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Audiosignaalien spektrin mallintamisessa tavoitteena on muuntaa signaali helpommi
analysoitavaan muotoon poistaen kuulon kannalta merkityksetön informaatio. Sini- ja
kohinamalli on spektrimalli, jossa äänen jaksolliset komponentit esitetään sineillä joid
taajuudet, amplitudit ja vaiheet muuttuvat ajan funktiona. Jäljelle jäävät ei-jaksolliset
komponentit esitetään kaistoittain suodatettuna kohinana. Sinimalli hyödyntää musik
ten instrumenttien fyysisisiä ominaisuuksia ja kohinamalli ihmiskuulon epätarkkuutta
kohinaspektrin tarkan muodon tai vaiheen suhteen.

Sinien parametrien estimointi polyfonisista musiikkisignaaleista on hankalaa johtuen 
että jaksolliset komponentit ovat vain harvoin täysin stabiileja. Myös riittävää aika- ja 
uusresoluutiota on hankala saavuttaa yhtä aikaa. Suuri osa diplomityöstä käsittelee j
listen komponenttien havaitsemista sekä niiden parametrien estimointia useilla eri
algoritmeilla. Vanhojen algoritmien lisäksi työssä esitetään uusi iteratiivinen algoritmi
joka perustuu lähekkäisten sinien yhdistämiseen.

Sinimallia on työssä sovellettu päällekkäisten äänten erotteluun sekä manipulointiin. 
telussa käytetään uutta etäisyysmittaa yksittäisten sinien välillä. Etäisyysmitta jäljittel
ihmiskuulon tapaa ryhmitellä ääniä. Työssä selostetaan myös lyhyesti uusi erottelum
netelmä joka käyttää hyväkseen estimaattia äänten korkeudesta. Äänten nopeuden 
korkeuden muuttaminen laatua heikentämättä sini- ja kohinamallin avulla on myös
käsitelty lyhyesti.
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In audio signal spectrum modeling, the aim is to transform a signal to a more easily a
cable form, removing the information that is irrelevant in signal perception. Sinusoids
noise model is a spectral model, in which the periodic components of the sound are 
sented with sinusoids with time-varying frequencies, amplitudes and phases. The rem
ing non-periodic components are represented with a filtered noise. The sinusoidal m
utilizes the physical properties of musical instruments and the noise model the huma
inability to perceive the exact spectral shape or phase of stochastic signals.

In the case of polyphonic music signals, the estimation of the parameters of sinusoid
difficult task, since the periodic components are usually not stable. A sufficient time a
frequency resolution is also difficult to achieve at the same time. A big part of this the
discusses the detection and parameter estimation of periodic components with severa
rithms. In addition to already existing algorithms, a new iterative algorithm is presente
which is based on the fusion of closely spaced sinusoids.

The sinusoidal model is applied in the separation of overlapping sounds and manipula
In the sound separation, a new perceptual distance measure between sinusoids is us
perceptual distance measure is based on the humans’ way to associate spectral comp
into sound sources. Also a new separation method based on the multipitch estimatio
explained. The modification of the pitch and time scale of sounds with the sinusoid p
noise model without affecting the quality of the sound is explained shortly, too.
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1. Introduction
This thesis describes methods for sinusoids+noise signal modeling, with the aim of a
ing them in machine hearing and in the content analysis of musical signals. Until qui
recently, most of the work in machine hearing has been done in the area of speech re
tion. In the last few years, more interest has started to emerge towards the general c
tational auditory scene analysis. Recent studies in this area have shown that only in
limited cases we can achieve results comparable to human hearing. In general, the 
auditory system is still superior compared to computer for example in recognition task
is therefore natural to try to design systems which process signals more in the way tha
own auditory system does.

In most cases, the standard pulse code modulated (PCM) signal which basically des
the sound pressure levels reaching the ear is not a good presentation for the analys
sounds. A general approach is to use spectrum modeling, or a suitable middle-level 
sentation to transform the signal into a form that can be generated easily from the P
signal, but from which also the higher level information can be more easily obtained.
sinusoids+noise model is one of these representations. The sinusoidal part utilizes t
physical properties of general resonating systems by representing the resonating co
nents by sinusoids. The noise model utilizes the inability of humans to perceive the e
spectral shape or phase of stochastic signals.

Automatic transcription is one interesting application area of machine hearing. The l
number of different kinds of instruments and their wide pitch range, variety of spectra
other characteristics make the problem very challenging. The main focus of our sinu
ids+noise system is in musical signals. The system is built upon ideas taken from se
other sinusoids+noise modeling systems, with some original algorithms proposed he
The system was designed modular in order that different algorithms could be tested in
stage of processing. The system was implemented in Matlab environment.

Since the sinusoids+noise model has the ability to remove irrelevant data and encod
nals with lower bit rate, it has also been successfully used in audio and speech codi
Even though the perceptual quality of the synthesized sounds was one criteria when
system was built, the main emphasis was the usability in the selected applications, s
separation and signal analysis.
1
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1.1 Sinusoids plus noise signal model

The sounds produced by musical instruments and other physical systems can be mo
as a sum of deterministic and stochastic parts, or, as a sum of a set of sinusoids plu
residual [Serra 1997]. Sinusoidal components are produced by a vibrating system, an
usually harmonic. The residual contains the energy produced by the excitation mech
nisms and other components which are not result of periodic vibration.

In the standard sinusoidal model, the deterministic part of the signalx(t) is represented as a
sum of sinusoidal trajectories (see Table 1 for term definitions) with time-varying par
ters:

, (1)

where  and  are amplitude and phase of sinusoidi at timet, andr(t) is a noise
residual, which is represented with a stochastic model. We assume that the sinusoid
locally stable, which means that the amplitudes do not exhibit arbitrarily rapid chang
and that the phases are locally linear. The whole signal is modeled with either a sinus
or a stochastic model, thus the residualr(t) contains all the components of signalx(t) that
are not modeled with sinusoids, including sinusoids that have not been detected.

The human sound perception is not sensitive to the detailed spectral shape or phase
periodic signals. Assuming that the residual contains only stochastic components, it c
represented with filtered white noise. Neither instantaneous amplitude nor phase of 
residual is retained, but instead it is modeled with a time-varying frequency-shaping 
or with short-time energies within certain frequency bands such as Bark bands. Taking
account these facts, the sinusoids+noise model can be considered as a model arisin
both physical and physiological properties.

Table 1: Term definitions

term definition

trajectory, track sinusoidal components with time-varying frequencies, ampli-
tudes and phases, appearing as trajectories in the time-fre-

quency spectogram
harmonic (partial) modes of a vibrating system, the frequencies of which are

whole number multiples of the fundamental frequency
(noise) residual what is left when the deterministic part of the signal has been

removed
sound separation process where two a more sound mixed in one signal are sep

arated from the signal and synthesized alone

x t( ) ai t( ) θi t( )( ) r t( )+cos
i 1=

N

∑=

ai t( ) θi t( )
2
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1.2 General structure of the sinusoids plus noise analysis/synthesis sys-
tem

There are many existing implementations of the standard sinusoids plus noise model,
number of improvements to it. The implementation of the standard model is presente
here, and improvements are discussed in Chapters 3 and 4. The block diagram of th
soids plus noise system is illustrated in Figure 1. At first, the input signal is analyzed
obtain time-varying amplitudes, frequencies and phases of the sinusoids. Then, the s
ids are synthesized and subtracted from the original signal to obtain the noise residua
stochastic analysis is applied to the residual to obtain short-time Bark-band energies
stochastic signal can be resynthesized and added to the synthesized sinusoids to obt
whole resynthesized signal.

In the parametric domain, we can make modifications to produce effects like pitch shi
or time stretching. The synthesized signals or the residual can be further analyzed, o
ysis can be performed directly on the parametric data. For example, we can recogni
acoustic noise mixtures like drums using the short-time Bark-band energies [Sillanpä
al. 2000].

The analysis of sinusoids is the most complex part of the system. Firstly, the input sign
divided into partly overlapping and windowed frames. Secondly, the short-time spect
of the frame is obtained by taking a discrete Fourier transform (DFT). The spectrum 
analyzed, prominent spectral peaks are detected and their parameters, amplitudes, fr
cies, and phases, are estimated.The methods for peak detection and parameter esti
are discussed in detail in Chapter 3.

Once the amplitudes, frequencies and phases of the detected sinusoidal peaks are 
mated, they are connected to form interframe trajectories. A peak continuation algor
tries to find the appropriate continuations for existing trajectories from among the pea
the next frame. The obtained sinusoidal trajectories contain all the information require
the resynthesis of the sinusoids. The sinusoids can be synthesized by interpolating t
parameters of trajectories and summing the resulting waveforms up in time domain. 
continuation algorithms and the sinusoidal synthesis are discussed in Chapter 4.

The stochastic part of the signal is obtained by subtracting the synthesized sinusoid
the original signal in time domain. This residual is represented with filtered noise. Sin
human auditory perception can not difference the change of energy inside certain fre
quency bands called Bark bands for noise-like, stationary signals, the exact spectral
is not required. For stochastic processes, the phases are not perceptually irrelevant,
and can therefore be discarded. As a consequence, the only information needed for
like signals is the short-time energies within each Bark band. In stochastic analysis, 
complex spectrum of the residual is calculated and short-time energies within each B
band are estimated. In synthesis, we generate the complex spectrum by generating 
dom phase for amplitudes that are obtained from the Bark-band energies. Adjacent fr
are combined using overlap-add synthesis. The stochastic model is discussed in Cha
3



ght
he
signal

sinusoidal
analysis

sinusoidal
synthesis

stochastic
analysis

stochastic
synthesis

+

parametric data

PCM signal

frequencies, amplitudes and phases of the sinusoids

residual

Bark-band  energies

synthesized

resynthesized

stochastic

Figure 1: General implementation of the standard sinusoids+noise system. In the ri
half of the figure there is a plot of an example signal at each stage of the processing. T
example signal is a mixture of bowed violin and a snare drum.

+

-
  sinusoids

   signal

    signal

   signal
4



om

ive
nd”.

uso-
func-

udio
in gen-

what
the
rable

ng has
mix-

nal,

ed as

corre-

esize
sually
le
d
et of a
orre-
2. Literature Review
2.1 Mid-level representations

Human perception of audio signals can be viewed as a sequence of presentations fr
“low” to “high” [Ellis&Rosenthal 1995]. Low-level presentations correspond to signals
before the inner ear. High-level representations are those to which we have a cognit
access, like “Lasse playing the bass guitar while a mobile phone rings in the backgrou
Between these two levels we have representations that are called mid-level. The sin
ids+plus noise model can be considered as one rather efficient choice to carry out the
tions of a mid-level representation.

The idea of spectrum modeling is to discard any information that is useless in human a
perception. The original signal reaching human ear has elements like phase, which 
eral are not needed in the monaural sound perception.

The knowledge of the mid-level representations of the human auditory system is some
limited. In computational auditory scene analysis we try to build models which have 
same properties as human auditory system. Ellis and Rosenthal list the following desi
properties for auditory mid-level presentations [Ellis&Rosenthal 1995]:
1. Sound source separation. Natural sounds overlap with each other, and our heari

the ability to organize the sounds to their sources of production from the complex
ture.

2. Invertibility. From a parametric representation, we can regenerate the original sig
although to a perceptual rather than bit-wise criterion.

3. Component reduction. The original signal reaching the eardrum can be consider
an array of air pressure levels. As we represent it, the number of objects should
decrease while the meaningfulness of each should increase.

4. Abstract salience of attributes. The features that the representation uses should 
spond to the physical characteristics rather than algorithmic details.

5. Physiological plausibility from the human auditory physiology point of view.

Sinusoids+noise model meets well the second and third criteria, since we can synth
the analyzed signal from the obtained parameters and the number of parameters is u
quite low. The sinusoidal model allows separation of sound sources, and one possib
approach is presented in Chapter 7. In general, the noise model does not allow soun
source separation. Sinusoidal model also meets the fourth criteria somehow: an ons
sinusoid corresponds to an onset of a sound, and the frequencies of the sinusoids c
spond to resonant frequencies of sound sources.
5
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The physiological plausibility of the whole sinusoids+noise model is poor. The sinuso
model is more physically than physiologically oriented. However, this can be conside
also as an advantage, too. The model produces oversimplified data, for which only a
mum amount of deduction has been done. If higher level information is desired, the 
can be easily analyzed using an upper level analysis, which for example combines t
sinusoids into separate sound sources.

2.2 Spectral models related to the sinusoids+noise model

Additive synthesis is a traditional sound synthesis method that is very close to the si
dal model. It has been used in electronic music for several decades [Roads 1995]. Lik
sinusoidal model, it represents the original signal as a sum of sinusoids with time-va
amplitudes, frequencies, and phases [Moorer 1985]. However, it does not make any
ence between harmonic and non-harmonic components. To represent non-harmonic
ponents it requires a very large amount of sinusoids, therefore giving best results for
harmonic input signals.

Vocoders are an another group of spectral models. They represent the input signal at
ple parallel channels, each of which describes the signal at a particular frequency ba
[Tolonen et al. 1998]. Vocoders simplify the spectral information and therefore reduce
amount of data. Phase vocoder is a special type of vocoder, which uses a complex s
time spectrum, thus preserving the phase information of the signal. The phase voco
implemented with a set of bandpass filters or with a short-time Fourier transform. Th
phase vocoder allows time and pitch scale modifications, like the sinusoidal model d
[Dolson 1986].

Source–filter synthesis uses a time-varying filter and an excitation signal, which is eith
train of impulses or white noise. While the desired signal is obtained by filtering the br
band excitation, the method is also called subtractive synthesis. This method approxim
human speech production system, and it is often used in speech coding [Moorer 198
The filter coefficients can be obtained e.g. by the linear predictive analysis. For voice
speech, a periodic pulse train is used as an excitation, and white noise is used for unv
speech. Naturally, the voiced excitation can be used only for monophonic signals. H
ever, the idea of using filtered noise for non-harmonic signals is quite close to the sto
tic synthesis used in our system. Our system uses Bark-band energies instead of tim
varying filters, which in general case is psychoacoustically better justified.

2.3 Sinusoids + noise modeling systems

The sinusoidal model was originally proposed by McAulay+Quatieri for speech codin
purposes and by Smith+Serra [McAulay&Quatieri 1986; Smith&Serra 1987] for the r
resentation of musical signals. Even though the systems were developed independe
they were quite similar. Some parts of the systems such as the peak detection were s
different, but both systems had all the basic ideas needed for the sinusoidal analysis
synthesis: the original signal was windowed into frames, and the short-time spectrum
6
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examined to obtain the prominent spectral peaks. The frequencies, amplitudes and 
of the peaks were estimated and the peaks were tracked into sinusoidal tracks. The
were synthesized using linear interpolation for amplitudes and cubic polynomial interp
tion for frequencies and phases.

Serra [1989] was the first to decompose the signal into deterministic and stochastic 
and to use a stochastic model with the sinusoidal model. Since then, this decompos
has been used in several systems. The majority of the noise modeling systems use tw
of approaches: either the spectrum is characterized by a time-varying filter or the sh
time energies within certain frequency bands.

2.4 Transient modeling

While sinusoids and noise can be used to model a large variety of sounds, they perf
poorly with very rapidly changing signals components called transients. One could u
sinusoids to model transients, but since transients often have a large bandwidth, the
ber of sinusoids required is large. Also, the time-resolution used normally in the sinuso
analysis is not good enough for transients, because the window length can be much
than the length of a transient. Using a long window with transients results in an effect o
encountered in audio coding: pre-echo.

The mentioned problems can be avoided using a separate model for transients. A tra
detector determines where the transients are located. While other parts of the signa
represented with the parametric sinusoids+noise model, the detected transients are
sented with non-parametric transform coding [Levine 1998]. Transform coding is use
only for a short amount of time (66 ms). Transient model has been used together with
soids+noise model in the systems presented in [Ali 1996], [Levine 1998] and [Verma
1999].

The transient model is not included in our system, because it was considered that fro
auditory scene analysis point of view this information would not give significant impro
ment. If we consider the quality of the synthesized sound, it is clear that adding the t
sient model would improve the quality a lot. However, our main purpose was to constru
good mid-level representation for audio content analysis, not an audio coder.

2.5 Pitch-synchronous analysis

The estimation of the sinusoidal modeling parameters is a difficult task in general. Mo
the problems are related to the analysis window length. If the input signal is monoph
or consist of harmonic voices that do not overlap in time, it advantageous to synchro
the analysis window length to the fundamental frequency of the sound. Usually the f
quencies of the harmonic components of voiced sounds are integral multiples of the f
mental frequency.
7
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The advantage of the pitch-synchronous analysis is most easily seen in the frequenc
domain: the frequencies of the harmonic components correspond exactly to the freq
cies of the DFT coefficients. The estimation of the parameters is very easy, since no
polation is needed, and the amplitudes and phases can be obtained directly from the
complex spectrum. Also, pitch-synchronous analysis allows the use of window lengt
small as one period of the sound, while non-synchronized windows have to be 2-4 ti
the period depending on the estimation method. This means that a much better time r
tion is gained by using the pitch synchronous analysis.

Unfortunately, pitch-synchronous analysis can not be utilized in the case where seve
sounds with different fundamental frequencies occur simultaneously. In general, mon
phonic recordings represent only a small minority among musical signals and theref
pitch-synchronous analysis typically can not be used. To keep the complexity of the 
tem low, the pitch-synchronous analysis was not included in our system.

Adaptive window length has been successfully used in modern audio coding system
in a quite different manner: a long window is used for stationary parts of the signal, a
when rapid changes occur, the window is switched into a shorter one. This enables 
frequency resolution for the stable parts and a good time resolution in rapid changes
8
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3. Peak Detection and Parameter Estima-
tion
In this thesis, the basic principles and theoretical background of sinusoidal analysis 
rithms are presented in Chapters 3 and 4. The practical performance of the algorithm
studied in Chapter 6. Based on the simulations and general knowledge gained durin
implementation of the algorithms, two algorithm sets were chosen to be used in prac
applications. These sets are described in Chapter 6.5.

The sinusoidal analysis constitutes an integral part of the overall sinusoids+noise sy
as depicted in Figure 1. The sinusoidal analysis module can be further divided into fo
steps, which are presented in Figure 2. At first, meaningful peaks in the incoming sig
are detected. Second, the peaks are interpolated to obtain better frequency resolutio
Third, the amplitudes and phases of the detected peaks are estimated, and finally the
are connected into trajectories.

Several alternative methods exists for each of the four analysis steps. In this chapter
present the algorithms of the first three phases tested in our sinusoidal analysis syst
There are two peak-detection algorithms, two peak interpolation algorithms and two 
tive parameter estimation methods. The continuation part is discussed in Chapter 4.

Peak detection is a crucial part in a sinusoidal modeling system, since sinusoidal syn
is done using the detected peaks only. There are many fundamental problems in the
mation of the meaningful peaks and their parameters. Most of these problems are rela

None

Peak Detection
Peak Interpolation Peak Continuation

Figure 2: The phases and algorithms of the sinusoidal analysis. The numbers in par
thesis refer to chapters where each algorithm is explained.

Directly from

Parameter Estimation

the spectrum

F-test
(3.2)

Cross-corre-
lation (3.1)

Quadratic (3.3)

Derivatives (3.4)

Least-squares
estimation (3.5)

Parameter
derivatives

(4.1)
Synthe-

sis+deriva-
tives (4.2)Iterative analysis of

the residual (3.6)
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the length of the analysis window: a short window is required to follow rapid changes
the input signal, but a long window is needed to estimate accurate frequencies of the
soids or to distinguish spectrally close sinusoids from each other.

What is a “meaningful peak” is a fundamental question. If fast changes in the amplitu
and frequency are allowed, even the stochastic part of the signal can be modeled us
large number of sinusoids. In general, that is not what we want in sinusoidal modelin
Instead we want to use sinusoids to represent the harmonic partials of a periodic so

In almost all the sinusoidal analysis systems the peak detection and parameter estim
is done in the frequency domain using the DFT. This is natural, since each stable sin
corresponds to an impulse in the frequency domain. Because natural sounds are nev
nite-duration stable sinusoids, we have to analyze the time-domain signal at several
instants using a sliding window and a short-time Fourier transform (STFT).

Usually zero-padding is used to increase the frequency resolution of the short-time s
trum [Laroche 1998]. IfN is a power of two, we can use the fast Fourier transform (FF
algorithm, which is a computationally efficient implementation of the DFT. The signa
spectrum and sinusoidal peaks in each stage of processing are illustrated in Figure

A peak or a local maximum in the magnitude of the STFT indicates the presence of a
soid at a nearby frequency. The simplest method for detecting sinusoids in the signa
therefore to choose a fixed number of local maxima in the magnitude of the STFT. T
method is very fast and produces a fixed bit rate, this why it is often used in audio co
applications. For analysis purposes, a fixed number of sinusoids is not practical: in the
of non-harmonic sounds, the method picks peaks caused by noise, which causes pro
in subsequent analysis. In the case of polyphonic signals, the number of harmonic pa
is large, and a fixed number of sinusoids may not suffice to model all of them.

A natural improvement of the method is to use a threshold for peak detection: all loc
maxima of the magnitude of the STFT above the threshold are interpreted as sinuso
peaks. This method produces a variable number of peaks. However, it does not remo
problem that some peaks in magnitude spectrum can be caused by noise, or other n
monic sounds. Also, it does not take into account the overall spectral shape and ampl
of the harmonics, which in the case of natural sounds are usually decreasing as a fu
of frequency, or, natural sounds have most of their energy at lower frequencies. As a c
quence, higher harmonic partials often fall below the fixed threshold, and are not dete
For these reasons, we concentrated on two more sophisticated peak detection algor
the cross-correlation method and f-statistics.
10
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3.1 Cross-correlation method

Sinusoids can be defined as frequency components which have significantly more e
than the adjacent frequencies. The cross-correlation method makes use of this idea
culating the cross-correlation between the short-time spectrum of the signal and the
trum resulting from an ideal sinusoid, and scaling the result by the overall spectral sh
The obtained result is called sinusoidal likeness measure.

Figure 3: Block diagram of the general implementation of the sinusoidal analysis-sy
thesis process. The example signal in the right side of the figure is a bowed violin.

signal

complex spectrum

short-time

peak detection
and parameter
estimation

sinusoidal peaks

peak continuation

sinusoidal trajectories

sinusoidal
synthesis

synthesized signal

DFT
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The cross-correlation method has been used successfully e.g. in speech coding [Gr
fin&Lim 1985], where the voicing index is similar to sinusoidal likeness measure. In m
cal signals, several sinusoidal components can be close to each other in frequency, 
difficult to obtain a measure how voiced/unvoiced an individual components it. Howe
the method is able to detect a large number of sinusoids in many different conditions

The spectrum  of a single sinusoid is a scaled and phase-shifted shape of
, which is the spectrum of the analysis window translated at frequency

[Rodet 1997]. In harmonic sounds, we have a sum of several translated, scale
phase-shifted to several different frequencies, amplitudes and phases. It is therefore n
to look at the cross-correlation function between and , the STFT of the w
dowed signal. Usually  values are very small at high frequencies, so we can c
late the cross-correlation using only a narrow bandwidth [-W,W] of :

. (2)

If we define norms for  and  at frequency  by:

 and , (3)

we get an estimate  of the likeness between the observed peak and the peak tha
result from an ideal sinusoid:

. (4)

 is always between 0 and 1,  resulting from an ideal sinusoid, no noise pre

We also get an estimation of amplitudeA and phase  of a sinusoid at frequency  by:

 and (5)

. (6)

We can use  to detect sinusoids and their frequencies by setting a fixed limit, whic
between 0 and 1, and choosing frequency points that are local maxima of  and ab
the fixed threshold.

In Figure 4 we have the amplitude spectrum of a windowed violin sample and the sin
dal likeness measure calculated for the same sample. As we can see from the ampl
spectrum, the overall spectral level is lower at higher frequencies. In sinusoidal liken
measure this is taken into account: the harmonics at high frequencies have large sinu
likeness measure even though their amplitudes are about 20 dB lower than those of th
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harmonics. The sinusoidal likeness measure is a bit lower for higher harmonics, but t
explained by the fact that the violin has some high-frequency noise caused by the exc
bow, and therefore the higher harmonics are not ideal sinusoids.

Cross-correlation is a convolution where the time scale of the other signal is inverted
[Hartmann 1997]. The cross-correlation of the frequency domain signals can therefo
implemented using a multiplication for the time-domain signals. For a large bandwidthW,

 can be calculated more efficiently using the FFT forx(t) windowed twice with the
analysis windowh(t). Because the calculation of can be viewed as an filtering ope
tion with an FIR filter which coefficients are all one, the FIR filter can be replaced with
IIR filter which has only two coefficients not zero: one delay takes a cumulative sum of
incoming signal and the other delay subtracts the values at the end of the window. T
makes the computation of  very efficient.

The sinusoidal likeness measure assumes that there is only one sinusoid inside the 
width W. In most cases, we have to use a small bandwidth to handle dense groups o
monic partials. On the other hand, noisy conditions require that the threshold is sma
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Figure 4: Upper plot: the amplitude spectrum of a bowed violin. The length of the sam
is 45 ms. Lower plot: sinusoidal likeness measure for the same sample. The violin h
also noise components at high frequencies and therefore the sinusoidal likeness me
is not unity at high frequencies.
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enough to detect sinusoids with low amplitudes. It follows that in frequency areas wh
there is no sinusoids, small bandwidth and threshold cause peaks caused by noise o
lobes of other sinusoids to be interpreted as sinusoids. Therefore, inside one small f
we are not able to judge reliably if there exists a sinusoid at certain frequency, and in
mation from adjacent frames is needed for a reliable sinusoidal analysis.

From a psychoacoustic point of view, it can be stated that representing peaks cause
noise with sinusoids is not always an error. In some cases human auditory system tr
assign pitch for signal components that are not periodic, for example for delayed bro
band noise or for repeated noise pulses [Meddis&Hewitt 1991]. However, our goal is
represent only periodic components with sinusoids. In practise the cross-correlation
method was found to perform robustly for dynamic parameters, especially time-varyi
frequencies.

3.2 F-test

A statistical test developed by Thomson [1982] has been originally developed in geo
ics, but it has been successfully used in audio in the detection of sinusoids for exam
[Ali 1996] and [Levine 1998]. The method employs a set of orthogonal windows calle
discrete prolate spheroidal sequences. To treat bias and smoothing problems, an es
of the spectrum is calculated as a weighted average of several data windows.

Like the cross-correlation method, the F-test gives a value for each frequency compo
which tells how probable it is that there is a sinusoid at this frequency. In the case of t
test, this value is called the f-value. We can set a fixed threshold so that frequency c
cients which f-value are local maxima and larger than the threshold are interpreted a
sinusoid at this frequency. Like the cross-correlation method, F-test also measures the
of harmonic components to continuous, non-harmonic part of spectrum. The spectru
the residual is assumed to be smooth.

The calculation of the discrete prolate spheroidal sequences is explained in [Thomso
1982; Verma 1999]. These sequences are used as windowing functions, and in a fin
quency interval, the energy of these windows is most concentrated [Verma 1999]. Th
input signal is windowed with each sequence and several estimations of the spectru
obtained by taking the FFT of each windowed signal. As the sequences are orthogo
they do not correlate with each other. The harmonic mean of all the estimations is use
more reliable estimation of the spectrum.

The variance of the estimated mean depends on the local continuous part of the spe
and gives an estimate of the background spectrum. By comparing the power at a part
frequency to the continuous part of the spectrum we get f-value.

Because the F-test requires several FFTs, it is computationally more expensive than
cross-correlation method. In ideal conditions, it is very reliable, and is able to detect 
soids without picking noise peaks. In non-ideal conditions, such as closely spaced s
14
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ids or rapidly changing amplitudes or frequencies, it does not perform as well as the c
correlation method. If the frequencies of sinusoids are close to each other, they may
cel” each other out. If the window length is small compared to the wavelength of the 
soid, the performance of the F-test reduces dramatically.

The f-value of the violin sample, the amplitude spectrum of which is in Figure 4, is ill
trated in Figure 5. The bowed violin has some vibrato, or, frequency modulation, whi
affects more f-value than sinusoidal likeness measure. Usually the differences betwe
test and sinusoidal likeness measure are not as clear as in Figures 4 and 5.

3.3 Quadratic interpolation

According to the Heisenberg Uncertainty principle, the frequency resolution is limited
finite time frame. However, if a sinusoid is the only significant component in its vicini
zero-padding can be used to get a better resolution of the DFT. This makes the spec
shape and place of the sinusoid more clear and enables more accurate parameter e
tion.

Each DFT coefficient represents a frequency interval of , where  is the samp
frequency andN is the length of the DFT. One semitone, i.e, interval between adjacen
notes in the Western musical scale can be less than one Hz at bass frequencies. Fo
quality sampling frequencies, a DFT length of tens or even hundreds of thousands o
ples would be required. This is not practical, so a different method is needed to obta
accurate frequencies of sinusoids. Originally in [Smith&Serra 1987], a method is
described which applies a quadratic function to obtain the accurate frequencies of the
soidal components.
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Figure 5: F-value of the violin signal, which amplitude specrum is in the upper plot o
Figure 4. At low frequencies the F-value is very large and was therefore left out of th
figure.
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A local maximum of , the magnitude of the spectrum of a windowed signal, in
cates the presence of a sinusoid at a nearby frequency. The shape of a windowed s
is , the sampled shape of the DFT of the window function translated at fre
quency . If the window functionh(t) is symmetric, a quadratic function centered at
gives a good approximation of the of  around  [Rodet 1997]. We can es
mate the parameters of the function using only three points of the DFT spectrum. Fo
window functions used, the logarithm ofH gave better results than using justH. This
assumes thatH is gaussian near zero, so the logarithm ofH is quadratic. If ,

 and  are adjacent values of the magnitude of the spectrum,
being a local maximum, the quadratic function is:

, . (7)

The values fora, b andc are obtained by find a quadratic function that goes through th
points, and setting the derivative of the quadratic function equal to zero we get estima
for the amplitude and frequency:

(8)

. (9)

Using the obtained frequencies, the phase spectrum can be interpolated for example
the weighted average of two DFT coefficients that are nearest to the exact frequencies
quadratic interpolation of a single sinusoid is illustrated in Figure 6
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Figure 6: The quadratic interpolation of a single 300 Hz sinusoid. The stems with ci
cles are coefficients of the original amplitude spectrum. Using the three largest coe
cients and quadratic interpolation we obtain peak which is marked with a star. The
dashed line is the amplitude spectrum calculated with zero-padded FFT.
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Even though the method is based on the ideal sinusoid assumption, or, no noise or o
sinusoids present, it is usually a good way of interpolating frequencies even in polyph
signals. It should be noticed that the quadratic interpolation assumes that the center
tude  is larger than adjacent amplitudes  and . In the cas
that a more complex peak detection algorithm than just choosing the local maxima o
amplitude spectrum is used, it is possible that the center amplitude is not the largest. I
case, the quadratic interpolation cannot be used.

3.4 Signal derivative interpolation

Desainte-Catherine and Marchand have shown that the DFTs of the signal and its d
tives can be utilized to obtain the exact frequencies and amplitudes of the spectral c
nents [Desainte-Catherine&Marchand 2000]. Taking the derivative of a signal does n
affect the frequencies of the sinusoids, and ideally the change of amplitudes is linea
dependent on the frequencies. Ifv(t) is the derivative ofx(t) which Fourier transform is

, the Fourier transform  ofv(t) is

. (10)

Coefficient  is only a theoretical gain which does not apply in the case of discrete
processing. The derivative of the signal has to approximated by the first-order differe
The first-order difference can be viewed as a filtering operation with a first-order linea
ter. The error between the ideal and approximated spectrum of the derivative of the 
can be corrected by a scaling factor F [Desainte-Catherine&Marchand 2000]:

. (11)

When DFT1, the DFT of the derivative of the signal has been corrected by the scaling
tor F, the frequency  of a sinusoid can be approximated by dividing the DFT1 at fre-
quency  by DFT0, the original DFT of the signal:

. (12)

Naturally, both signals are windowed before taking the DFT.

In our preliminary simulations this method did not give quite as accurate estimates o
quencies as the quadratic interpolation, even though a remarkable improvement was
achieved compared to the estimation of parameter without any interpolation. Especia
noisy conditions the quadratic interpolation performed better. As the quadratic interp
tion is very commonly used, our emphasis was on it. However, a more detailed test w
generated test a signal showed (see Chapter 6.2) that the performance of the deriva
interpolation is almost equal to the quadratic interpolation.
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3.5 Iterative least-square estimation

Even with the most advanced methods, it is difficult to estimate the sinusoidal param
of a complex sound by analyzing the signal only once in each time frame. One poss
is to estimate the parameters with a simple estimation method, and then iteratively imp
the parameter set [Depalle & Helie 1997; Tolonen 1999].

If we assume that the amplitudesak and frequencies  of sinusoids remain constant
inside one frame, the sinusoidal model for one frame is:

, (13)

whereK is the number of the sinusoids and  is the initial phase of thekth sinusoid. An
estimation of the STFT of the model  is given by [Depalle&Helie 1997]:

, (14)

where  is the Fourier transform of the analysis window. Our goal is to find para
tersak,  and  which minimize the least-square error  between the true ST
and the estimated STFT. Both STFTs are measured atN equally spaced frequencies

for i=0,...N-1. The expression 14 for is nonlinear in terms of , and even
the dependence between and was linearized, the expression for contains pro
of unknown parameters. AlsoK, the number of sinusoids is unknown. Therefore, there
no analytical solution to the least-square problem.

Starting from the estimates ofak,  and  which are obtained using some other estim
tion method, we can iteratively improve accuracy of the estimates. First, the amplitud
and phases are solved, assuming that the frequencies are correct. Then, the freque
mates are improved assuming that the amplitudes and phases are correct. This proce
repeated several times, resulting in better estimates for the parameters at each itera
During the iteration process, the number of sinusoids can be altered, so we can remov
add sinusoids when necessary.

Amplitude and phase estimation

Assuming that the number of sinusoids and the frequency of each are known, the spe
estimate of Equation 14 can be rewritten as:

, (15)

where parameterspk are
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and the known 2K expressions related to Fourier transform of the window function

. (17)

If we define a matrix of dimensionsNx2K where , and vector of the
unknown parameters , the spectrum estimate can be written as

. (18)

Least-square solution for this is [Kay 1993]

, (19)

from which we get amplitudes by

(20)

and phases by

. (21)

For known frequencies, this method gives good results, particularly in a situation wh
the frequencies of sinusoids are close the each other. In this case, other methods us
perform poorly. However, if the frequencies are too close to each other, or, inside the
Fi interval,  becomes singular, the solution does not exist.

Frequency estimation

If we know the amplitudes and phases of the sinusoids, and have rough approximatio
the frequencies, the dependence of the model on the frequencies can be linearized.
goal is to estimate , the distance between approximations of frequencie
and correct frequencies . For each frequency measurement point , we linearize
frequency dependence using a first-order limited expansion of . The Fourier Tr
form of the analysis window can now be written as:

, (22)
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01].
where the derivative  can be estimated at discrete frequency points either by u
the first order difference of  or by taking a DFT of the producth(t)t. If we define
matrix  by

, (23)

we can rewrite the spectrum estimate as

, (24)

where is the STFT model evaluated with frequencies . The least squares solutio
the frequencies is:

. (25)

Because a first-order expansion of the  is used, this estimation method is very 
tive to the shape of the analysis windowh(t). In practise, this means that the Fourier tran
form of the analysis window should not have sidelobes. In [Depalle&Helie 1997], a
method is presented to design windows with a small bandwidth and a small effective
tion.

In an ideal case, or for signals that consist of synthesized sinusoids, the iterative ana
can find good estimates of the parameters even if the initial values are far from correc
ues. However, in more problematic cases, such as closely spaced sinusoids or comp
polyphonic signals, the algorithm performed poorly. If the frequency estimates are clo
the correct ones, the method gives good estimates for the amplitudes and phases, bu
frequency estimates are not correct, the algorithm cannot find better estimates for com
signals. Also, the algorithm is computationally very expensive for a large number of s
soids. This problem can be somehow avoided by splitting the spectrum into separate
quency bands and by solving the parameters separately at each band.

The LSQ algorithm was found most useful for amplitudes and phases only, using a n
iterative implementation. When the frequencies are obtained using a peak detection
rithm, the amplitudes and phases can be solved using the LSQ algorithm in a one pa
Even in case of closely spaced sinusoids, the algorithm outputs the correct paramete
vided that the frequencies are correct.

3.6 Iterative analysis of the residual

Another iterative approach is to perform iterative analysis of the residual. Combined w
parameter fusion algorithm, this parameter estimation procedure has two advantage
decreases the number of sinusoidal components, and gives more accurate paramet
single sinusoids. Since the iterative analysis requires several passes of traditional an
it is computationally more expensive. This work is originally presented in [Virtanen 20
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The iterative analysis proceeds as follows. First, we detect the sinusoids from the or
signal with some simple detection method. Second, we synthesize the sines and the
tract them from the original signal in time domain to obtain the residual. Then we de
sinusoids from the remaining residual, and synthesize and subtract them again. This c
repeated a fixed amount of iterations, or until the desired amount of sinusoids is obta
or no significant harmonic components are left in the residual. While this algorithm p
duces perceptually good results, the number of sinusoids usually becomes large. Th
parameters obtained at each single iteration are usually not exactly correct, which re
in estimation errors in the residual. The estimation errors of sinusoidal components a
also sinusoids the frequencies of which are close to the original, and amplitudes usu
smaller than the original amplitude. At subsequent iterations we detect these estima
errors, thus each harmonic component in the original signal is finally represented wi
more than one sinusoid. While this not desirable, our algorithm combines the sinuso
after each iteration as illustrated in Figure 7.

The parameter fusion is based on the assumption that two closely spaced sinusoids
arisen from the same source, thus we can combine the sinusoids in such a way that
resulting sinusoid represents the underlying harmonic component better than either 
original ones alone. The parameters of the new sinusoid are calculated so that the n
sinusoid represents the sum of the original sinusoids. For simplicity, let us assume th
operate around timet=0. Let the amplitudes, frequencies and phases of the two origin
sinusoids bea1, a2, , ,  and . The sum of the sinusoids at timet is

. (26)

In Appendix A it is shown thatx(t), the sum of the sinusoids, can be represented with a
gle sinusoid, the amplitude and frequency of which are time-varying:

sinusoidal
analysis

sinusoidal
synthesis+ parameter

fusion

parametric data

waveform data

signal residual

synthesized sines

-

Figure 7: Block diagram of iterative parameter estimation algorithm.

iterate

ω1 ω2 ϕ1 ϕ2

x t( ) a= 1 ω1t ϕ1+( )sin a+ 2 ω2t ϕ2+( )sin
21
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where the new amplitude , frequency  and initial phase  are

, (28)

, (29)

. (30)

Neither the time-varying frequency of the Equation 27 nor the time-varying phase als
derived in Appendix A can be directly utilized in our sinusoidal model, since our mod
assumes that amplitudes and frequencies are constant and phases linear inside one
However, in certain conditions we can approximate time varying amplitude and freque
with constants. The conditions are:

1. Timet is near zero. This means that the approximated values are valid only in a s
time frame. The parameters of the sinusoidal model are updated from frame to fra
so this condition is fulfilled. The shorter the time, the better to approximation is.

2. The frequencies are close the other. When conditions 1 and 2 hold, term

Equations 28 is 29 becomes negligible.

3. The amplitude envelope of the sum of the two sinusoids does not have a local maxi
or minimum inside the time frame. This depends on the phases and frequencies o
original sinusoids. As it is later shown, this condition is fulfilled if

, whereS is the length of the frame

in samples andFs is the sampling frequency.

4. The ratio of the amplitudes is large. This happens in situations where the first sinu
is obtained on the first analysis pass and the second one is the error remaining fro

first one. If this condition is fulfilled, the term  in Equation 29 is near

unity.

x t( ) a3 t( )
ω2 ω1+( )t ϕ2 ϕ1+ +

2
--------------------------------------------------- ω3 u( ) u ϕ3 0( )+d

0

t

∫+
 
 
 

sin=

a3 t( ) ω3 t( ) ϕ3 0( )

a3 t( ) a1
2 a2

2 2a1a2cos ω2 ω1–( )t ϕ2 ϕ1–+( )+ +=

ω3 t( )
1 tan2+

ω2 ω1–( )t ϕ2 ϕ1–+

2
-------------------------------------------------- 

 

1 tan2
ω2 ω1–( )t ϕ2 ϕ1–+

2
-------------------------------------------------- 

  a2 a1–( )
a2 a1+( )

----------------------
2

+

-----------------------------------------------------------------------------------------------------------
ω2 ω1–

2
------------------- 

  a2 a1–( )
a2 a1+( )

----------------------=

ϕ3 0( )

ϕ2 ϕ1–

2
------------------ 

  a2 a1–( )
a2 a1+( )

----------------------tan 
  π+atan

ϕ2 ϕ1–

2
------------------ 

  a2 a1–( )
a2 a1+( )

----------------------tan 
 atan









=

π
2
---

ϕ2 ϕ1–

2
------------------ mod 2π 

  3π
2

------< <

otherwise

ω2 ω1–( )t

0 ω2 ω1–( )S Fs⁄ ϕ2 ϕ1– π 2⁄+( ) mod π π≤+≤

a2 a1–( )
a2 a1+( )

----------------------
2
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If these conditions are fulfilled, the sinusoid with time-varying parameters can be app
mated with a sinusoid with constant parameters:

, (31)

where constantsan, , and are the parameters of the new sinusoid which replaces
old ones. The approximations are:

, (32)

, (33)

. (34)

An example of the approximation is illustrated in Figure 8. It can be seen clearly that
zero the approximation is better.

an ωnt ϕn+( )sin=

ωn ϕn

an a1
2 a2

2 2a1a2cos ϕ1 ϕ2–( )+ +=

ωn

ω1a1 ω2a2+

a1 a2+
-------------------------------=

ϕn

ϕ2 ϕ1–

2
---------------- 

  a2 a1–( )
a2 a1+( )

----------------------tan 
  ϕ2 ϕ1+

2
-------------- π+ +atan

ϕ2 ϕ1–

2
------------------ 

  a2 a1–( )
a2 a1+( )

----------------------tan 
  ϕ2 ϕ1+

2
----------------+atan









=

π
2
---

ϕ2 ϕ1–

2
------------------ mod 2π 

  3π
2

------< <

otherwise
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Figure 8: An example of the fusion of two sinusoids. In the upper plot the dashed line
sum of two sinusoids, the frequencies of which are 500 and 520 Hz and the amplitud
and 0.3. The solid line is the results of the approximation. In the lower plot is illustrat
the error between the two original sinusoids and the approximated sinusoid.
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In parameter fusion, we detect sinusoid pairs that fulfill all the conditions. The parame
of the new sinusoid are estimated, and then the old sinusoids are replaced with the 
one. The parameters for the new sinusoid are calculated for each frame.

In synthesis, the parameters of the sinusoids are interpolated from frame to frame. T
fore, it is difficult to measure the validity of the approximation in a single time frame. T
amplitudes are interpolated linearly, and if there is no local maxima or minima between
frames, the interpolation should work well.

When the formulas for the exact amplitude (Equation 28) and the approximated ampl
(Equation 32) are considered, we can roughly assume that the fusion of two sinusoid
valid if the sign of the derivative of the amplitude envelope in Equation 28 does not
change. This is illustrated in Figure 9. The derivative of cosine is minus sine, which
changes its sign at ,n=0,1,2... . Therefore, the validity of the approximation can be
formulated by:

, (35)

which is achieved if the argument  is inside the same interval
 at the beginning and the end of the frame,n being any integer.

By adding to the interval and to argument values at points and ,
argument values at the beginning and the end of the frame become

 and , the interval becomes

Now we can solve value forn:
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Figure 9: Linear approximating of the  amplitude envelope of two combined sinusoid
The solid line is the original amplitude envelope and the dashed line is linear appro
mation. In left plot the sign of the slope of the amplitude envelope does not change
the approximation is valid. In right plot the sign changes so the approximation is no
valid.

n± π

ω2 ω1–( )t ϕ2 ϕ1–+( )sin[ ]sgn ϕ2 ϕ1–( )sin[ ]sgn= t 0 t
S
Fs
-----≤ ≤ 

 ∀

ω2 ω1–( )t ϕ2 ϕ1–+
π 2⁄– nπ+ π 2⁄ nπ+,[ ]

π 2⁄ t 0= t S Fs⁄=

ω2 ω1–( )S Fs⁄ ϕ2 ϕ1– π 2⁄+ + ϕ2 ϕ1– π 2⁄+ nπ π nπ+,[ ]
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which gives the relation

(36)

from which we get by subtracting :

. (37)

This is simplified to:

. (38)

For a large set of sinusoids, we can firstly filter out sinusoid pairs using a constant limi
the difference between the frequencies:

. (39)

This equation gives a threshold  for the difference between the frequencies, w
can be used to filter out most of the sinusoid pairs using only the frequency informat
Then, we can examine all the remaining pairs if they fulfill the rest conditions.

Since there are not reliable methods to judge numerically the accuracy of the sinuso
analysis for unknown signal contents, the iterative algorithm was compared to other a
sis methods using a generated test signal. The test results are presented in the Cha

3.7 Multiresolution approach

Since the frequency resolution of a short-time spectrum is linearly dependent on the a
sis window length, a long window is needed to determine accurately the frequencies o
sinusoids. Also, a long analysis window is needed to detect low-frequency sinusoids
because the window length has to be 2-4 times the wavelength of the sinusoid, som
depending on the analysis method. A natural drawback of using a long window is a p
time resolution. Real sounds often exhibit rapid changes in their amplitudes and freq
cies, so the assumption that sinusoids are stable inside one window does not hold. O
ously, a trade-off between the time and frequency resolution has to be made.

n
ϕ2 ϕ1–

π
------------------ 1

2
---+=

nπ ω2 ω1–( ) S
Fs
----- ϕ2 ϕ1–

π
2
--- π nπ+≤+ +≤

nπ

0 ω2 ω1–( ) S
Fs
----- ϕ2 ϕ1– π

2
--- π

ϕ2 ϕ1–

π
------------------ 1

2
---+– π≤+ +≤

0 ω2 ω1–( ) S
Fs
----- ϕ2 ϕ1– π

2
---+ 

  mod π π≤+≤

ω2 ω1–( ) S
Fs
----- π ω2 ω1–( )

πFs

S
---------≤⇔≤

πFs S⁄
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At low frequencies, we definitely need a long window, because the wavelengths of th
sinusoids are long. At high frequencies, the wavelengths are short and components u
have rapid changes, thus a short window is needed there. At middle frequencies the
tion is something between these two. Also, the frequencies that have been chosen to
up the scale of Western music are geometrically spaced. Considering all these facts
together, a transform like constant-Q transform (CQT), would be a perfect choice. Th
quency coefficients of CQT are geometrically spaced, and window length is inversely
portional to the frequency [Brown 1991]. The ratio between center frequency and
frequency resolution is constant, thus the name constant-Q transform. The practical i
mentation of CQT just combines several coefficients of FFT [Brown&Puckette 1992]
compared to the use of several FFTs, we actually do not gain anything,

The bounded-Q transform (BQT) approximates a logarithmic frequency scale by usi
different resolution and window for each octave so that the number of frequency coe
cients is constant in each octave. This approach was used e.g. in the filterbank implem
tion of Levine [Levine 1998]. He used the sinusoidal analysis only for frequencies fro
to 5 kHz and three octaves the frequency ranges of which were 0-1250, 1250-2500 
2500-5000 Hz and window lengths 46, 23 and 11.5 ms, respectively.

In our system, sinusoidal analysis is used up to 10 kHz. The system was made flexib
such a way that the analysis bands do not need to be octaves, or they can be positio
arbitrary positions. The lowest fundamental frequencies in our test musical samples 
basses at about 30 Hz. A 46 ms analysis window is not long enough to detect reliab
low frequencies. Since basses have most of their energy at low frequencies, we foun
it is enough to use a longer, 80 ms analysis window for frequencies from 0 to 200 Hz. A
ms window was used from 200 Hz up to 5 kHz. Above 5 kHz the characteristics of sou
are very different from the lower frequencies. The 46 ms analysis window was used 
for these frequencies, but the parameters of the analysis algorithms were slightly diffe
To make further analysis easier, all the windows at different frequency bands were p
tioned at the same time. The frame rate was constant and therefore longer windows a
frequencies overlapped more than the shorter windows at high frequencies.

In harmonic sounds there is one property which disagrees against the use of the log
mic frequency scale: the harmonic partials are spaced linearly. A sound with fundam
frequency 50 Hz has a period of 20 ms. It’s 10th harmonic partial has frequency 500 Hz
and a wavelength of 2 ms. However, the distance between adjacent harmonics is alwa
Hz. Since the window length needed to discriminate two sinusoids does not only dep
on the frequencies of the sinusoids, but the on difference of the frequencies too, we n
long analysis window also for higher harmonic partials of a low sound. In the case of p
phonic signals, the number of harmonic partials can be large at middle frequencies, 
long window is needed even though the wavelengths of the sinusoids are small.

Even though linear spacing of harmonic components disagrees against the use of m
olution analysis, we found that it is still advantageous to use different window length
different frequency bands. Because the properties of sounds are not the same at dif
26
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frequency bands, the detection algorithms can be optimized individually for each ban
The flexibility of our system made it possible to try different sinusoidal detection algo
rithms for different frequency bands, mainly F-test and cross-correlation method with
ferent parameters.
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4. Sinusoidal Continuation and Synthesis
As illustrated in Figure 2 in the Chapter 3, the last step in the estimation of the sinusoi
peak continuation analysis. In this chapter, the theory of two peak continuation algorit
and sinusoidal synthesis is presented. The performance of the algorithms is compar
Chapter 6, where experimental results are presented.

Once the meaningful sinusoidal peaks and their parameters have been estimated, the
are tracked together into interframe trajectories. At each frame, a peak continuation 
rithm tries to connect the sinusoidal peak into the already existing trajectories at the 
ous frame, resulting into a smooth curve of frequencies and amplitudes. The continu
was tested with two algorithms: the traditional one which uses only the parameters o
sinusoids to obtain smooth trajectories and one original method which synthesizes th
sible continuations inside certain deviation limits and compares them to the original sig
There is also other systems which use more advanced methods, for example the Hid
Markov Models [Depalle et. al 1993] to track the trajectories, but they were not teste

4.1 Continuation based on the derivatives

The smoothness is obtained by using the derivatives of frequencies and amplitudes:
each pair of peaks a smoothness coefficient is calculated as a weighted sum of the 
second, etc. derivatives of the parameters. The algorithm assumes that the paramet
slowly-varying and that the trajectories do not cross each other.

Since human pitch perception is close to logarithmic over most the hearing range, and
fundamental frequencies produced by most musical instruments are logarithmically
spaced, we take logarithm of the frequencies. Because peak continuation is done on
frame level, the differences between adjacent values are used as estimates of the d
tives. As a subtraction of logarithms is a logarithm of a division, the factor describing
smoothness of the frequencies becomes the logarithm of the ratio of the frequencies

.

The perception of amplitude differences is also more logarithmic and the same proc
was used for amplitudes.

ωn 1– i( )( ) ωn j( )( )log–log
ωn 1– i( )

ωn j( )
-------------------- 

 log=
28
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Since frequencies are derivatives of phases, the smoothness of phases is dependen
frequencies too. The smoothness of phases is estimated using the interpolation coeffi

 and  used in sinusoidal synthesis (Chapter 4.4). An absolute value is taken of al
factors, because negative deviation is as unwanted as positive deviation. If we use on
first derivatives, the smoothness coefficient betweeni and j at framesn-1 andn is

, (40)

where andan(i) are the frequency and amplitude ofith peak at framen, and
are the phase interpolation coefficients between the peaks andwa, wf, and

are the weights. It is advantageous to set maximum limits for the frequency and ampl
deviation so that the number of possible trajectory-peak pairs is limited.

In general, evaluating all the possible combinations between peaks in adjacent fram
not possible because the number of combinations is too large even though a maxim
limit was set for the deviation of the parameters. We have used a greedy algorithm, w
evaluates the smoothness for all single trajectory-peak pairs, and then chooses the c
ation that is the smoothest, i.e. which has the smallestsn(i,j). Then, peaksi andj that had
the smoothest continuation are removed, and algorithm is repeated for remaining pe
For some generated test signals this algorithm may produce erroneous results, but fo
ral signals it seems to work quite well.

If a suitable continuation for some peak cannot be found, that means that the sound
produced that frequency component has faded out and the trajectory dies. If a peak 
rent frame does not represent a continuation to any of the already existing trajectories
means a new component onsets and a new trajectory is born, as illustrated in Figure

α β

sn i j,( ) wf

ωn 1– i( )
ωn j( )

-------------------- 
 log wa

an 1– i( )
an j( )

------------------- 
 log wα αn i j,( ) wβ βn i j,( )+ + +=

ωn i( ) αn i j,( )
βn i j,( ) wα wβ
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Figure 10: Continuation of sinusoidal trajectories. At time=2, no suitable continuation
found for the trajectory around 2000 Hz, so it dies. At time=3, a new trajectory is bo
around 2500 Hz.
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After calculating the peak continuations, we have a set of sinusoidal trajectories with
varying amplitudes, frequencies, and phases. Each trajectory has an onset and offse
which define the time range in which the trajectory exists. To obtain a smooth transitio
zero level, an extra peak is added into the beginning and the end of a trajectory. These
peaks have the same frequencies as the next and previous peaks of the trajectory, b
amplitudes are zero. This ensures that onset or offset does not produce modeling ar

4.2 Continuation based on synthesis

The continuation based only on amplitude and frequency deviation and phase interpo
is usually not very robust method. This is because of the following reasons: To detec
amplitude harmonic components in noise, the peak detection threshold has to be se
quite low value. Naturally, this means that we also get many peaks that are caused b
noise. Even though we set strict limits for amplitude and frequency deviation, some p
caused by noise will be so close to each other, that they are connected into a sinusoid
jectory.

Our solution to this problem is to synthesize all the possible continuations inside devia
limits, and to compare the result to the original signal. Sinusoidal synthesis is describ
Chapter 4.4. If a synthesized sinusoid captures enough of the energy of the original s
we assume that the sinusoid corresponds to a component that truly exists in the orig
signal. We use a greedy algorithm that always picks the continuation that minimizes 
remaining energy. Then, the synthesized sinusoid is subtracted from the original sig
and the residual is compared to the synthesized continuation possibilities that are left
repeated until none of the remaining synthesized continuations reduces the energy o
residual enough. The whole procedure is done in time domain.

This algorithm turned out to be significantly more robust than the continuation based
only deviation of amplitudes and phases. Of course, some continuated noise peaks 
appear, because the continuations happen to match well with the original signal. How
the number of ‘noisy’ continuations is much smaller than with the simpler algorithm. 
only drawback of continuation-by-synthesis is its computational load, which is huge 
pared to an algorithm that uses only the deviations of the parameters. Synthesis use
order polynomial to interpolate the phases and linear interpolation for amplitudes, so
thesizing all the time-domain sinusoids is computationally expensive. The DFT of on
synthesized sinusoid could be approximated for example using a series developmen
doing the whole process in frequency domain would not help very much because an
we have to calculate the remaining energy of each residual, which is computationally
expensive for a large number of sinusoids in both time and frequency domains.

4.3 Trajectory filtering

We know from everyday experience, that the human auditory system has the proper
a weak sound can be rendered inaudible in the presence of another loud sound. This
is called masking [Moore 1997]: a sound is masked by another, masking sound. In o
30
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words, masking can be defined as a process which raises the threshold of hearing: i
sound falls below the threshold, it is not audible. Masking occurs in both frequency a
time domains, and they are called simultaneous and non-simultaneous masking, res
tively. In the frequency-domain masking, the closer the simultaneous sounds are to e
other in frequency, the stronger the masking effect. In time-domain, a loud sound can
a quieter sound which occurs after, or even before the masking sound.

The masking effect is utilized in audio coding by removing the components that wou
masked. This could be used in the sinusoidal modeling, too. In addition to that, the t
old of hearing can be used to judge which sinusoidal peaks or trajectories are cause
noise. As previously mentioned, not all the sinusoidal peaks are resulted from stable
soids. Since the number of sinusoidal peaks in polyphonic signals is very large, it is p
ble that some of the false peaks match well with the original signal and therefore bec
continuated into a trajectory. These false trajectories are usually very short, only a co
of frames long. If a sinusoid is short, it is possible that human auditory system is not
enough to determine the pitch of the sinusoid, especially if the amplitude of the sinuso
small and other signal components are present. Therefore, there is no need to mode
sinusoid with the sinusoidal model, but it can be left to the residual to be modeled with
stochastic model. If a sinusoidal peak is clearly below the threshold of hearing, or mas
threshold, it is probable that the component is not a result of sinusoid.

Scott Levine used a method which uses the average distance to the masking thresh
length of each sinusoid to determine if the sinusoid is kept or filtered out [Levine 199
The average signal-to-mask (SMR) ratio is calculated by comparing the amplitude o
sinusoid to the masking threshold which has computed in each frame. The sinusoidi is
removed, if , where SMR(i) is the average signal-to-mask ratio
of the sinusoidi in dB and len(i) is the length of the sinusoid in milliseconds. This implie
that a short sinusoid requires a large SMR not to be filtered. The longer the sinusoid is
lower the SMR can be and the sinusoid is still retained.

Our system computes the masking threshold in a way similar to that in MPEG mode
[Colomes et al. 1995]. For each sinusoid, an excitation pattern is calculated in the fre
quency domain, which has a resolution of 1/25 Bark, which makes about 620 freque
bands between 0 and 22.5 kHz. Thus, the energy of a sinusoid is distributed along 62
quency bands using a spreading function, which is triangular in Bark domain, but no
symmetric in frequency domain. The excitation patterns of all sinusoids are combine
using the exponential law

,

wheree(i) is excitation ofith component and  is between 1 and 2. We used value 1.5
for . Our system does not utilize non-simultaneous masking.

SMR i( ) 6 96 len i( )⋅–<

e e i( )α

i
∑ 

  1 α⁄
=

α
α
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4.4 Synthesis

Sinusoidal trajectories contain all the information needed for the reconstruction of the
monic parts of input signals: amplitudes, frequencies and phases of each trajectory a
frame. To avoid discontinuities at frame boundaries, the amplitudes, frequencies and
phases are interpolated from frame to frame. Amplitudes are linearly interpolated, so
instantaneous amplitude of trajectorypi at framen is

(41)

whereS is the frame length in samples.

Phase interpolation is more complicated, because instantaneous frequencies are deri
of phases and four parameters (frequencies and phases at two adjacent frames) ha
taken into account. Smooth phase as a function of time is obtained by using a cubic
nomial interpolation function [McAulay&Quatieri 1986]:

, (42)

where is the interpolated instantaneous phase at timet, and , , and are interpola-
tion coefficients. Setting the instantaneous phase and frequency at pointst=0 andt=Sequal
to the known frequencies and phases , ,  and , we obtain solution to
cubic polynomial function:

,

, and

, (43)

for any integerM.

Maximally smooth phase, or phase which second derivative is minimized, is obtained
using

. (44)

When instantaneous amplitudes and phases have been calculated for all the sinuso
jectories at each time instant in a frame, the reconstructed sines are obtained by sum
up all the trajectories:

ai n, m( ) ai n, ai n 1+, ai n,–( )m
S
----+= m 0 1 … S 1–, , ,=

θ t( ) ζ γt αt2 βt3+ + +=

θ t( ) ζ γ β

ωn ωn 1+ θn θn 1+

ζ θn=

γ ωn=

α M( )
β M( )

3
S2
----- 1

S
---–

2
S3
-----–

1
S2
-----

θn 1+ θn– ωnS– 2πM+

θn 1+ θn

=

M round
1

2π
------ θn ωnS θn 1+–+( ) ωn 1+ ωn–( )S

2
---+ 

 =
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The interpolation of the parameters works well if the assumptions of the model are v
the harmonic components are slowly-varying and therefore almost stable in a single fr
Even though frequencies vary a little, quadratic interpolation seems to work very we
the case of sharp attacks, linear interpolation of amplitude values does not fit the ac
amplitudes of the harmonic components. This is because a relatively long window is
needed to distinguish closely spaced frequencies and because only one value represe
behavior of amplitude of sinusoids inside the window, we can not get exact amplitud
There has been some attempt to extract more information of the parameter variation i
a single window [Rodet 1997], such as amplitude and frequency modulation, but for 
musical signals the methods are not robust enough in the presence of other interferi
sounds.

Phaseless Reconstruction

Phase is not perceptually very important, so in audio coding applications we no need
transmit it. In the decoder a random initial phase can be generated for each sinusoid
jectory, and then get rest phases as an integral of the frequency:

. (46)

If the phaseless reconstruction is used, the synthesized signal is not phase aligned w
original signal any more. If we want to obtain the residual, we have to use also the p
information when removing the sinusoids from the original signal. After that, the pha
information can be discarded.

s t( ) ai t( ) θi( )cos
i 1=

N

∑=

θn 1+ θn ωn 1+ S+=
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5. Stochastic Modeling
When the synthesized sinusoids are subtracted from the original signal in time domai
get a residual signal, which ideally contains non-harmonic components only. Analysis
synthesis of the stochastic signal components is significantly easier than that of the 
ministic part. Because human monaural sound perception is not sensitive to phase, th
information needed to represent the residual is the time-varying spectral shape. In p
acoustic experiments, it has been found out that the ear is not sensitive to variations
energy inside the Bark bands for stationary, noise-like signals. Between 0 and 20 kHz
are 25 Bark bands, or critical bands, which are not linearly spaced. Assuming that th
residual is noise-like, it can be modeled by calculating the short-time energies within
Bark band.

5.1 Analysis

The stochastic analysis process is illustrated in Figure 11. The residual is segmente
frames, and STFT is taken in each frame. The power spectrum is obtained by taking
square of the magnitude of the STFT. Then, energy within each Bark band is calculate
integrating the power spectrum values over the Bark band.

We denote the residual signal byr(n) and its STFT at frequency and timet by .
The short-time power spectrum ofr(n) is . The Bark band z corresponding to
frequencyf in Hz is approximated by [Zwicker&Fastl 1999]:

residual STFT 2

complex
spectrum power

spectrum

Σ

Σ

 Σ

Σ

...

Figure 11: Block diagram of the stochastic analysis.
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The relation between the angular frequency and the frequency depends on the sam
rateFs as follows

. (48)

For each Bark band, we calculate the short-time energy inside the band. The short-t
energy for bandb is:

, (49)

where M is the length of the STFT. The short-time energies and the frame rate are a
information needed to represent the residual.

5.2 Synthesis

In stochastic synthesis, we construct a complex short-time spectrum using a piecewis
form Bark band magnitude and random phase. The synthesis procedure is illustrate
Figure 12. The magnitude of spectrum is obtained by dividing each Bark band energ
corresponding bandwidth, and taking a square root:

, (50)

where is the bandwidth of bandb, in samples of the synthesized spectrum . Th
division by  can be done also at analysis stage, so that we do not calculate the en
within each band but the mean of power spectrum coefficients within each band. To 
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Figure 12: Block diagram of the stochastic synthesis.
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nate sharp band boundaries, the spectrum can be slightly smoothed, but usually this
necessary because time-domain windowing in the overlap-add phase causes smoot
frequency domain.

The spectrum is made stochastic by creating a random vector for the phases. The ra
phase vector is uniformly distributed at the interval . The complex spectr
is the product of the magnitude spectrum and the random phases:

(51)

Stochastic signal is obtained by taking inverse STFT of each short-time complex spec
To prevent clicks at frame boundaries windowing and overlap-add is used. The wind
function is chosen to sum unity when the overlap adjacent frames is taken into acco
The Bark-band energies of the residual of a particular music sample are illustrated in
Figure 13. Drums dominate the residual signal: regular bass and snare drum hits ca
recognized from the energies.
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Figure 13: Bark band energies of the music sample “What a Friend We Have in Jes
Bass and snare drum hits are marked on the figure.
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Compared to the sinusoidal analysis and synthesis, the processing of the stochastic
significantly simpler. Basically the only parameters of the stochastic analysis that ca
adjusted are the window length and frame rate. Naturally, multiresolution analysis mak
possible to use several different windows. Some experiments were made to remove
possibly remaining harmonic components from the residual by non-linear filtering of 
magnitude spectrum, but it seems that nothing can be gained with this method.

After the stochastic part and the sinusoids have been synthesized, they can be linea
added in time domain to obtain a complete resynthesized signal. In some systems bo
signals are synthesized in the frequency domain: a random spectra is generated usi
Bark band energies, and the sinusoids are added to the spectra. With this method th
dratic interpolation of the phases is not possible.
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6. Experimental Results
In complex real-world signals, the density of sinusoidal components can be very high
there are no obvious numerical ways to measure the performance of a sinusoids+no
analysis system. During the implementation of our system, visual and auditory evalu
was used by plotting the sinusoidal peaks and their parameters and obtained trajecto
each algorithm and by listening to the obtained sinusoids and residuals. This informat
very difficult to present with numerical or even verbal means, since the difference betw
the analysis algorithms are almost inaudible. Therefore the performance of the analy
algorithms was studied by calculating some statistics from analysis and synthesis re
obtained from a set of music samples and from a generated test signal.

Since the peak detection is a crucial part of the analysis system, a large part of the tes
to compare the peak detection algorithms. Another crucial parameter of the system 
window length, which is always a compromise between the time and frequency reso
tions. The effect of the different window length was studied during the implementation
is not included in this work, but the found optimal trade-offs are used. The same win
length was used with all the algorithms.

6.1 Comparison of the peak detection algorithms with musical signals

Usually it is very difficult to estimate the performance of a peak detection algorithm i
single time frame. Therefore, a continuation algorithm was used to unite the peaks in
sinusoidal trajectories, and the performance analysis was based on the trajectory da
Most of the false peaks that the estimation algorithm produce are discarded in the co
ation phase. Since the false peaks can be removed after the peak detection, we are
interested in the undetected harmonic components, because it is much more difficul
detect the missing components in the latter phases of the sinusoidal analysis.

The performance of the two best peak detection methods, F-test and the cross-corre
method, were tested with musical signals, which were 10 to 20 second excerpts from
musical performances listed in Table 2. Three parameter sets were used with both m
ods: one set that was tuned optimal for musical signals by hand during the implement
and testing of the algorithms, second set that picked more peaks than the optimal on
third set which picked fewer peaks.
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The parameters of the sinusoids were obtained using the best methods found, quad
interpolation for the frequencies and least-squares method for the amplitudes and ph
The continuation was based on the comparison of the synthesized sines. The freque
of the sinusoidal trajectories found from “Blowing In The Wind” using the cross-corre
tion with normal parameters are illustrated in Figure 14. Once the sinusoidal trajecto
were obtained with both algorithms and all parameter sets, the sinusoids were synthe
and residuals obtained by subtracting the synthesized sines from the original signal.

Table 2: Musical test signals

song title artist style instruments

Blowing In The
Wind

Bob Dylan pop male vocals, acoustic guitar,
harmonica

Danda da Solidao Marisa Monte latin pop female vocals, bass, accordion,
percussion

Kova luu Tuomari
Nurmio

rock male vocals, distorted electric
guitar

The Four Seasons /
Spring

Antonio
Vivaldi

classical symphony orchestra, mainly
strings

What a Fried We
Have in Jesus

Brentwood
Jazz Quartet

jazz piano, electric bass, drums,
electric guitar, keyboards
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Figure 14: The frequencies of the sinusoids obtained from an excerpt of ‘Blowind In T
Wind’. Above 5 kHz there is not many sinusoids so that part was left out of the plot.
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signal to residual -ratios (SRR) were calculated as ratio of the energies of the signal
SRRs measure how well the sines have been removed from the signal, but also ove
characteristics of the signal: if there is a lot of non-harmonic components like drums in
signal, the SRR is low even though the sinusoidal analysis was perfect. In general, t
more sinusoids has been detected, the better the SRR, no matter if the sinusoids are
or erroneously modeled noise. Therefore, the SRRs alone do not measure the quality
sinusoidal analysis.

The quality of the analysis was also examined by comparing the original and synthe
residuals. The residuals were synthesized by calculating the short-time energies wit
each Bark band and then performing the stochastic synthesis as usual. If all sinusoids
been removed from a residual, its amplitude spectrum should be smooth, and therefo
amplitude spectra of the original and synthesized residual should be close to each o
The mean square error between the short-time amplitude spectra of the original and
thesized residual is calculated within each Bark band in each frame. The error was a
aged over time and all 25 Bark bands. The spectrum of the synthesized residual is sm
so the resulting error measures the irregularity of the amplitude spectra. Therefore, t
error between the synthesized and original residual is an estimate of the amount of h
monic components left in the residual, trying to discard all noise-like components.
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Figure 15: The performance of sinusoidal analysis with musical signals. In the left p
each signal has it’s own symbol and different values are obtained with different algo
rithms and parameters. In the right plot, different algorithms are marked with differe
symbols.
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The obtained spectral irregularities and SRRs are illustrated in Figure 15. As can be
the differences between different music samples are much larger than the difference
between the analysis algorithms and different parameters sets. We tried to compare
ent algorithms and parameters by removing the mean values obtained for each signa
urally, parameter sets that produced extracted the biggest number of sinusoids resu
slightly better SRRs and lower spectral irregularities. Still the differences between di
ent algorithms were quite small. The F-test produced more varying results than the c
correlation method.

The results were also studied by listening to the synthesized signals and residuals, a
scanning through the obtained frequency and amplitude curves of the sinusoidal traj
ries. The differences between the algorithms were almost inaudible, even though the
ing tests gave the impression that the cross-correlation method would be slightly bet
than F-test, especially in signal sections that contained fast frequency changes or vi
This was confirmed by examining the frequency curves.

6.2 Comparison of the sinusoidal analysis algorithms using a generated
test signal

As mentioned in the beginning of this section, there are no good numerical criteria in
suring the goodness of sinusoidal analysis algorithms for complex real-world signals
tried to overcome this problem by generating a test signal that comprised only sinus
The test signal introduces phenomena usually encountered in musical signals: differ
kinds of changes in amplitude and frequency, harmonic sounds composed of sinusoid
overlap with each other, colliding sinusoids etc. The signal was divided into ten secti
which are described in Table 3.

The generated test signal was analyzed in three different noise conditions: The leve
additive white noise were no noise, low -14 dB noise and loud +6 dB noise. The refer
level 0 dB is a single sinusoid with unity amplitude, and the noise levels are over the w
0-22 kHz frequency range.

For each step of the sinusoidal analysis we have 2-3 possible algorithms and the pe
mance of each step is affected by the preceding steps. For example, if the frequency
detected peak is wrong, it is impossible to obtain correct amplitude and phase. More
peaks with wrong parameters are easily continuated wrong. Even the parameter estim
and continuation of correct peaks is affected by the false peaks. Therefore, it would 
ideal to test each algorithm with all possible preceding algorithm combinations. Howe
the number of possible combinations is 48 and therefore only a limited set of algorith
was used.

Eight different sinusoidal analysis systems were compiled by selecting among the al
tives. With these sets, we can compare each algorithm to other possible algorithms of
analysis stage. The algorithm sets are described in Table 4.
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Algorithm set 2 corresponds to the standard McAulay-Quatieri algorithm. It picks pea
directly from the amplitude spectrum. This methods does not taken into account the ov
level of the spectrum, therefore the user has to define the threshold for the detection.
the threshold has to be adjusted to the test signal, algorithm sets 1 and 2 have a slig
advantage to the other peak detection algorithms, which are signal-independent. Th
parameters of the other algorithms were tuned for music signals and then fixed.

Table 3: Description of the generated test signal

Secti
on

Signal description. Amplitude is unity (0 dB) unless otherwise stated.

1 Stable sinusoids at different frequencies, one sinusoid at a time.
2 Frequency sweep of a sinusoid from 20 Hz to 10 kHz. The speed of the sweep was

stant on an exponential frequency scale.
3 Single sinusoid the amplitude of which fades exponentially from 0 dB to -40 dB.
4 Mix of sinusoids with different amplitude and frequency modulations (tremolo and

vibrato). The modulation frequencies vary from 0 to 20 Hz, amplitude deviaton from 0 t
1 and frequency deviation from 0 to 1.5 semitones (0 to 9.05% of the center frequen

5 Frequency crossing of two sinusoids at several different frequencies.
6 Stable harmonic sounds at different fundamental frequencies. All the sounds had 10

harmonic partials, with unity amplitudes.
7 A frequency sweep of a harmonic sound, ten harmonic partials.
8 Vibrato of a harmonic sound. The modulation frequency and depth of the vibrato we

time-varying like in section 4.
9 Different kind of sharp attacks of a Shephard tone. The harmonics were at frequenc

100, 200, 400,..., 3200, 6400 Hz.
10 Frequency sweep of a harmonic sound, mixed with a constant harmonic sound.

Table 4: Analysis algorithm sets.

set peak detection peak interpolation parameter estimation peak continuatio

1 fixed1) none STFT6) param. derivatives8)

2 fixed quadratic4) STFT param. derivatives

3 cross-corr.2) quadratic STFT param. derivatives

4 cross-corr. quadratic LSQ7) param. derivatives

5 cross-corr. quadratic LSQ synthesis9)

6 cross-corr. signal derivatives5) LSQ synthesis

7 F-test3) quadratic LSQ synthesis

8 The same algorithms as in set 5, with one iterative analysis pass (Chapter 3.6).
1) Local maxima above a fixed threshold

of the amplitude spectrum
2) Cross-correlation (Chapter 3.1)
3) F-test (Chapter 3.2)
4) Quadratic interpolation (Chapter 3.3)
5) Derivative interpolation (Chapter 3.4)

6) STFT coefficients directly
7) Least-squares estimation, amplitudes

and phases only (Chapter 3.5)
8) Parameter derivatives (Chapter 4.1)
9) Compare synthesized continuations to

the original signal (Chapter 4.2)
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All the algorithms apply the same 46 millisecond analysis window for all the frequen
The test signal contains frequencies the wavelengths of which are about the length o
analysis window. To detect a sinusoidal component, the window length has to be 2-4 t
the period of the sinusoid, depending on the analysis method. Therefore, with the mu
olution analysis better performance would have been obtained especially in the low 
quencies. However, the same analysis window was used for all the frequencies for
simplicity.

Since the test signal was generated using sinusoids, the ‘correct’ frequencies, ampli
and phases of each sinusoid are known. The parameters of the sinusoids obtained fro
analysis were compared to those of the correct ones. Several statistics were calculate
the analysis. These include the percentages of sinusoids not found, extra peaks fou
breaks in sinusoids, erroneous continuations and mean frequency, amplitude, and p
errors. The statistics were averaged over the three noise levels and combined into fo
tables which are presented in Appendix B. The most important information of each t
was extracted and collected into Tables 5 to 8.

The percentage of missed plus extra peaks per the number of sinusoids in the origin
nal is presented in Table 5. Algorithm set 7, which uses F-test in peak detection has c
more errors than the others in some sections. Most of the errors were caused by F-t
inability to detect sinusoids at extremely low frequencies when the window length is sm
F-test was also clearly worse in sections 4 and 5 which contained vibratos, tremolos
colliding sinusoids. F-test was better than cross-correlation in sections 6 and 10 whi
contained harmonic tones. The amplitude-spectrum thresholding used in algorithm s
and 2 worked surprisingly well. It was worse than average only in sections 3 and 9, w
is natural since these sections contained sounds which amplitudes were different fro
overall level.

The mean frequency errors are presented in Table 6. Algorithm sets 1 and 2 are oth
similar but set 2 uses quadratic interpolation. The mean frequency error indicates cle
that the quadratic interpolation improves the analysis. The quadratic interpolation is 
pared to the derivative-interpolation in sets 5 and 6. The performance is almost simil
we cannot say if some of the interpolation methods is better.

The errors in amplitude and phase estimation are measured by calculating the dista
the correct points in imaginary space. The mean distances to the correct points are 
sented in Table 7. By examining the performance of algorithm sets 3 and 4 we can se
difference of simpler method to the LSQ estimation. In the first section the simpler me
is clearly better, which is explained by the fact that LSQ makes large error in low freq
cies. The simpler method is also better in section 5, which is surprising because LSQ
should be especially good in the case of closely spaced sinusoids. In general, the LS
still better than the simpler method.
43



ted in
otable
iffer-
tection
. The
not

rrect

ories
The percentage of false continuations or breaks in the sinusoidal trajectories is presen
Table 8. Sets 5-7 use the continuation by synthesis, the others use derivatives. It is n
how much the performance varies inside the same continuation algorithm but with d
ent peak detection and parameter estimation. Especially the amplitude spectrum de
with the simple parameter estimation causes clearly errors in the continuation stage
differences in the continuations with and without synthesis are quite small, and it can

Table 5: Peak detection: percentage of missed and extra peaks

signal section

algorithm set 1 2 3 4 5 6 7 8 9 10

2 (fixed) 0 6 77 4 18 23 10 0 40 17
5 (cross-corr.) 0 4 28 1 23 64 64 21 31 74
7 (F-test) 25 49 25 22 53 47 82 32 33 63
8 (iterative) 0 5 28 1 18 62 57 10 31 67

Table 6: Peak interpolation: average frequency error / Hz

signal section

algorithm set 1 2 3 4 5 6 7 8 9 10

1 (no interpolation) 1.4 3.0 2.4 4.5 2.1 4.8 3.6 6.4 1.7 3.3
2 (quadratic interp.) 0.3 1.9 0.3 3.9 1.2 3.9 2.8 6.2 0.5 2.7
5 (quadratic interp.) 0.5 1.3 0.8 3.6 1.5 0.3 2.4 5.1 0.7 1.8
6 (derivative interp.) 0.4 1.4 0.7 3.8 1.2 0.3 2.5 5.2 0.9 1.8
8 (iterative) 0.5 1.3 0.8 3.6 1.6 0.4 2.3 5.4 0.7 1.8

Table 7: Parameter estimation: average amplitude and phase errors (distance to co
point in imaginary space)

signal section

algorithm set 1 2 3 4 5 6 7 8 9 10

3 (spectrum coeff.) 0.2 1.1 0.2 0.7 1.1 0.2 1.9 0.3 0.4 1.7
4 (LSQ) 0.7 0.6 0.2 0.4 1.3 0.2 0.7 0.2 0.3 0.9
8 (iterative) 0.7 0.7 0.2 0.4 1.7 0.3 0.8 0.3 0.3 1.0

Table 8: Peak continuation: percentage of false continuations and breaks in traject

signal section

algorithm set 1 2 3 4 5 6 7 8 9 10

2 (param. derivatives) 0 4 0 8 7 9 10 3 30 17
4 (param. derivatives) 0 2 2 1 10 0 2 4 30 2
5 (synthesis) 0 2 2 2 11 0 4 8 30 4
6 (synthesis) 0 0 2 2 11 0 4 8 30 4
7 (synthesis) 0 1 2 1 2 13 1 6 30 6
8 (iterative, synthesis) 0 1 2 2 9 0 5 8 30 7
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be said if either of the methods is better. However, in the case of crossing partials, w
the continuation based on the parameter derivatives often makes errors, the continuat
synthesis is more likely to make correct continuations.

Algorithm set 8 is a bit different than the others, since it uses iterative analysis of the r
ual once. In peak detection, it performed slightly better than the non-iterative version
When it comes to mean frequency, amplitude, and phase errors, the performance is a
similar. Also the continuation errors are comparable to the non-iterative algorithm se
This is natural since most of the continuations are done in the first iteration. On the se
pass, we just extract peaks that have not been found, or improve the parameters fou
the first iteration, so it is not likely that already made continuations would be change
These statistics considered, the iterative analysis is not better than non-iterative algori
However, if the number of additional components is increased, the iterative algorithm
produce better results than the other algorithms in all the sections [Virtanen 2001].

6.3 Computational efficiency considerations

Considering the whole analysis/synthesis process of the sinusoids+noise model, sinu
analysis is clearly the most time-consuming part, taking more than 50% of the overal
cessing time. In the Figure 17, the analysis and synthesis times of the algorithm set 
illustrated. It should be noted that sinusoidal analysis and synthesis times depend ve
much on the signal: if no sinusoids are found, analysis and synthesis are be very fas
whereas in the case of a rich harmonic sound they take a longer time. The times in
Figure 16 are obtained using the generated test signal. The complexity of the stocha
analysis and synthesis is signal-independent, since they are simply based on the ca
tion of energy at certain frequency bands.

Naturally, the sinusoidal analysis time depends on the algorithms used, which is illust
in Figure 17. With the three first algorithm sets, the analysis time is only about 4 times
real time when implemented in Matlab. These sets use the simplest peak detection a
rithms, amplitude spectrum thresholding and the cross-correlation method, and the p

sinusoidal analysis

stochastic analysis

sinusoidal synthesis

stochastic synthesis

SINUSOIDS + NOISE, ANALYSIS / SYNTHESIS

LSQ parameter estimation
peak continuation

peak detection

other
SINUSOIDAL ANALYSIS

Figure 16: Percentage of times used in the sinusoids+noise analysis/synthesis proc
and details of the sinusoidal analysis for algorithm set 5.
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eters are obtained directly from the spectrum. Therefore, the sets require efficiently
implemented only one FFT per analysis frame. With these algorithm sets the sinuso
analysis time is about the same as the sinusoidal synthesis and stochastic analysis a
thesis times.

As we switch to the more sophisticated LSQ parameter estimation (set 4), the analysis
is multiplied. This is natural since the LSQ requires one inverse of a large matrix per
frame. When synthesis is used in the peak continuation (set 5), the analysis time be
even longer. The derivative-interpolation used in set 6 takes a bit longer time than qu
dratic interpolation used in sets 2-5. F-test, which is used in set 7, requires several F
and several other operations that are computationally expensive, and is therefore cle
slower than cross-correlation method used in sets 2-6. The iterative algorithm set 8 a
ses the signal twice, therefore requiring about twice longer analysis time. Its analysis
includes the synthesis and subtraction of sinusoids after the first analysis pass.

The algorithms were implemented using the Matlab programming environment. Natur
we tried to use fast matrix operations whenever possible. Usually, most of the comput
time is spend in several computationally expensive FFTs, mean square errors or ma
inverses. Since the loop operations in the Matlab are very slow, at least the greedy co
ation algorithm could be speeded up using some other programming language.

6.4 Comparison to other sinusoids+noise systems

Even though the number of different sinusoids+noise systems is large, there are not
many that are freely available. Our system was compared to two other systems by list
to the synthesized signals. Our system uses several similar algorithms that Scott Le

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

analysis algorithm set

an
al

ys
is

 ti
m

e

Figure 17: Comparison of sinusoidal analysis times with different analysis algorithm
sets. Analysis time is scaled to the length of the original signal so that analysis time
means that the analysis takes 20 times the length of the signal.
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system uses. Therefore, it was natural to compare our system with his one. A softwa
called SNDAN includes an implementation of the standard McAulay-Quatieri algorith
and it is freely available. This was chosen as the other system.

Levine’s system includes the transient model which is not used in our system. There
the sound qualities are not directly comparable. Since we did not have access to Lev
system, we tested our system with two musical signals that were available on his we
page.

The perceptual difference between the systems is surprisingly small, considering tha
system does not include the transient model. The difference is audible, but not as la
one might expect. In both systems, the synthesized noise sounds somewhat similar,
is natural since both systems use Bark bands in the stochastic model. The overall pe
tual quality of Levine’s system is better, but it is very difficult to say what is the effect
the transient model.

SNDAN uses much larger frame rate than our system, and its peak detection thresho
to be set by hand. If the threshold is low, the system detects a huge amount of sinus
and produces a bit phase vocoder-like sound; it represents all the components in the
signal, even drums, with sinusoids. If the threshold is high, only the harmonic compon
are represented with sinusoids, which is the desired situation. Then the sound qualit
depends on the characteristics of the signal. If there is a lot of dynamic changes in th
nal, the fixed threshold does not work: in quiet parts, all the components fall below th
threshold and no peaks are detected.

In some cases, the quality of the synthesized signals was comparable to our system,
most cases it was clearly worse. In some cases, the fast frame rate caused an anno
audible effect. In SNDAN, the sinusoidal trajectories could not cross each other, eve
though some implementations of the McAulay-Quatieri algorithm allow that.

6.5 Selected “lightweight” and “quality” algorithm combinations

Our sinusoidal analysis system is based on several ideas taken from other sinusoidal
sis systems, modified with a couple of our own ideas. Our main emphasis was on the
ity of the resulting sinusoids from computational auditory scene analysis point of view
some algorithms, we had to make some minor compromises to keep the computatio
complexity in practical limits.

During the implementation and testing of the algorithms it became clear that in the a
sis process, none of the algorithm combinations is the ultimate answer, for none of t
algorithms performs well for all signals. This can be clearly seen in the results present
Chapter 6. Therefore, the system was built so that different algorithms can be used,
depending on the application. Two default algorithm sets were chosen to be used in 
tions where the user does not want to specify the algorithms himself: a ‘lightweight’ v
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sion which is fast but still produces applicable results, and a ‘quality’ version, where 
quality of the analysis is priority, but the analysis time is still tolerable. The chosen co
nations use algorithms sets corresponds to algorithms sets 3 and 5 in Table 4.

Both systems use cross-correlation method to detect peaks and quadratic interpolat
peak interpolation. In the lightweight version, a single 46 millisecond window is used
all the frequencies. In the quality version, multiresolution analysis is used by using th
frequency bands: 20-200 Hz, 200-5000 Hz, and 5-10 kHz and window length 86, 46
46 ms, respectively. Two highest bands use the same window length, but with slightl
ferent parameters. The characteristics of the sounds are different in the highest band,
was found advantageous to use different analysis parameters there.

In the lightweight version, the parameters are obtained directly from the interpolated
tra, and the obtained peaks are continuated using the derivatives of the parameters.
quality version, the parameters are estimated using the LSQ method for amplitudes 
phases, and continuation by synthesis is used to continuate the peaks. In both versi
masking curve is calculated and erroneous trajectories are filtered out, based on the
ing threshold.

Both versions are causal. The algorithmic delay is caused mainly by the long analysis
dows and trajectory filtering. Practically, the longest trajectories that can be removed
length about 65 milliseconds in length. The longest analysis window used is 86 millis
onds, so the algorithmic delay is less than 100 milliseconds. Therefore, both version
be implemented in real-time if enough computation resources are available.

If especially good quality is desired, and the number and length of input signals is sm
iterative analysis can be used to obtain better results. Again, the algorithms used sh
depend on the application: if we are interested in the noise part and want to remove a
monic components, we do not need the parameters of the sinusoids, and therefore t
parameter fusion is not needed.
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7. Application to Sound Separation and
Manipulation
In this chapter we apply the implemented sinusoids+noise model as a middle-level r
sentation for sound separation. The chapter discusses mostly sound separation usin
ceptual distance between the trajectories, which has been originally presented in
[Virtanen&Klapuri 2000]. Also, a more reliable sound separation method is shortly
described which is based on a multi-pitch estimation model, originally presented in
[Klapuri et al. 2000].

Separation of mixed sounds has several applications in the analysis, editing and ma
tion of audio signals. These include e.g. structured audio coding, automatic transcripti
music, audio enhancement, and computational auditory scene analysis. Until now, m
part of the research in sound separation has taken place in the area of computationa
tory scene analysis.

The sinusoids+noise model allows the manipulation of the separated sounds in param
domain. The pitch and time scale of the signals can be modified without any change i
quality of the synthesized sound. The theory behind these modifications is shortly
described in the end of this chapter.

7.1 Sound separation

When two sounds overlap in time and frequency, separating them is difficult and the
no general method to resolve the component sounds. However, if we can make som
assumptions of the mixed sounds, we can synthesize sounds that are perceptually c
the original before mixing. Our assumption is that the underlying sounds are harmon
and they have different fundamental frequencies. Using the sinusoidal model we can
decompose an input signal into spectral components, assign them to sound sources u
set of perceptual association cues, and then synthesize the sounds separately.

Calculations proceed as follows. First, the system uses sinusoidal modeling to repre
signals with sinusoidal trajectories. Second, some breaks caused by amplitude modu
transients or noise in resulting sinusoids are removed by interpolating trajectories. T
the system estimates the perceptual closeness of the trajectories by calculating the 
ence of scaled amplitudes and frequencies and the harmonic concordance of the tra
ries. Then the trajectories are classified into sound sources. The system can determ
49



ories
 to

simu-
to ini-
. This

 sinu-

eously
ood
 are

ing
ories.
ude of
ually
ero.

and
ur sys-
reaks
of the

ort
which of the trajectories are result of colliding harmonics, and then split these traject
in two. Finally, after the trajectories have been classified and split, the system is able
synthesize the two sounds separately.

The classification part itself is currently the most undeveloped part of the system. In 
lations, the classifier assumes two sound sources and uses their different onset times
tialize both classes. Thus the onset difference of the sounds had to be at least 100 ms
constraint could be removed by calculating the perceptual distances between all the
soids and then classifying them with a generic clustering algorithms.

The methods themselves can be used also in more complex tasks, and for simultan
onsetting sounds. As long as only sinusoidal modeling is used, it is difficult to obtain g
results for a large number of mixed sounds, because some of their harmonic partials
likely to be undetected.

7.2 Modifications to the standard sinusoidal model

All the trajectories that result from the sinusoidal modeling are not usually represent
entire partials of the sound. The most common estimation errors are breaks in traject
They can be caused by transients or noise occurring at the same time, or the amplit
the harmonic itself is so low that the trajectory can not be estimated. This happens us
for signals with strong amplitude modulation, where the amplitude actually can go to z
This phenomena can be easily seen in higher harmonics of violin of Figure 18.

If time difference between two frequency components is small and their frequencies 
amplitudes are close to each other, human auditory system connects the sounds. O
tem tries to model this by connecting trajectories which are close to each other. The b
between trajectories are interpolated. The interpolation also increases the robustness
system, as one harmonic is represented with one long trajectory instead of many sh
ones.
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Figure 18: Sinusoidal trajectories of a signal consisting of oboe and violin sounds
starting at times 100 and 300 ms.
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The trajectories to be connected are detected by comparing the onset and offset tim
quencies and amplitudes near the breaks and finding those trajectories which are m
probable belonging to the same partial. Then the breaks are removed by interpolatin
frequencies and amplitudes over the break. In our system, we are using linear interpo
since it seems to work well enough for separation purposes. Not every break is inter
lated, because allowing too long breaks or big amplitude/frequency differences caus
wrong trajectories to be connected. In this example, the total number of trajectories
reduced from 87 to 48.

7.3 Measure of perceptual distance

In his work, Bregman [1990] lists the following association cues in human auditory o
nization:

1. Spectral proximity (closeness in time or frequency)

2. Harmonic concordance

3. Synchronous changes of the components: a) common onset, b) common offset, c
mon amplitude modulation, d) common frequency modulation, e) equidirectional
movement in spectrum

4. Spatial proximity.

In this study, we focus on the synchronous changes of the components, together wit
harmonic concordance, which is taken into account to some extent, too.

Measuring the amplitude and frequency changes

When the measurement of common amplitude and frequency modulation was studie
found out that in some cases, modulation can be expressed with two quantities, modu
frequency and index. However, to present amplitude or frequency modulation only w
two quantities is usually not enough. Because modulation usually varies in time dom
we would need several measurements to cover the changes within time. Also, the ch
of the overall long-time intensity of the sound sometimes makes it hard to measure t
modulation characteristics of the sound.

Different harmonic partials have a wide range of amplitudes values and sometimes t
long-time progress is not similar. However, by scaling the amplitude of each partial b
average, the resulting curves are quite close to each other. In the case of frequencie
method is even more accurate, because frequencies do not change so much over tim
amplitudes, as illustrated in Figure 19. The mean square error between these scaled
quencies measures the frequency distance between the sinusoidal trajectories:

, (52)d f i j,( ) 1
t2 t1– 1+
-----------------------

f i t( )
f i

-----------
f j t( )
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------------– 
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wherefi(t) is frequency of trajectorypi at timet. Timest1 andt2 are chosen so that both tra
jectoriespi andpj exists at timest1<t<t2. Scaling coefficientsfi andfj are the average fre-
quencies of trajectoriespi andpj, calculated over timest1 andt2.

The same principle is used to obtain the perceptual distance caused by amplitude d
encesda(i,j) using amplitudesai(t) andaj(t) and their averagesai andaj.

These quantities measure all the synchronous changes of the components which we
listed in the beginning of this chapter. Of course, long-term movements in the spectrum
weighted more, but if the frequencies or amplitudes do not change a lot, which is often
case for musical sounds, the quantity measures well the smaller changes like freque
modulation.

Measure of harmonic concordance

The frequencyfp of a harmonic partial is close to an integral multiple of the fundamen
frequencyf0 of the harmonic sound. In our system we do not know the fundamental fr
quencies of the sounds even though they could be estimated in the original signal [Kla
1998]. In our system, we do not try to calculate fundamental frequencies of the soun
the mixture. Instead, we developed a measure for modeling the harmonic concordan
any two sinusoidal trajectories. If we have two sinusoidal trajectories belonging to one
monic source, the ratio of the frequencies of the trajectories is a ratio of small positive
gers:
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Figure 19: The upper plot shows the amplitudes of three first harmonics of
the oboe. In the middle plot are scaled curves of these amplitudes. In the
third plot are scaled curves of the frequencies of the same harmonics.
52



y is
r than
its

ic dis-

loga-

e-

mpli-
ance.
iffer-
ased

ggest

ces.
re
curve
the
, (53)

wherefi andfj are frequencies of the sinusoidal trajectoriespi andpj and which areath and
bth harmonic of a sound.

Because we do not know which trajectory belongs to which sound or which trajector
which harmonic partial, we assume that the fundamental frequency can not be smalle
the minimum frequency found in sinusoidal modeling. That way, we obtain upper lim
for a andb:

, , (54)

wherefmin is the minimum frequency found in sinusoidal modeling.

After determining the limits fora andb, we calculate all the ratios for possiblea andb and
choose the one which the best estimate for the ratio of the frequencies. The harmon
tance quantity is then the error between ratio of the frequencies and the ratio ofa andb. To
give equal weight for ratios below and above unity, we use the absolute value of the 
rithm of the ratio to measure the harmonic distance between trajectories:

, (55)

with a andb having the restrictions described in Equation 54.

Overall perceptual distance between trajectories

The overall perceptual distance between any two trajectories is a weighted sum of fr
quency, amplitude and harmonic distances:

. (56)

Due to the physics of sound production, frequencies usually do not vary as much as a
tudes. Thus the frequency distance has to be weighted more than the amplitude dist
The harmonic distance is calculated in a different way than the others, thus it has a d
ent scaling. Because perceptual organization of simultaneous trajectories is largely b
of harmonic concordance, the harmonic distance is weighted in a way to have the bi
effect.

Onset times are not taken into account directly when calculating these overall distan
Amplitude curves themselves contain the information of onset and offset times. Befo
onset, the amplitude of a trajectory is always zero. For natural sounds, the amplitude
usually rises rapidly after the onset, and then starts to slowly decay. After the offset, 
amplitude is again zero. The amplitude distance takes all this behavior into account.

f i

f j
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b
---=

a 1 2 … f i
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7.4 Trajectory classification

After estimating the closeness between each pair of sinusoidal trajectories, they shou
classified into separate sound sources. Because we do not have any coordinates com
all the trajectories, but only the distances between each pair of trajectories, we have
classify these trajectories into classes having minimum error between trajectories in
class:

, (57)

,

whereS1 andS2 are trajectory sets of two sounds,S is set of all trajectories, and  is the
cardinality of a set.

An ideal solution for choosing these classes would be to calculate all the possible per
tions and choose the best one. However, for a practical number of sinusoidal trajecto
the number of calculations becomes very large (2 to the power of number of trajecto
so some other of classification approach must be taken. An efficient solution to this p
lem is to choose an initial set of trajectories for each class (or sound, in this case) and
add trajectories one by one to the classification by choosing the trajectory which has
minimum distance to the previous ones.

A good initial set of trajectories can be obtained by choosing all the trajectories whos
onset times are close enough to an estimated onset timet0 of a sound, and then evaluating
all the possible subsets of certain number of trajectories. The subset which minimize
error contains usually sinusoids which have been tracked well and do not contain an
mation errors or colliding sinusoids. To emphasize long, stable trajectories, the length
trajectory can be used as a scaling factor. The number of trajectories close to onset t
usually so small that all the permutations can be evaluated:

, (58)

, , ,

wheret1 is estimated onset time of sound 1,t(i) is onset time of trajectoryi, tlimit is maxi-
mum distance of trajectory to the onset andc is the size of initial subset. The onset times
times can be obtained in many ways. In this system, we used the sum of difference 
amplitudes at the beginning of each trajectory which were smoothed using a triangu
window. The smoothed amplitudes were summed and local maxima of the resulting c
were selected as onset times. This onset detection method can detect onsets of sou
which do not have a strong transient in the beginning, for example violin.

min
1
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When we have estimated the initial subsets for each sound, we start adding the rest
trajectories into them one by one, always choosing a subset and trajectory whose di
is the smallest. The distance between a subset and a trajectory is simply the average
tances between the trajectory and the trajectories of the subset. Iteration is continue
all the trajectories are classified. The result of the classification is presented in Figur
One colliding trajectory belongs to both sounds. Detection of these colliding trajectorie
discussed in the next section.

7.5 Colliding trajectories

As mentioned, the harmonics of two sounds often overlap in musical signals. Sinuso
trajectories which are the result of overlapping harmonics, are called colliding trajecto
Which harmonics are overlapping, depends on the interval of the sounds. With harm
intervals [Bregman 1990, Klapuri 1998] like major third and perfect fifth, many of the lo
harmonics are overlapping, because the ratio of the fundamental frequencies is a ra
small integers. In the case of dissonant intervals, the low harmonics are not overlapp
but they can still be quite close to each other, which may cause estimation errors in si
idal modeling.

It is easy to see that an efficient way to detect colliding sinusoids is to find trajectorie
which are harmonically suitable for both sounds, or, whose harmonic distance to bot
sounds is small enough:

, (59)

whereS1 andS2 are sets of trajectories belonging to sounds 1 and 2 andclimit is a constant.
If equation is true for trajectorypi, then it is probable thatpi contains harmonic partials
from both sounds.
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Figure 20: Classified trajectories.
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The detected amplitude that results from two or more sinusoids close to each other 
quency is affected by the phase difference of the sinusoids. Because of the frequenc
amplitude modulation, which is usually present in natural voices, estimation of the ex
amplitudes and frequencies is very complicated, because after sinusoidal modeling 
not have the exact spectral information, only the detected sinusoids.

General solution of the colliding sinusoids problem is above the scope of this paper.
has been addressed e.g. in [Tolonen 1999]. However, to achieve better perceptual q
we approximate the underlying harmonics. The system interpolates the amplitudes o
colliding trajectories using amplitude curves of other, not-colliding sinusoids. The fre
quencies are left intact.

Finally, when we have detected and split the colliding trajectories, we can represent 
separated signals and synthesize them. The separated trajectories are presented in
Figure 21.

Validation experiments and the perceptual quality of separated sounds demonstrate th
presented methods can be used to yield practically applicable results. Remaining pro
to be addressed in the future include dynamic detection of the number of the mixed
sounds, better estimation of amplitudes of colliding frequency partials, and separatio
sounds that have the same onset time.

7.6 Separation using a multipitch estimation

Since the separation of signals using only the sinusoidal model becomes difficult for m
than one sound, a system was built that uses also estimates of the fundamental frequ
and their harmonic partials. This work has been originally presented in [Klapuri et al.
2000]. The applied system differs from the standard sinusoidal model in a few ways.
frequencies of the harmonic components are obtained from a multipitch estimator (M
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Figure 21: Separated trajectories. The 6th harmonic of the violin which
was colliding with the 5th harmonic of the oboe, doesn’t have vibrato.
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which also deduces which component belong to which sound. Therefore, peak detect
not needed and the amplitudes and phases of the components can be solved using th
algorithm. Peak continuation is not needed since the frequencies of the harmonic co
nents are assumed constant inside one MPE window, which is much longer than on
soidal modeling frame. Unfortunately, this method fails to detect small changes in th
fundamental frequency, such as vibrato.

After the parameter estimation, the sinusoids that are result of more than one harmo
partial are deduced from their sum. If the frequencies of two components are not exa
the same, the amplitude envelope of the sum of the components modulates at the ra
which the difference between the frequencies of the components. Assuming that the
nal amplitude envelopes are slowly-varying, we can solve the mixed components as
lows. The first amplitude envelope is obtained by lowpass filtering the envelope of th
mixed components, and the other by subtracting the first from the original, and then 
wave rectifying and lowpass filtering the difference. Association of the two separated
amplitude curves to their due sources of production is done by comparing the curves
other, already solved amplitude envelopes that were not overlapping. This comparin
be done using the perceptual measures presented in previous chapters. If more than
harmonic components are overlapping, their amplitudes are simply interpolated usin
other, already solved components of each sound.

Some demonstration signals generated with this method are available at http://
www.cs.tut.fi/~klap/iiro/dafx2000/.

7.7 Pitch and time-scale modifications

The sinusoidal and stochastic models allow modifications of the pitch without affecting
time scale and modifications of the time scale without affecting the pitch. The modifi
tions are done for the parametric data so that we analyze the original audio signal, m
desired modification for the parameters and then synthesize the signal. The quality o
modified signal is same as the quality of the synthesized signal without modifications
Also, the modifications are very simple: they do not require any FFTs or windowing, o
a couple of multiplications and summations.

Let us have the frequencies , amplitudesa(t,i) and phases of the determinis
tic part, and Bark-band energiesS(t,i) of the non-deterministic part. For modifications, w
also need the hop sizeS. We stretch the time scale by factor , which means that our o
inal signal of lengthT becomes length . Also, we shift the pitch of the signal by
factor , or, multiply the fundamental frequencies of the sounds by factor . In mus
terms, a shift ofs semitones is obtained using .

We assume that the non-deterministic part of the signal does not change when the p
changed, so the Bark-band energies do not require pitch-shift. For sinusoids, new fre
cies  are simply the old frequencies multiplied by the pitch-shift factor:

ω t i,( ) ϕ t i,( )

ρt
ρtT

ρω ρω
ρω 2

s 12⁄( )
=

ω' t i,( )
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This modification technique does not preserve the formant structure of the signal. The
thesis of sinusoids and stochastic components allows us to modify the time scale simp
multiplying the hop sizeS by the time-stretch factor:

(61)

However, if the pitch or time-scale is modified, the exact waveform can not be prese
so we have to generate phases that are an integral of the modified frequencies:

. (62)

The modification abilities of the model were not examined very much, but some synt
sized signals are available at http://www.cs.tut.fi/~tuomasv/demopage.html.

ω' t i,( ) ρωω t i,( )=

S' ρtS=

ϕ' t i,( ) S' ω' t i,( )
n 0=

t

∑=
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8. Conclusions
In this work, the sinusoids+noise model was studied, with the aim of applying it as a
dle-level presentation for computational auditory scene analysis. The purpose of this
was to study the existing analysis and synthesis algorithms, and to try some original
improvements. The usability of the model was verified in sound separation and man
tion experiments.

The whole sinusoids+noise model has some features taken from the human sound p
tion, but especially the sinusoidal model can be considered as a physical rather than
choacoustic model. For complex real-world signals, it is very difficult to detect the
meaningful peaks and estimate their parameters in a single analysis frame. In this th
we have used the approach that is used in almost all sinusoidal models: at first the m
ingful peaks are detected and then tracked into trajectories independently. For huma
sound perception, the process is somewhat different: the amplitude and length of a s
and also other interfering sounds present affect how strong the perception is. The traje
filtering is the only part of the system which tries to take into account this phenomen

Even though several combinations of advanced sinusoidal analysis algorithms were t
the experimental results show that none of them alone is the ultimate answer to the s
idal analysis. The are many fundamental problems in the estimation of the paramete
mostly relating to the limited time- and frequency resolution.

The perceptual quality of the synthesized sounds is not good enough for high-quality a
coding, but the model fulfills the properties desired for a mid-level representation: it
reduces the amount of data in the representation significantly without making too mu
high-level deductions that can not be guaranteed to be correct.

The experiments done show that the system is applicable in sound separation. With
sinusoidal model alone the separation is very limited and produces good results only
number of mixed sounds is small. With the multipitch estimator the separation becom
more reliable. However, a lot of work has to be done before a good-quality sound se
tion can be achieved with rich-polyphony real-world signals.

During the development and implementation of this analysis/synthesis system a lot o
knowledge of many audio signal processing ares was gained. The next step is to utiliz
system further in the sound separation and other areas of computational auditory sc
analysis.
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Appendix A: Fusion of Two Sinusoids:
Derivation of the Equations
Starting from a sum of two sinusoids which have amplitudes, frequencies and phasea1,
a2, , ,  and , we represent the sum of the sinusoids with one sinusoid, wh
amplitude and phase are time-varying. Let the sum of the sinusoids at timet be denoted by
x(t):

. (63)

Let , , . The amplitudes are then

and

,

andx(t) becomes

.

Using basic trigonometric formulas, we get

ω1 ω2 ϕ1 ϕ2

x t( ) a= 1 ω1t ϕ1+( )sin a+ 2 ω2t ϕ2+( )sin

a1

a2
----- 

 atan Φ= a1 0≠ a2 0≠

a1 a1
2 a2

2+ Φ( )sin=

a2 a1
2 a2

2+ Φ( )cos=

x t( ) a1
2 a2

2+= Φ( ) ω1t ϕ1+( ) Φ( )cos ω2t ϕ2+( )sin+sinsin[ ]

x t( )
a1

2 a2
2+

2
---------------------- Φ ω1t– ϕ1–( ) Φ ω1t ϕ1+ +( )

Φ ω2t ϕ2+ +( ) Φ ω2t– ϕ2+( )sin–sin

+cos–cos[

]

=

a1
2 a2

2+

2
----------------------= Φ ω1t– ϕ1– π

2
---+ 

  Φ ω1t ϕ1
π
2
---+ + + 

 

Φ ω2t ϕ2+ +( ) Φ ω2t– ϕ2+( )sin–sin

+sin–sin
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The sine and cosine of an inverse tangent can be simplified by:

and

.

resulting to an expression ofx(t) which contains a sine and a cosine with equal frequenc
and time-varying amplitudes:

. (64)

By setting this expression ofx(t) equal to expression which has only one sinusoid of equ
frequency and amplitude isa3 and phase , we get:

(65)

, (66)

From Equations (64) and (66) we get

a1
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2
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4
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(67)

(68)

Negative values are taken into account in the phase  so that we can get solution fa3
by taking power of two and summing up the equations:

. (69)

Dividing the Equation (68) by Equation (67) we get:

, (70)

from which the phase can be solved using an inverse tangent. Since the inverse ta
is limited to interval , negative amplitudes are taken into account with a 
rection term :

.

The equation for the phase becomes:

(71)

Using time-varying phase, we can represent the sum of the sinusoids with one sinus
which amplitude and phase are time-varying. Now we want to express the phase
time instantt as a sum of initial phase and time-dependent term, or, frequency.
initial phase is solved by settingt=0, which results:

(72)
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Because instantaneous frequency is the derivative of the phase, it can be obtained b
ferentiating the Equation 71. The instantaneous frequency , or the derivative of
phase  becomes:

(73)

Now we can represent the sum of two sinusoids with one sinusoid the amplitude and
quency of which are time-varying:

, (74)

where , and are described in Equations 69, 72 and 73. This equatio
analogous to Equation 65 which has time-varying amplitude and phase.
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Appendix B: Numerical Comparison of
Algorithm Sets
The algorithm sets used in tables in this appendix are explained in the Chapter 6.2. 
sets were used to analyze the generated test signal described in the same chapter i
Table 3. Also the sections used in this appendix refer to that table.

Table 9: Peak interpolation: average frequency error / Hz

signal section

algorithm set 1 2 3 4 5 6 7 8 9 10

1 1.4 3.0 2.4 4.5 2.1 4.8 3.6 6.4 1.7 3.3
2 0.3 1.9 0.3 3.9 1.2 3.9 2.8 6.2 0.5 2.7
3 0.5 1.1 0.8 3.7 1.6 0.3 2.2 4.1 0.7 1.7
4 0.5 1.1 0.8 3.7 1.5 0.3 2.3 4.1 0.7 1.7
5 0.5 1.3 0.8 3.6 1.5 0.3 2.4 5.1 0.7 1.8
6 0.4 1.4 0.7 3.8 1.2 0.3 2.5 5.2 0.9 1.8
7 0.5 0.4 0.8 1.2 0.4 0.6 0.7 5.0 0.6 0.9
8 0.5 1.3 0.8 3.6 1.6 0.4 2.3 5.4 0.7 1.8

Table 10: Parameter estimation: average amplitude- and phase errors (distance to 
point in imaginary space)

signal section

algorithm set 1 2 3 4 5 6 7 8 9 10

1 0.2 1.6 0.2 0.9 1.2 1.0 2.0 0.8 0.6 1.6
2 0.2 1.6 0.2 0.9 1.2 1.0 2.0 0.8 0.5 1.6
3 0.2 1.1 0.2 0.7 1.1 0.2 1.9 0.3 0.4 1.7
4 0.7 0.6 0.2 0.4 1.3 0.2 0.7 0.2 0.3 0.9
5 0.7 0.7 0.2 0.4 1.3 0.2 0.8 0.2 0.3 1.0
6 0.7 0.7 0.2 0.4 1.3 0.2 0.8 0.2 0.3 1.0
7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.7
8 0.7 0.7 0.2 0.4 1.7 0.3 0.8 0.3 0.3 1.0
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Table 11: Peak detection: percentage of missed and extra peaks

signal section

algorithm set 1 2 3 4 5 6 7 8 9 10

1 0 6 77 4 18 23 10 0 40 17
2 0 6 77 4 18 23 10 0 40 17
3 0 7 28 0 27 67 78 68 33 89
4 0 7 28 0 27 67 78 68 33 89
5 0 4 28 1 23 64 64 21 31 74
6 0 2 28 1 23 64 64 21 31 74
7 25 49 25 22 53 47 82 32 33 63
8 0 5 28 1 18 62 57 10 31 67

Table 12: Peak continuation: percentage of false continuations and breaks in trajec

signal section

algorithm set 1 2 3 4 5 6 7 8 9 10

1 0 6 0 8 11 8 11 3 30 18
2 0 4 0 8 7 9 10 3 30 17
3 0 2 2 1 11 0 3 4 30 2
4 0 2 2 1 10 0 2 4 30 2
5 0 2 2 2 11 0 4 8 30 4
6 0 0 2 2 11 0 4 8 30 4
7 0 1 2 1 2 13 1 6 30 6
8 0 1 2 2 9 0 5 8 30 7
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