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ABSTRACT

High noise robustness has been achieved in speech recognition by

using sparse exemplar-based methods with spectrogram windows

spanning up to 300 ms. A downside is that a large exemplar dictio-

nary is required to cover sufficiently many spectral patterns and their

temporal alignments within windows. We propose a recognition sys-

tem based on a shift-invariant convolutive model, where exemplar

activations at all the possible temporal positions jointly reconstruct

an utterance. Recognition rates are evaluated using the AURORA-

2 database, containing spoken digits with noise ranging from clean

speech to -5 dB SNR. We obtain results superior to those, where the

activations were found independently for each overlapping window.

Index Terms— Automatic speech recognition, noise robust-

ness, deconvolution, sparsity, exemplar-based

1. INTRODUCTION

Widespread adoption of Automatic Speech Recognition (ASR)

systems is still being hampered by insufficient robustness against

background noise. Hidden Markov Model (HMM) based recognis-

ers, where state likelihoods are estimated using Gaussian Mixture

Models (GMM), have considerable problems when noisy frames no

longer match to clean acoustic models. Various robustness methods

have been suggested, including model compensation, missing data

techniques and feature enhancement [1, 2, 3]. These approaches

can typically achieve acceptable recognition rates in low to medium

noise, but lose quality rapidly, when a large portion of spectral

features is simultaneously corrupted by high noise levels.

In our previous work we have shown, that improved recognition

rates can be achieved near or below 0 dB SNR by using an addi-

tive model of exemplars representing longer (100 – 300 ms) spec-

trogram segments [4]. Using a Non-negative Matrix Factorisation

(NMF) algorithm, it is possible to separate the input signal to speech

and noise. Furthermore, we have shown that speech content can be

decoded directly from the labels of activated exemplars without re-

constructing the separated speech signal [5].

In contrast to earlier exemplar-based methods, where the ob-

servation is compared to the nearest element in the dictionary, our

framework reconstructs observations as a non-negative linear com-

bination of exemplars. The number of simultaneously active exem-

plars is not limited by the design, although sparsity is enforced to

improve the recognition quality. Similar methods have been used

for source separation in image and music applications, among oth-

ers. Common terminology for referring to such techniques includes

Sparse Classification (SC) and Sparse Representation based Classi-

fication (SRC).
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While the noise robustness of our algorithm improved by us-

ing longer exemplars, we also observed a decrease in clean speech

recognition rates. The primary reason for this negative development

is that the complexity of spectro-temporal features will increase in

longer windows, thus requiring more exemplars to cover the larger

variation in appearing patterns [6]. In addition, factorisation of indi-

vidual analysis windows requires that correctly time-aligned exem-

plars are available in the dictionary, so the number of different tem-

poral alignments to be covered also increases according to window

length. However, simultaneous increasing of both exemplar count

and length is not desirable due to computational constraints.

To improve the recognition accuracy of our system using a lim-

ited dictionary of long exemplars, we introduce a shift-invariant con-

volutive model. By reconstructing the whole observation at once as

a convolution of exemplars and activations, we avoid the problem

of temporal alignment of the exemplars in fixed windows. It is no

longer necessary to include multiple shifted variants of features in

the exemplars to represent the observation accurately. Consequently,

better efficiency can be expected for similar dictionary size.

The content is organised as follows. Section 2 describes the key

concepts of the paper: exemplar-based recognition, matrix decon-

volution and differences to the previous model. In Section 3 we ex-

plain, how to obtain state likelihoods and the final recognition output

from exemplar activations. The noisy spoken digit recognition test

setup is given in Section 4. Results, discussion, and conclusions fol-

low in Sections 5, 6 and 7, respectively.

2. EXEMPLAR-BASED DECONVOLUTION

2.1. Windowed exemplar model

The basis unit of our system, a speech or noise exemplar, is aB×T
spectrogram matrix consisting of spectral magnitudes (square root

of energy). B is the number of frequency bands and T the number
of consecutive frames in each exemplar. Our observation matrixYutt
is a B × Tutt spectrogram in the same domain, where Tutt is the total
number of frames in the whole speech utterance.

The utterance is modelled as a linear weighted combination of

exemplars in overlapping, exemplar-sized windows. The starting

frame indices τ of windows range from 1 to W = Tutt − T + 1,
and a window starting from frame τ covers frames [τ, τ + T − 1].
The linear combination is characterised by an L×W activation ma-
trix X, where each element Xlw represents the weight of exemplar

l (from 1 to the total number L) activation in window w. The acti-
vation pattern can be determined for one window at a time as in our

previous experiments [4, 5], or by generating joint activations for the

whole utterance using a deconvolution algorithm.



2.2. Matrix deconvolution

The estimated model Ψutt for observation Yutt using L exemplars
can be written as

Ψutt =
T

X

t=1

At

→(t−1)

X . (1)

Each At is a B × L matrix representing frame t of the exemplars,
thus the spectrogram of exemplar l can be found in columns l of

A1 . . .AT . Here
←i

(·) and
→i

(·) are shift operators, moving the matrix
entries left or right, respectively, by i units. In this caseΨutt is T −1
columns longer than the activation matrixX, so shifting takes place

in a Tutt wide zero-padded matrix, starting from its leftmost position.
T −1 zero columns are added, no columns are discarded to generate
the shifted matrix.

The exemplars and their activations are restricted to non-

negative values. The exemplars are obtained from training data

and fixed, whereafter the activations are estimated by minimising

the generalised Kullback-Leibler divergence

d(Yutt,Ψutt) =
X

y log(
y

ψ
) − y + ψ ∀(y, ψ) ∈ (Yutt,Ψutt).

(2)

An L1 norm penalty (sum of all elements) is applied to the acti-

vations, which has been found effective for magnitude spectrogram

features [7].

As the approximated observation matrixΨutt will be a temporal

convolution between the basis and the activations, the algorithm is

called Non-negative Matrix Deconvolution (NMD) [8]. In our previ-

ous work we called the method convolutive sparse coding [9]. NMD

has already been used successfully for sound source separation in

music and speech applications [10, 11].

The entries of the activation matrix are initialised to unity values,

and the following update rule (based on [12]) is applied iteratively:

X = X ⊗

P

T

t=1 A
T

t ·

←(t−1)

[Yutt
Ψutt

]

Λ +
P

T

t=1 AT
t ·
←(t−1)

1

, (3)

where ⊗ is elementwise multiplication, and all divisions are also el-

ementwise. Λ is a sparsity matrix defining the penalty factor for

each activation element, thus the total weighted penalty becomes
P

x·λ ∀(x, λ) ∈ (X,Λ). In our system, we set a different penalty
weight for activations corresponding to speech and noise. The model

Ψutt is evaluated before each update using (1).

2.3. Comparison to independent windows

In our previous work we used a sliding window approach, where

all W overlapping B × T windows were factorised independently.
Because the middle frames of the observation will be reconstructed

several times in consecutive windows, averaging was applied in later

steps to compensate for the effect. The implementation was some-

what simpler than in NMD — each window can be represented as a

separate, concatenated observation vector, and the utterance can be

processed as a factorisation between two matrices without shifting

operations. However, it occasionally suffers from the fixed tempo-

ral positioning of its windows. An exemplar must match accurately

to the temporal position of spectral features found in an individual

window to be used there. When the window length is increased,

it becomes less likely, that a matching exemplar is found in a lim-

ited dictionary. Each window must be factorised, and depending on

Figure 1: A stylised comparison of independent window (NMF for

short) and deconvolution (NMD) methods. Utterance spectrogram

Yutt is represented using exemplars a1, a2 and a3 in three windows.

The first and last window match to exemplars 1 and 2, but in NMF

the middle window must be reconstructed using inaccurate activa-

tions (bottom left matrix). In NMD, only enough exemplars to re-

construct the utterance are activated (bottom right matrix), thus the

middle window remains empty.

its match to the dictionary, reconstruction quality may vary between

windows. The effect of mismatches will be reduced during averag-

ing, but not eliminated entirely. On the other hand, for NMD it suf-

fices to find a single temporal position, where an exemplar matches

the observed speech. The difference between the activation patterns

is visualised in Figure 1.

3. DECODING

After determining the activation matrix X, it is used to generate a

state likelihood matrix L. It consists of column vectors lτ for each

frame in the utterance. These vectors, their length representing the

total number of states in the system, describe the estimated likeli-

hoods of states at time τ .
Each speech exemplar is labelled with a state sequence over its

duration, so that in each frame it is assumed to be in exactly one

state. When an exemplar is activated in window w, an update is
made to T columns of L starting from w. A state label q in frame t
of an exemplar will increment the element q of column w+ t− 1 by
its activation weight. A formal description of this procedure is given

in [5].

Even though silence states are also included in the labels, their

activation is somewhat unpredictable. Because the magnitude of

silent frames is zero in all bands, no exemplars are activated dur-

ing true silence. Conversely, these states may appear within speech

activity, when a speech-silence transition exemplar is used as a part

of the sum. For these reasons, silence state likelihoods are reshaped

according to a speech activity estimate derived from the total weight

of active speech exemplars in each frame. The matter is discussed in



Table 1: Digit recognition rates for AURORA-2 test sets A and B at various window lengths and noise levels. The first three rows repeat the

independent window factorisation (’NMF’ for short) results given in [5]. The last three rows show the new deconvolution results (’NMD’).

SNR (dB) clean 20 15 10 5 0 -5

NMF

T=10 96.2 95.3 94.4 92.1 84.7 71.2 39.6

T=20 96.6 95.8 94.8 92.7 88.8 78.1 53.1

T=30 94.7 93.4 93.3 92.2 89.9 79.5 56.7

NMD

T=20 96.7 96.3 95.4 93.9 90.1 78.5 57.5

T=30 97.0 96.4 95.6 94.7 91.4 82.0 61.0

T=40 93.5 94.4 94.2 91.5 88.6 78.3 55.2

(a) Test set A

SNR (dB) clean 20 15 10 5 0 -5

NMF

T=10 96.2 94.7 93.6 87.9 78.4 57.1 27.4

T=20 96.6 95.3 93.7 89.9 82.7 63.1 35.7

T=30 94.7 93.5 93.2 90.1 85.7 67.5 37.6

NMD

T=20 96.7 96.0 95.1 91.7 84.0 62.4 33.5

T=30 97.0 95.6 94.7 92.1 86.4 68.1 36.4

T=40 93.5 93.8 93.4 89.2 83.6 64.1 33.0

(b) Test set B

more detail in [4].

Finally, the summed likelihoods in each frame are normalised

to unity, and the state likelihood matrix is decoded using the Viterbi

algorithm.

4. EXPERIMENTS

The efficiency of deconvolution versus independent overlapping

windows was studied using a test setup similar to the one described

in [4] and [5]. AURORA-2 connected digit recognition test, which

includes multiple noise types and noise levels, was used for evalu-

ation. The same bases of 4000 speech and 4000 noise exemplars,

generated by random selection from the multicondition training set

in the earlier experiments, were used. In these bases, each exem-

plar is a B × T magnitude spectrogram consisting of 23 mel-scale
spectral bands and T frames with 25 ms frame length and 10 ms
frame shift. Window lengths 20 and 30 from the previous work

were included, as this much temporal context has been found rec-

ommendable for sufficient noise robustness. In addition, a T = 40
basis was generated using a similar procedure to study the capability

of deconvolution in even longer windows. State labels of speech

exemplars were acquired via HMM-based forced alignment. All in

all, 179 states were used: 16 for each digit (’zero’, ’oh’, 1–9) and 3

for silence.

We processed the same random subset of 100 utterances (10%

of the complete test set) as in [5] for all four noise types in test set A

and the four in test set B. Clean speech and all six noise levels, SNR

20, 15, 10, 5, 0 and -5 dB were included. Due to the different activa-

tion patterns between independent windows and deconvolution, the

NMD sparsity parameters λ were reoptimised to 2.0 for speech and
1.5 for noise exemplars using the training set. The silence balanc-

ing algorithm was modified slightly to derive its SNR estimate from

waveforms by comparing the mean power of the whole wave (sig-

nal+noise) to the lowest 20% of frame powers (only noise), because

in NMD the exemplar activation levels were found to vary too much

for this purpose. The silence parameters were retrained from the

training set for each window length separately. 200 NMD iterations

were used for the main experiment as before, although the computa-

tion was continued up to 250 iterations for further comparison.

5. RESULTS

The recognition rates of our test are summarised in Table 1. Pre-

vious results from our independent window experiments (’NMF’)

are shown first, sorted by window length [5]. The new convolutive

model (’NMD’) results follow.

In set A, convolutive T = 30 comes out uniformly superior
to the alternative window lengths and also to our previous results.

Convolutive T = 20 surpasses the NMF results and approximately
equals convolutive T = 30 at high SNRs, but falls faster in the noisy
end like it did in NMF. The newly introduced T = 40 (400 ms ex-
emplars) is roughly comparable to the previous T = 20/30 NMF
results. However, a decrease of approximately 3% from convolu-

tive T = 30 is present already in the clean end, and it reflects to
all the noisy rates. Overall, set A turns out to be a success for the

convolutive algorithm.

In set B we observe mostly positive results, but also a few decre-

ments. The improvements in clean speech recognition rates are also

present here all the way until 0 dB, where convolutive T = 20 loses
by a small margin to its NMF counterpart. For T = 30, this happens
at -5 dB alone. T = 40 is again acceptable in comparison to the
NMF results, but several percent below the new T = 30 rates.
The high contrast between set A (noise types matching to the

basis) and set B (nonmatching noise) is still present and even em-

phasised in the convolutive approach. The possible reasons for this

are discussed in Section 6.

Increasing the iteration count to 250 produced mixed results (not

shown). Recognition rate changes between -1.4% and +3.7% (abso-

lute) were observed. The largest and most systematic gains were in

the noisy end of set A, all 0 dB rates increasing by ≥ 1.0% and -5

dB by ≥ 2.2%. Elsewhere no regular trend was found.

In comparison to established methods, the current experimen-

tal setup does not yet achieve the clean speech recognition rates of

carefully trained GMM-based implementations, which often exceed

99%. On the other hand, previous -5 dB rates achieved with noise-

compensated or multi-condition trained GMMs include 17.1% [2],

24.6% [13] and 42.9% [4] for set A. All perform worse on set B,

albeit by a smaller margin, when the methods do not utilise spectro-

temporal features specific for each noise type. Uncompensated sys-

tems trained with clean speech typically fall below 10% at -5 dB.

6. DISCUSSION

Three main observations can be made from the results. First, in this

test setup the convolutive method produces generally higher recog-

nition rates than the independent window algorithm. Second, convo-

lutive T = 30 achieves the highest clean speech recognition rate of
all methods and windows presented here, improving significantly its

earlier independent window performance. Third, test set B still turns

out problematic, even more so than in NMF. Each of these observa-

tions deserves a brief analysis.

The improved overall rates are a positive outcome, and speak for

the potential of NMD in exemplar-based recognition. However, the

new algorithm also required some changes and retraining of param-

eters, which may play a role in the overall results. We still conclude,

that significant gains were achieved by using NMD for the problem.



Because its joint, shift-invariant activation pattern appears inherently

suitable for dictionary reduction and reverberation handling, we con-

sider it the better candidate for further research within related topics,

such as echoing noise and large vocabulary.

The second observation was the superiority of T = 30. Whereas
in the previous independent window experiment it suffered from

lower clean speech recognition rates, here it improves to the extent

that it surpasses both of the T = 20 variants in all SNRs. It was our
earlier assumption, that in such a long window the dictionary size

becomes a limiting factor for independent windows, because sev-

eral temporal alignments of features are required in the exemplars.

We also assumed, that deconvolution might reduce the effect. The

results support both of these theories. As the T = 30 basis was
identical in both variants, and post-processing factors are negligible

in clean speech recognition, we conclude that the nearly halved error

rate in clean speech results from algorithmic differences. The other

high percentages in set A follow the improved performance of clean

speech throughout the noise levels. Window length 40 was found too

large to be handled with this dictionary size, regardless of the use of

convolution.

The primary problem of our current approach is highlighted by

the third observation, namely the increasing quality gap between

sets A and B. The noise types of set A are similar to those used

in training and dictionary construction. Therefore the factorisa-

tion/deconvolution becomes a well defined separation problem, and

generally plausible results can be achieved. The situation is no-

tably different in test set B. Because the noise types do not match,

especially in long windows we cannot expect to find good ap-

proximations for the observed noise in the dictionary. In NMF of

independent windows, a lot of averaging will take place. Up to

30 different noise estimates from consecutive windows are mixed

together. Therefore they are unlikely to form any major distracting

features. In NMD, this kind of forced averaging is not present. The

increased sparsity, which aided separation in set A, may become a

hindrance instead. Sparse activations of nonmatching noise features

are not suitable for representing the true noise in signals, thus the

separation often fails. A telling detail is that in set A the noisy results

improved further by increasing the iterations to 250. In set B this

did not happen. Even a few decrements took place, suggesting that

the algorithm had already reached an unstable peak level regarding

separation quality.

It has been repeatedly seen that long temporal context is effec-

tive, or even required for handling high levels of background noise.

We also found here additional support for the potential of exemplar-

based sparse representation. However, while various speech patterns

can be handled by a reasonably sized exemplar dictionary, the same

cannot be said about all types of noise present in the real world.

To cope with this issue, we have already taken initial steps towards

adaptive and synthetic noise dictionaries [14]. Preliminary results

show that even a simple synthetic dictionary can surpass the separa-

tion quality of a poorly matching sampled dictionary. Deconvolution

should prove useful in such dictionary methods, because new pat-

terns can be included as single entries without temporal repetition.

The algorithm itself will take care of different temporal alignments.

7. CONCLUSIONS

A framework for an exemplar-based, deconvolutive speech recog-

nition system was presented. Comparative results against an ear-

lier setup with independent factorisation windows were shown us-

ing the AURORA-2 connected digit recognition test. Deconvolution

with a window length of 30 frames (300 ms) surpassed the results of

other window lengths and the previous approach almost uniformly.

Recognition rates of >80% were observed at 0 dB SNR, and >60%
at -5 dB. Improvements in clean speech recognition rates using long

windows suggest, that deconvolution can overcome some of the dic-

tionary size problems of independent windows. It turned out that the

match between the dictionary and observed noise is crucial in decon-

volution, even more so than in the independent window approach.
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