM estimation method

and frequency-domain ICA across all the measured quantities. The

separation measured by SDR when comparing to [4] is increased

by 1.9 dB and 1.0 dB in the dataset with two and three sources, re-

spectively. The SIR score denoting source interference is slightly

decreased from the NMF component-wise SCM estimation, but it is

mostly due to the method in [12] using binary NMF component to

source clustering.

7. CONCLUSION

We have presented a spatial audio separation method based on the

NMFmagnitude model combined with a source SCMmodel consist-

ing of direction of arrival (DoA) kernels. The strength of the method

is the parameterization of the spatial properties of sources by their

direction instead of unconstrained estimates which also allows the

initialization of the model parameters by a DoA analysis preprocess-

ing step. The separation based on the NMF magnitude model was

shown to exceed the quality of the most recent spatial separation

method which use unconstrained SCM estimation. An additional

benefit of the proposed spatial parameterization is the possibility of

the reconstruction of the 3D spatial sound field by positioning the

separated sources by their analyzed direction.
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